進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0602201322353600
論文名稱(中文) 利用原子層沉積系統成長氧化物薄膜及氧化物半導體發光二極體之特性研究
論文名稱(英文) Investigation of the oxide films and oxide semiconductor light emitting diodes using by atomic layer deposition
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 101
學期 1
出版年 102
研究生(中文) 蔡易錡
研究生(英文) Yi-Chi Tsai
學號 L76991114
學位類別 碩士
語文別 中文
論文頁數 74頁
口試委員 指導教授-李欣縈
口試委員-劉代山
口試委員-賴豊文
口試委員-李宗信
中文關鍵字 氧化鋅  氧化鎂鋅  發光二極體  原子層沉積法  電漿  光電化學氧化法 
英文關鍵字 zinc oxide  magnesium zinc oxide  light emitting diodes  atomic layer deposition  plasma  PEC 
學科別分類
中文摘要 本研究主要係利用原子層沉積系統(Atomic Layer Deposition , ALD)並以電漿輔助在低溫環境下成長出高品質之氧化鋅以及氧化鎂鋅薄膜。在形成氧化鋅薄膜後,再以快速熱退火系統(Rapid Thermal Annealing system ,RTA)對所形成氧化鋅薄膜進行熱處理,藉以降低氧缺陷所造成的缺陷發光及載子濃度,所製作的氧化鋅薄膜具有低載子濃度(3.0 × 1015 cm-3)、高電阻率(2.4 × 102 Ω-cm)以及低氧缺陷,至於藉由光激發螢光量測系統所得氧化鋅本身的發光峰值強度大於氧缺陷的發光峰值強度約高61%。
本研究亦成功製作p型氮化鎵/i型氧化鋅/n型氧化鎂鋅之短波長的p-i-n發光二極體元件,藉以展示這些氧化物薄膜之應用潛力,在所製作之發光二極體元件中,因氮化鎵與氧化鎂鋅的能隙值大於氧化鋅,而使其載子侷限於主動層氧化鋅區域內,進而增加其電子與電洞復合發光效率,而可有效提升元件發光效率。然而由於電子從n電極注入後,由n型氧化鎂鋅及i型氧化鋅薄膜的側壁流通至p型氮化鎵,造成發光二極體元件漏電流過大,故採用光電化學氧化法(Photoelectrochemical Oxidation Method ,PEC)在發光二極體元件表面及側壁產生Zn(OH)2 進行護佈藉以減少漏電流。經光電化學氧化法處理以及未經光電化學氧化法處理之發光二極體元件的電激發光峰值分別為在377nm與381nm的位置,且相較於未經光電化學氧化法處理之發光二極體元件,其電流-電壓的電特性曲線呈現極為明顯的改善,其電激發光頻譜的發光峰值強度提升了20%。
相較於其它高溫基板製作方法,本研究所採用之方法可在低溫環境下成長出高品質的氧化鋅薄膜,可避免在高溫製程中造成其它薄膜互相擴散的現象,本研究所獲得成果將有助於半導體元件之整合。
英文摘要 n this study, atomic layer deposition (ALD) with plasma was used to grow high quality zinc oxide and magnesium zinc oxide thin films at low temperature. After film formation, zinc oxide film was then treated by the rapid thermal annealing (RTA) system to reduce the carrier concentration and defect emission as a result of oxygen vacancy. The resultant zinc oxide films possess low carrier concentration (3.0 × 1015 cm-3) and high resistivity (2.4 × 102 Ω-cm). The near-band-edge emission (NBE) of zinc oxide is 61% higher than that oxygen vacancy defect emission of zinc oxide films prepared in this work based on the experimental results obtained from the photoluminescence measurement system.
In this study, we also successfully fabricated the p-GaN/i-ZnO/ n-MgZnO short wavelength p-i-n LED showing enhanced performance properties to demonstrate the potential applications based on the oxide thin films prepared in this work.
