進階搜尋


下載電子全文  
系統識別號 U0026-0602201300553500
論文名稱(中文) 氧化鋅/二氧化矽奈米複合膜之光電元件與特性研究
論文名稱(英文) Characterizations of ZnO-SiO2 Nanocomposite Film Based Optoelectronic Devices
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 101
學期 1
出版年 102
研究生(中文) 陳俊廷
研究生(英文) Jiun-Ting Chen
學號 l78971063
學位類別 博士
語文別 英文
論文頁數 127頁
口試委員 指導教授-賴韋志
召集委員-洪瑞華
口試委員-張守進
口試委員-許進恭
口試委員-黃建璋
口試委員-郭浩中
口試委員-杜立偉
口試委員-張允崇
口試委員-林詣超
中文關鍵字 氧化鋅奈米粒子  氧化鋅/二氧化矽奈米複合膜  發光二極體  軟性(可撓式)深紫外光檢測器 
英文關鍵字 ZnO QDs  ZnO-SiO2 nanocomposite film  Light emitting diodes  Flexible solar-blind photodetector 
學科別分類
中文摘要 本論文以共濺鍍系統於室溫下成長氧化鋅(ZnO)/二氧化矽(SiO2)奈米複合膜材料,於高解析穿透式電子顯微鏡(High-Resolution Transmittance Electron Microscopy,HRTEM)觀察下,顯示氧化鋅奈米粒子大小介於3 ~7 nm之間分布於複合薄膜內,此外氧化鋅/二氧化矽奈米複合膜兼具寬能隙之特性,將其應用於p-i-n發光二極體(LED)及軟性(可撓式)深紫外光偵測器元件。
第一部份以氧化鋅/二氧化矽奈米複合薄膜作為主動層,製作n型氧化鋅鎵(n-GZO)/氧化鋅-二氧化矽奈米複合膜/ p型氮化鎵(p-GaN)之(p-i-n)之異質結構發光二極體元件,並使用平頂奈秒雷射(Flat-Top Nanosecond Laser,FTNL)處理,探討元件光電特性之變化。氧化鋅/二氧化矽奈米複合膜之發光二極體在注入電流為9 mA時,產生376、427nm與540nm之電激發光峰,分別為氧化鋅奈米叢簇(nanocluster)和p-GaN層中Mg的深層受體能階之輻射複合與氧缺陷發光所造成。而經由FTNL處理後376nm之發光峰值增強1.4倍,且抑制540nm之氧缺陷發光。最後利用非共振拉曼光譜(Non-Resonance Raman Spectroscopy)量測,由FTNL處理之氧化鋅/二氧化矽奈米複合薄膜,奈米結構相關之E2(high)峰值435 cm-1有增強半高寬減少、缺陷相關之E1(LO)峰584 cm-1的強度獲得降低,進一步驗證由FTNL處理可提升氧化鋅奈米粒子之結晶性和減少氧化鋅/二氧化矽奈米複合層中之缺陷。
第二部分製作軟性深紫外光偵測器元件(flexible solar-blind photodetector),首先使用有機矽氧薄膜(SiOx(CH3))作為氧化鋅/二氧化矽奈米複合薄膜和基板間之緩衝層,可降低奈米複合薄膜之內部應力,提升光偵測器的元件特性,藉以製作出具高偵測率(Detectivity)及低雜訊之軟性深紫外光偵測器。在逆向偏壓10 V下,元件響應峰值為240 nm,光響應(responsivity)和量子效率(quantum efficiency)分別為0.75 A/W和482%,並且具有約五個數量級之深紫外光/可見光互斥比(DUV-to-visible rejection ratio),乃因元件存在內部增益(internal gain)。最後,將軟性光偵測器經撓曲後量測,其光響應和紫外光/可見光的拒斥比隨著曲率半徑越小雖有些微衰減,然而,在彎曲半徑8.6毫米的情況下,具緩衝層之軟性氧化鋅/二氧化矽奈米複合薄膜光檢測器之紫外光/可見光的拒斥比可達4.40x104。此外,具有機矽基薄膜緩衝層之可撓式光偵測器,光電特性獲得改善,並可減緩撓曲時,施加於奈米複合薄膜上之應力,減緩元件光電特性衰退。
英文摘要 In this dissertation, zinc oxide-silicon dioxide (ZnO-SiO2) nanocomposite films were grown via a co-sputter system at room temperature (RT). High-resolution transmittance electron microscopy (HRTEM) results reveal that the diameter of ZnO nanoparticles in the ZnO-SiO2 nanocomposite was within 3 mm to 7 nm. In addition, the ZnO-SiO2 nanocomposite films have wide bandgap characteristics. Thus, they are used to fabricate a p-GaN/i-ZnO/n-ZnO:In (p-i-n) light-emitting diode (LED) and a flexible solar-blind photodetector (PD).
First, ZnO-SiO2 nanocomposite films were placed between p-GaN and n-ZnO:Ga (GZO) to obtain a p-i-n heterojunction structure LEDs. This device exhibited an emission peak at 376 nm in the electroluminescence (EL) spectrum while operating at a current injection of 9 mA. A flat-top nanosecond laser (FTNL) was used to anneal the ZnO-SiO2 nanocomposite layer simultaneously. The intensity of the EL emission peak of ZnO-SiO2 nanocomposite LEDs at 376 nm at a current of 9 mA with FTNL treatment was approximately 1.4 times greater than those of LEDs without FTNL treatment. Furthermore, the full-width at half maximum (FWHM) of the EL emission of FTNL-treated LEDs at 376 nm was narrower than those of LEDs without FTNL treatment. Thus, the FTNL treatment of ZnO-SiO2 nanocomposite LEDs could induce the recrystallization of distributed ZnO nanoclusters and reduce the defects in the ZnO-SiO2 nanocomposite layers.
Second, an organosilicon compound [SiOx(CH3)] was used as the buffer layer between the ZnO-SiO2 nanocomposite film and the substrate in fabricating a flexible solar-blind PD. The compound can reduce the internal stress of the ZnO-SiO2 nanocomposite film and improve the characteristics of the PD to produce a low-noise, flexible solar-blind PD with high detectivity. The maximum responsivity value and quantum efficiency of the device at -10 V were 0.75 A/W and 482% at 240 nm, respectively. This result indicates a high deep ultraviolet (DUV)-to-visible rejection ratio (R = 240 nm/R = 400 nm) of five orders of magnitude, which was due to the internal gain in the device. Finally, after bending measurements, the DUV-to-visible rejection and responsivity of flexible PDs slightly attenuated when the radius of the curvature decreased. However, all PDs retained their favorable photoelectric properties, especially the flexibility of the PD caused by the organosilicon compound thin film. These results indicate that the flexible ZnO-SiO2 nanocompsite solar-blind PD works when the bending radius is larger than 8.6 mm. The buffer layer [SiOx(CH3)] released the stress on the ZnO-SiO2 nanocomposite during bending, enhanced the characteristics of PDs, and suppressed the reduction of photoelectric properties.
論文目次 Abstract (in Chinese)...................................……….……………………I
Abstract (in English)..............................................................................IV
Acknowledgement.................................................................................VII
Contents..................................................................................................IX
Table Captions......................................................................................XII
Figure Captions...................................................................................XIII
CHAPTER 1 Introduction.................................................................1
1.1 Motivation...........................................................................................1
1.2 Overview of this Dissertation............................................................3
1.2.1 Ga:ZnO/i-ZnO-SiO2 nanocomposite/p-GaN LEDs................3
1.2.2 ZnO-SiO2 Solar-Blind Photodetectors.....................................7
References in Chapter 1.........................................................................10
CHAPTER 2 Theory…….................................................................20
2.1 The ZnO-SiO2 Nanocompsite Film System and ZnO Quantum Confinement Effect.........................................................................20
2.2 Transmission Electron Microscopy (TEM)....................................24
2.3 Raman Scattering Spectroscopy......................................................25
2.4 Responsivity and Quantum Efficiency............................................29
2.5 Types of Low Frequency Noise........................................................30
References in Chapter 2.........................................................................33
CHAPTER 3 Fabrication System and Experimental Procedure..................................................................................37
3.1 Magnetron co-sputtering system.....................................................37
3.2 Flat-top nanosecond laser (FTNL) system.....................................38
3.3 Measurement system...........….........................................................39