The improved performance of p-GaN/i-ZnO/n-MgZnO p-i-n LED was primarily attributed to the confinement of electrons and holes arising from the p-GaN and n-MgZnO barrier layer along with the enhancement of the radiative recombination rate in the emitting layer. Due to the injection electrons from n electrode, the electrons passed from the sidewall of the films of the n-type magnesium zinc oxide and the i-zinc oxide to the p-GaN resulted in significant current leakage. To resolve this problem, a protective coating of Zn(OH)2 was applied to the surface and the side wall of LED via the Photoelectrochemical Oxidation Method (PEC) to reduce the electric current leakage.
From the electroluminescence spectra of with and without PEC p-i-n LED, the emitting peaks of the p-GaN/i-ZnO/n-MgZnO p-i-n LED are 377nm and 381nm. However, the voltage-current measurement with PEC has obvious improvement. Besides, the peak intensity of the p-GaN/i-ZnO/n-MgZnO p-i-n LED with PEC is 20% higher than the one without PEC.
Compared other methods involving the growth of zinc oxide thin films by using high temperature substrate, this work illustrated that high quality zinc oxide thin films could be prepared by using low temperature substrate, This method could avoid causing other films having the interdiffusion phenomenon in a high-temperature production process. This method represents a contribution to the integration of semiconductor device.
論文目次 摘要 I
Abstract III
致謝 V
目錄 VI
表目錄 IX
圖目錄 XI
第一章 序論 1
1.1 序論 1
1.2 研究動機 2
參考文獻 4
第二章 原理 7
2.1 發光二極體發光原理 7
2.2氧化鋅與氧化鎂鋅(ZnO,MgZnO)之材料特性 8
2.3 沉積原理 9
2.4 量測分析 10
2.4.1 霍爾效應量測系統 10
2.4.2 光激發螢光量測系統 11
2.4.3 光學穿透率量測系統 12
2.4.4 電流-電壓量測系統 13
2.4.5 電激發光量測系統 13
參考文獻 14
第三章 氧化物半導體發光二極體製程步驟 21
3.1 氧化鋅摻雜氮原子、i型氧化鋅以及n型氧化鎂鋅薄膜製程條件與步驟 21
3.2 p-GaN / i-ZnO / n-MgZnO 發光二極體製程步驟 25
參考文獻 31
第四章 實驗量測分析與結果討論 37
4.1 氧化鋅以及氧化鎂鋅薄膜特性分析 37
4.1.1 霍爾效應量測分析 38
4.1.2 光激發螢光量測分析 40
4.1.3 光學穿透率量測分析 43
4.2 p-GaN / ZnO:N / n-MgZnO 發光二極體製作完成之元件特性量測結果 44
4.2.1 元件金屬電極與基板及薄膜間之電流-電壓關係 44
4.2.2 元件電流-電壓的關係 45
4.2.3 元件電激發光光譜分析 46
4.3 p-GaN / i-ZnO / n-MgZnO 發光二極體製作完成之元件特性量測結果 47
4.3.1 元件電流-電壓的關係 47
4.3.2 元件電激發光光譜分析 49
參考文獻 50
第五章 結論 72
第六章 未來規劃 74
參考文獻 [1] A. Shimizu, M. Kanbara and M. Hada, M. Kasuga, “ZnO green light emitting diode,” Jpn. J. Appl. Phys., vol. 17, pp. 1435-1436, 1978.
[2] W. Z. Liu, H. Y. Xu, L. X. Zhang, L. X. C. Zhang, J. G. Ma, J. N. Wang and Y. C. Liu, “Localized surface plasmon-enhanced ultraviolet electroluminescence fromn-ZnO/i-ZnO/p-GaN heterojunction light-emitting diodes via optimizing the thickness of MgO spacer layer,” Appl. Phys. Lett., vol. 101, pp. 142101-1-142101-6, 2012.