3.4 Fabrication of p-i-n ZnO-SiO2 Nanocomposite LEDs with and without Laser Treatment...….........................................................42
3.5 Fabrication of ZnO-SiO2 Nanocomposite MSM Solar-Blind Photodiodes on Sapphire and Flaxbile Substrate…....................46
CHAPTER 4 Experimental Results and Discussions I....…..50
4.1 ZnO-SiO2 nanocomposite p-i-n light-emitting devices.….…....…50
4.1.1 Current-voltage (I-V) characteristics of LEDs.………..…..50
4.1.2 The EL spectra of LEDs at injection current of 9mA …......53
4.1.3 EL spectra for LEDs under various forward currents.........55
4.1.4 HRTEM images of the ZnO-SiO2 nanocomposite film........57
4.2 ZnO-SiO2 nanocomposite p-i-n LEDs with and wihout flat-top nanosecond laser (FTNL) treatment….....................................…61
4.2.1 Current-voltage (I-V) characteristics of LEDs.....................61
4.2.2 The EL spectra of LEDs at injection current of 1mA....63
4.2.3 The EL spectra of LEDs under various forward currents...65
4.2.4 HRTEM and Raman spectra of ZnO-SiO2 nanocomposite films before and after FTNL treatment.................................67
References in chapter 4 .........................................................................71
CHAPTER 5 Experimental Results and Discussions II ZnO-SiO2 nanocomposite flexible Solar Blind MSM PDs....74
5.1 The organosilicon (SiOx (CH3)) buffer layer …......…………...…74
5.2 Transmittance、absorption and optical band gap of ZnO-SiO2 nanocomposite films.....................................................................76
5.3 Photo and Dark Current-voltage (I-V) characteristics of ZnO-SiO2 nanocomposite MSM PDs…......................................79
5.4 Photoresponsivity of ZnO-SiO2 nanocomposite MSM PDs..........82
5.5 I-V curves under different incident light intensities......................90
5.6 Photocurrent transients of ZnO-SiO2 nanocomposite MSM PDs…................................................................................................97
5.7 Detectivity (D*) and noise equivalent power (NEP) of ZnO-SiO2 nanocomposite MSM PDs............................................................103
5.8 Bending characteristics of flexible ZnO-SiO2 nanocomposite MSM PDs.......................................................................................109
References in chapter 5........................................................................117
CHAPTER 6 Conclusions and Future work..........................122
6.1 Conclusions ……………………....................................................122
6.2 Future work.....................................................................................125
Publication List.................................................................................126
參考文獻 References in chapter 1
[1] S. Kim, C. O. Kim, H. T. Oh and S. H. Choi, “Strong enhancement of near-band-edge photoluminescence from ZnO by assembling ZnO/SiOx heterostructures,” J. Phys. D: Appl. Phys., vol. 41, 235403 (2008).
[2] K. H. Jung, J. W. Yoon, N. Koshizaki, Y. S. Kwon, “Fabrication and c haracterization of Au/SiO2 nanocomposite films grown by radio-frequency cosputtering,” Current Applied Physics, vol. 8, 761–765 (2008).
[3] T. C. Dang, D. L. Pham, H. C. Le and V. H. Pham, “TiO2/CdS nanocomposite films: fabrication, characterization, electronic and optical properties,” Adv. Nat. Sci.: Nanosci. Nanotechnol., vol. 1, 015002 (2010).
[4] L. W. Lai, C, H, Liu, C. T. Lee, L. R. Lou, W. Y. Yeh and M. T. Chu, “Investigation of silicon nanoclusters embedded in ZnO matrices deposited by cosputtering system,” J. Mater. Res., vol. 23, 2506-2511 (2008).
[5] Y. Y. Peng, T. E. Hsieh and C. H. Hsu, “Optical characteristics and microstructure of ZnO quantum dots-SiO2 nanocomposite films prepared by sputtering methods,” Appl. Phys. Lett., vol. 89, 211909 (2006).
[6] E. S. P. Leong and S. F. Yu, “UV Random Lasing Action in p-SiC(4H)/i-ZnO–SiO2 Nanocomposite/n-ZnO:Al Heterojunction Diodes,” Adv. Mater., vol. 18, 1685–1688 (2006).
[7] H. K. Liang, S. F. Yu and H. Y. Yang, “Directional and controllable edge-emitting ZnO ultraviolet random laser diodes,” Appl. Phys. Lett., vol. 96, 101116 (2010).
[8] V. Musat, E. Fortunato, A. M. B. d. Rego and R. Monteiro, “Sol–gel cobalt oxide–silica nanocomposite thin films for gas sensing applications,” Thin Solid Films, vol. 516, 1499–1502 (2008).
[9] V. Musat, E. Fortunato, S. Petrescu and A. M. B. d. Rego, “ZnO/SiO2 nanocomposite thin films by sol–gel method,” phys. stat. sol. (a), vol. 205, 2075–2079 (2008).
[10] M. G. Manera, J. Spadavecchia, D. Busoc, C. d. J. Fern´andez, G. Mattei, A. Martucci, P. Mulvaney, J. P. Juste, R. Rella, L. Vasanelli, P. Mazzoldi, “Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films,” Sensors and Actuators B, vol. 132, 107–115 (2008).
[11] D. C. Look, “Doping and defects in ZnO, in ZnO bulk,” in Thin Films and Nanostructures, C. Jagadish and S. J. Pearton, (Elsevier, Oxford, (2006).
[12] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen and T. Goto, “High temperature excitonic stimulated emission from ZnO epitaxial layers,” Appl. Phys. Lett., vol 73, 1038–1040 (1998).
[13] Y. L. Yang, B. F. Yang, Z. P. Fu, H. G. Yan, W. Zhen, W. W. Dong, L. H. Xia, W. Q. Liu, Z. Jian and F. Q. Li, “Enhanced yellow–green photoluminescence from ZnO–SiO2 composite opal,” J. Phys.: Condens. Matter, vol. 16, 7277–7286 (2004).
[14] S. Monticone, R. Tufeu and A. V. Kanaev, “Complex Nature of the UV and Visible Fluorescence of Colloidal ZnO Nanoparticles,” J. Phys. Chem. B., vol. 102, 2854-2862 (1998).
[15] L. Spanhel and M. A. Anderson, “Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids”, J. Am. Chem. Soc. , vol. 113, 2826-2833 (1991).
[16] R. S. Ningthoujam, R. K. Vatsa, A. Vinu, K. Ariga, A. K. Tyagi, “Room temperature exciton formation in SnO2 nanocrystals in SiO2:Eu matrix: quantum dot system, heat-treatment effect.”, J. Nanosci. Nanotechnol., vol. 9, 2634-8 (2009).
[17] V. G. Baru, A. P. Chernuschich, V. A. Lazanov, G. V. Stepanov, L. Y. Zhakarov, K. P. O’Donnell, I. V. Bradley and N. N. Melnik,“Optical properties of Si nanocrystals prepared by magnetron sputtering”, Appl. Phys. Lett., vol. 69, 4148-4150 (1996).
[18] Y. Maeda, N. Tstukumoto, Y. Yazawa, Y. Kenimitsu and Y. Masomoto, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices”,Appl. Phys. Lett., vol. 59, 3168-3170 (1991).
[19] Y. Zhu, C. L. Yuan and P. P. Ong, “Room temperature visible photoluminescence from undoped ZnS nanoparticles embedded in SiO2 matrices”, J. Appl. Phys., vol. 92, 6828-6832 (2002).
[20] R. Moleski, E. Leontidis and F. Krumeich, “Controlled production of ZnO nanoparticles from zinc glycerolate in a sol-gel silica matrix”, J. Colloid Interface Sci., vol 302, 246-253 (2006).
[21] R. Hong, H. Qi, J. Huang, H. He, Z. Fan and J. Shao, “Influence of oxygen partial pressure on the structure and photoluminescence of direct current reactive magnetron sputtering ZnO thin films,” Thin Solid Films, vol. 473, 58-62 (2005).
[22]A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light- emitting diode based on ZnO,” Nat. Mater., vol. 4, 42-46 (2005).
[23] C. T. Lee, Fellow, IEEE, Y. H. Lin, L. W. Lai and L. R. Lou, “Mechanism Investigation of p-i-n ZnO-Based Light-Emitting Diodes,” IEEE Photon. Technol. Lett., vol. 22, 30-32 (2010).
[24] L. W. Lai, J. T. Yan, C. H. Chen, L. R. Lou and C. T. Lee, “ Nitrogen function of aluminum-nitride codoped ZnO films deposited using cosputter system,” J. Mater. Res., vol. 24, No. 7, pp. 2252-2258 (2009).
[25] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett., vol. 81, 1830-1832 (2002).
[26] J. Y. Lee, J. H. Lee, H. S. Kim, C. H. Lee, H. S. Ahn, H. K. Cho, Y. Y. Kim, B. H. Kong and H. S. Lee, “A study on the origin of emission of the annealed n-ZnO/p-GaN heterostructure LED,” Thin Solid Films, vol. 517, 5157-5160 (2009).
[27] J. D. Ye, S. L. Gu, S. M. Zhu, W. Liu, S. M. Liu, R. Zhang, Y. Shi and Y. D. Zheng, “Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions,” Appl. Phys. Lett., vol. 88, 182112-182114 (2006).