[3] P. C. Wu, H. Y. Lee and C. T. Lee, “Enhanced light emission of double heterostructured MgZnO/ZnO/MgZnO in ultraviolet blind light-emitting diodes deposited by vapor cooling condensation system,” Appl. Phys. Lett., vol. 100, pp. 131116-1-131116-3, 2012.
[4] R. Deng, B. Yao, Y. F. Li, Y. Xu, J. C. Li, B. H. Li, Z. Z. Zhang, L. G. Zhang, H. F. Zhao and D. Z. Shen, “Ultraviolet electroluminescence from n-ZnO/p-NiO heterojunction light-emitting diode,” J. Lumines., vol. 134, pp. 240-243, 2013.
[5] S. Feng, C. X. Shan, S. P. Wang, B. H. Li, Z. Z. Zhang, C. L. Yang and D. Z. Shen, “Ultraviolet photodetectors fabricated from ZnO p-i-n homojunction structures,” Mater. Chem. Phys., vol. 129, pp. 27-29, 2011.
[6] T. S. Lin and C. T. Lee, “Performance investigation of p-i-n ZnO-based thin film homojunction ultraviolet photodetectors,” Appl. Phys. Lett., vol. 101, pp. 221118-1-221118-3, 2012.
[7] H. K. Liang, S. F. Yu and H. Y. Yang, “Directional and controllable edge-emitting ZnO ultraviolet random laser diodes,” Appl. Phys. Lett., vol. 96, pp. 101116-1-101116-3, 2010.
[8] L. Hao, G. Fang, S. Li, X. Mo, H. Wang, H. Huang, Q. Jiang, J. Wang and X. Zhao, “A ZnO/ZnMgO multiple-quantum-well ultraviolet random laser diode,” IEEE Electron Device Lett., vol. 32, pp. 54-56, 2011.
[9] T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura and T. Yasuda, H. Koinuma, “Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films,” Appl. Phys.
Lett., vol. 78, pp. 1237-1239, 2001.
[10] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi and H. Koinuma, “MgxZn1–xO as a II-VI widegap semiconductor alloy”, Appl. Phys. Lett., vol. 72, pp. 2466-2468, 1998.
[11] Hiroyuki Kato, Tomofumi Yamamuro, Akio Ogawa, Chizu Kyotani and Michihiro Sano, “Impact of Mixture Gas Plasma of N2 and O2 as the N Source on ZnO-Based Ultraviolet Light-Emitting Diodes Fabricated by Molecular Beam Epitaxy, ” Appl. Phys. Express., vol. 4, pp. 091105-1-091105-3, 2011.
[12] G. Y. Zhu, J. T. Li, Z. L. Shi, Y. Lin, G. F. Chen, T. Ding, Z. S. Tian and C. X. Xu, “Ultraviolet electroluminescence from n-ZnO/i-MgO/p+-GaN heterojunction light-emitting diodes fabricated by RF-magnetron sputtering,” Appl. Phys. B-Lasers Opt., vol. 109, pp. 195-199, 2012.
[13] G. Shukla, “ZnO/MgZnO p-n junction light-emitting diodes fabricated on sapphire substrates by pulsed laser deposition technique,” J. Phys. D-Appl. Phys., vol. 42, pp. 075105-1-075105-6, 2009.
[14] Y. W. Zhang, X. M. Li, W. D. Yu, X. D. Gao, Y. F. Gu, C. Yang, J. L. Zhao, X. W. Sun, S. T. Tan and J. F. Kong, W. Z. Shen, “Epitaxial growth and luminescence properties of ZnO-based heterojunction light-emitting diode on Si(1.1.1) substrate by pulsed-laser deposition,” J. Phys. D-Appl. Phys., vol. 41 pp. 205105-1-20505-6, 2008.
[1] 陳隆建,發光二極體之原理與製程 (全華圖書股份有限公司,2008)
[2] 汪吉祥,“ZnO/MgZnO 發光二極體的光電特性”,中華技術學院電子工程研究所碩士論文,2005.