[28] Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev and D. M. Bagnall, “Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6HSiC substrates,” Appl. Phys. Lett., vol. 83, 4719-4721 (2003).
[29] H. Ohta, K. Kawamura, M. Orita, M. Hirano, N. Sarukura and H. Hosono, “Current injection emission from a transparent p–n junction composed of p-SrCu2O2 /n-ZnO,” Appl. Phys. Lett., vol. 77, 475-477 (2000).
[30] H. C. Chen, M. J. Chen, M. K. Wu, W. C. Li, H. L. Tsai, J. R. Yang, H. K. and M. Shiojiri, “UV Electroluminescence and Structure of n-ZnO/p-GaN Heterojunction LEDs Grown by Atomic Layer Deposition,” IEEE J. Quantum Electron., vol. 46, 265-271 (2010).
[31] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant and J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett., vol. 68, 403-405 (1996).
[32] X. L. Wu, G. G. Siu, C. L. Fu and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett., vol. 78, 2285-2287 (2001).
[33] M. Y. Ke, T. C. Lu, S. C. Yang, C. P. Chen, Y. W. Cheng, L. Y. Chen, C. Y. Chen, J. H. He and J. J. Huang, “UV light emission from GZO/ZnO/GaN heterojunction diodes with carrier confinement layers,” Opt. Express, vol. 17, 22912-22917 (2009).
[34] D. Wiersma, “The smallest random laser,” NATURE, vol. 406, 132-133 (2000).
[35] C. Bouvy, E. Chelnokov, R. Zhao, W. Marine, R. Sporken and B. L. Su, “Random laser action of ZnO@mesoporous silicas,” Nanotechnology,vol. 19, 105710 (2008).
[36] Y. Y. Peng, T. E. Hsieh and C. H. Hsu, “Optical characteristics and microstructure of ZnO quantum dots-SiO2 nanocomposite films prepared by sputtering methods,” Appl. Phys. Lett., vol. 89, 211909 (2006).
[37] S. Monticone, R. Tufeu and A. V. Kanaev, “Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles,” J. Phys. Chem. B, vol. 102, 2854-2862 (1998).
[38] Y. W. Wang, L. D. Zhang, G. Z. Wang, X. S. Peng, Z. Q. Chu and C. H. Liang, “Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties,” J. Cryst. Growth, vol. 234, 171-175 (2002).
[39] S. Chakrabarti, D. Ganguli and S. Chaudhuri, “Excitonic and defect related transitions in ZnO–SiO2 nanocomposites synthesized by sol-gel technique,” Phys. Stat. Sol. (a), vol. 201, 2134-2142 (2004).
[40] X. H. Zhang, S. J. Chua, A. M. Yong, S. Y. Chow, H. Y. Yang, S. P. Lau and S. F. Yu, “Exciton radiative lifetime in ZnO quantum dots embedded in SiOx matrix,” Appl. Phys. Lett., vol. 88, 221903 (2006).
[41] G. Kiliani, R. Schneider, D. Litvinov, D. Gerthsen, M. Fonin, U. Rudiger, A. Leitenstorfer and R. Bratschitsch, “Ultraviolet photoluminescence of ZnO quantum dots sputtered at room-temperature,” Opt. Express, vol. 19, 1641-1647 (2011).
[42] M. K. Wu, Y. T. Shih, M. J. Chen, J. R. Yang and M. Shiojiri, “ZnO quantum dots embedded in a SiO2 nanoparticle layer grown by atomic layer deposition,” Phys Status Solidi RRL, vol. 3, 88-90 (2009).
[43] J. G. Ma, Y. C. Liu, C. S. Xu, Y. X. Liu, C. L. Shao, H. Y. Xu, J. Y. Zhang, Y. M. Lu, D. Z. Shen and X. W. Fan, “Preparation and characterization of ZnO particles embedded in SiO2 matrix by reactive magnetron sputtering,” J. Appl. Phys., vol. 97, 103509 (2005).
[44] M. J. Chen, Y. T. Shih, M. K. Wu, H. C. Chen, H. L. Tsai, W. C. Li, J. R. Yang, H. Kuan and M. Shiojiri, “Structure and Ultraviolet Electroluminescence of n-ZnO/SiO2-ZnO Nanocomposite/p-GaN Heterostructure Light-Emitting Diodes,” IEEE Trans. Electron. Dev., vol. 57, 2195-2202 (2010).
[45] Y. T. Shih, M. K. Wu, W. C. Li, H. Kuan, J. R. Yang, M. Shiojiri and M. J. Chen, “Amplified spontaneous emission from ZnO in n-ZnO/ZnO nanodots–SiO2 composite/p-AlGaN heterojunction light-emitting diodes,” Nanotechnology, vol. 20, 1-8 (2009).
[46] J. T. Chen, W. C. Lai, C. H. Chen, Y. Y. Yang, J. K. Sheu and L. W. Lai, “Electroluminescence of ZnO nanocrystal in sputtered ZnO-SiO2 nanocomposite light-emitting devices,” Opt. Express, vol. 19, 11873-11879 (2011).
[47] H. Pan, S. H. Ko, N. Misra and C. P. Grigoropoulos, “Laser annealed composite titanium dioxide electrodes for dye-sensitized solar cells on glass and plastics,” Appl. Phys. Lett., vol. 94, 071117 (2009).
[48] J. Ihlemann, “Patterning of oxide thin films by UV-laser ablation,” J. Optoelectron. Adv. Mater., vol. 7, 1191-1195 (2005).
[49] S. Sedky, M. Gromova, T. Van der Donck, J. P. Celis and A. Witvrouw, “Characterization of KrF excimer laser annealed PECVD SixGe1− x for MEMS post-processing,” Sens. Actuators A Phys., vol. 127, 316-323 (2006).
[50] T. Li, D. J. H. Lambert, A. L. Beck, C. J. Collins, B. Yang, M. M. Wong, U. Chowdhury, R. D. Dupuis and J. C. Campbell, “Solar-blind AlxGa1-xN-based metal-semiconductor-metal ultraviolet photodetectors,” Electron. Lett., vol. 36, 1581-1583 (2000).
[51] M. A. Khan, J. N. Kuznia, D. T. Olson, M. Blasinghame and A. R. Bhattarai, “Schottky barrier photodetector based on Mg-doped p-type GaN films,” Appl. Phys. Lett., vol. 63, 2455-2456 (1993).
[52] R. McClintock, A. Yasan, K. Mayes, D. Shiell, S. R. Darvish, P. Kung and M. Razeghi, “High quantum efficiency AlGaN solar-blind p-i-n photodiodes,” Appl. Phys. Lett., vol. 84, 1248- 1250 (2004).
[53] H. Jiang and T. Egawa, “High quality AlGaN solar-blind Schottky photodiodes fabricated on AIN/sapphire template,” Appl. Phys. Lett., vol. 90, 121121 (2007).
[54] A. B. Moussa, A. Soltani, U. Schühle, K. Haenen, Y. M. Chong, W. J. Zhang, R. Dahal, J. Y. Lin, H. X. Jiang, H. A. Barkad, B. B. Moussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J. C. D. Jaeger, B. Giordanengo, M. Richter, F. Scholze and J. F. Hochedez, “ Recent developments of wide-bandgap semiconductor based UV sensors,”Diamond Relat. Mater., vol. 18, 860-864 (2009).
[55] Y. Koide, M. Liao and J. Alvarez, “Thermally stable solar-blind diamond UV photodetector,”Diamond Relat. Mater., vol. 15, 1962 -1966 (2006).
[56] Y. N. Hou, Z. X. Mei, Z. L. Liu, T. C. Zhang and X. L. Du, “Mg0.55Zn0.45O solar-blind ultraviolet detector with high photoresponse performance and large internal gain,” Appl. Phys. Lett., vol. 98, 103506 (2011).
[57] U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho and H. Morkoç,” A comprehensive review of ZnO materials and devices,” J. Appl. Phys., vol. 98, 041301 (2005).
[58] S. Zh. Karazhanov, P. Ravindran, H. Fjellvag and B. G. Svensson, ” Electronic structure and optical properties of ZnSiO3 and Zn2SiO4,” J. Appl. Phys., vol. 106, 123701 (2009).
[59] J. G. Ma, Y. C. Liu, C. S. Xu, Y. X. Liu, C. L. Shao, H. Y. Xu, J. Y. Zhang, Y. M. Lu, D. Z. Shen and X. W. Fan, ” Preparation and characterization of ZnO particles embedded in SiO2 matrix by reactive magnetron sputtering ,” J. Appl. Phys., vol. 97, 103509 (2005).
[60] H. Amekura, K. Kono, N. Kishimoto, and C. Buchal