[3] K. Maejima, H. Shibata, H. Tampo, K. Matsubara and S. Niki, “Characterization of MgxZn1-xO transparent conducting thin films fabricated by multi-cathode RF-magnetron sputtering,” Thin Solid Films., vol. 518, pp. 2949-2952, 2010.
[4] 王銘毅,“氧化鎂鋅紫外光偵檢器之製作及特性研究”,國立虎尾科技大學,2007.
[5] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke and M. A. Reshchikov, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., vol. 98, pp. 041301-1-041301-103, 2005.
[6] Tuomo Suntola, “Surface chemistry of materials deposition at atomic layer level,” Appl. Surf. Sci., vol. 100-101, pp. 391-398, 1996.
[1] J. G. Lu, L. P. Zhu, Z. Z. Ye, F. Zhuge, B. H. Zhao, J. Y. Huang, L. Wang and J. Yang, “p-type ZnO films by codoping of nitrogen and aluminum and ZnO-based p-n homojuctions,” J. Cryst. Growth., vol. 283, pp. 413-417, 2005.
[2] 洪榛棟,“鎳/氧化銦錫金屬電極與氮化鋁-氧化鋅共濺鍍薄膜歐姆接觸及其應用於發光二極體之研究”, 國立虎尾科技大學光電與材料科技碩士論文,2011.
[3] P. T. Hsieh, Y. C. Chen, M. S. Lee, K. S. Kao, M. C. Kao and M. P. Houng, “The effects of oxygen concentration on ultraviolet luminescence of ZnO films by sol–gel technology and annealing,” J. Sol-Gel Sci. Technol., vol. 47, pp.1-6, 2008.
[4] P. T. Hsieh, H. S. Chin, P. K. Chang, C. M. Wang, Y. C. Chen and M. P. Houng, “Effects of the annealing environment on green luminescence of ZnO thin films,” Physica B., vol. 405, pp. 2526-2529, 2010.
[5] 吳柏慶,“低溫氣相冷凝技術成長氧化鎂鋅薄膜與研製發光二極體元件”, 國立成功大學為電子工程研究所碩士論文,2011.
[6] 李正中,薄膜光學與鍍膜技術 (義軒圖書出版社,1999)
[7] 邱英碩,“利用低溫氣相冷凝法成長氧化鋅感測膜製作延伸式閘極場效電晶體酸鹼感測器之研究”, 國立成功大學化學工程研究所碩士論文,2010.
[1] D. C. Look, J. W. Hemsky and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett., vol. 82, pp. 2552-2555, 1999.
[2] A. R. Hutson, “Hall effect studies of doped zinc oxide single crystals,” Phys. Rev. Lett., vol. 108, pp. 222-230, 1957.
[3] K. Maejima , H. Shibata, H. Tampo and K. Matsubara, S. Niki, “Characterization of Zn1−xMgxO transparent conducting thin films fabricated by multi-cathode RF-magnetron sputtering,” Thin Solid Films., vol. 518, pp. 2949-2952, 2010.
[4] 郭俐君,“電漿增強式原子層沉積法成長摻雜氮原子之p型氧化鋅薄膜特性分析”, 私立中原大學電子工程研究所碩士論文, 2010.
[5] 洪榛棟,“鎳/氧化銦錫金屬電極與氮化鋁-氧化鋅共濺鍍薄膜歐姆接觸及其應用於發光二極體之研究”, 國立虎尾科技大學光電與材料科技碩士論文,2011.
[6] Y. C. Hsueh, C. C. Wang, C. Liu, C. C. Kei and T. P. Perng, “Deposition of platinum on oxygen plasma treated carbon nanotubes by atomic layer deposition, ” Nanotechnology., vol. 23, pp.405603-1-405603-6, 2012.
[7] Y. Tian, X. Ma, L. Xiang, M. V. Ryzhkov, A. A. Borodkin and S. I. Rumyantsev, D. Yang, “Optically and electrically pumped random lasing from ZnO films annealed at different temperatures,” Opt. Commun., vol. 285, pp. 5323-5326, 2012.
[8] S. M. Faraz, N. H. Alvi, A. Henry, O. Nur, M. Willander and Q. Wahab, “Annealing effects on electrical and optical properties of n-ZnO/p-Si heterojunction diodes,” Adv. Mater. Res., vol. 324, pp. 233-236, 2011.
[9] M Yuste, R Escobar Galindo, I Caretti, R Torres and O S´anchez, “Influence of the oxygen partial pressure and post-deposition annealing on the structure and optical properties of ZnO films grown by dc magnetron sputtering at room temperature,” J. Phys. D: Appl. Phys., vol. 45, pp. 025303-1-025303-11
[10] J. L. Wang, T. Y. Hsieh, P. Y. Yang, C. C. Hwang, D. C. Shye and I. C. Lee, “Oxygen annealing effect on field-emission characteristics of hydrothermally synthesized Al-doped ZnO nanowires,” Surf. Coat. Technol., vol. 10, pp.1016-1-1016-5, 2012.
[11] P. T. Hsieh, Y. C. Chen, M. S. Lee, K. S. Kao, M. C. Kao and M. P. Houng, “The effects of oxygen concentration on ultraviolet luminescence of ZnO films by sol–gel technology and annealing, ” J. Sol-Gel Sci. Technol., vol. 47, pp.1-6, 2008.
[12] T. Zhang, L. Sun, D. Han, Y. Wang and R. Han, “Surface uniform wet etching of ZnO films and influence of oxygen annealing on etching properties, ” NEMS 2011 - 6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, p 626-629, 2011.
[13] F. Leiter, H. Alves, D. Pfisterer, N. G. Romanov, D. M. Hofmann and B. K. Meyer, “Oxygen vacancies in ZnO,” Physica B., vol. 340-342. pp. 201-204, 2003.
[14] S. Guo, “Optical transition levels related to oxygen vacancies in ZnO,” Symposium on Photonics and Optoelectronics, SOPO 2012.
[15] Q. Zhao, X. Y. Xu, X. F. Song, X. Z. Zhang and D. P. Yu, “Enhanced field emission from ZnO nanorods via thermal annealing in Oxygen,” Appl. Phys. Lett., vol. 88, pp. 033102-1-033102-3, 2006.
[16] P. Zhan, W. Wang, C. Liu, Y. Hu and Z. Li, “Oxygen vacancy–induced ferromagnetism in un-doped ZnO thin films,” J. Appl. Phys., vol. 111, pp. 033501-1-033501-5, 2012.
[17] C. Drouilly, J. M. Krafft, F. Averseng, S. Casale, B. B. Delphine, C. Chizallet, V. Lecocq, H. Vezin, L. P. Hélène and G. Costentin, “ZnO oxygen vacancies formation and filling followed by in situ photoluminescence and in situ EPR,” J. Phys. Chem. C., vol. 116, pp. 21297-21307, 2012.
[18] X. Su, Z. Zhang, Y. Wang and M. Zhu, “Synthesis and otoluminescence of aligned ZnO nanorods by thermal decomposition of zinc acetate at a substrate temperature of ~250 °C,” J. Phys. D-Appl. Phys., vol. 38, pp. 3934-3937, 2005.
[19] L. L. Zhang, C. X. Guo, J. G. Chen and J. T. Hu,“The synthesis of one-dimensional controllable ZnO microrods,” Chinese Physics., vol. 14, pp. 586-591, 2005.
[20] 張能傑, “利用磁控濺鍍成長氧化鋅奈米點及其形貌,成分與性質分析,” 國立成功大學材料及工程學系碩士論文,2008.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-02-07起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw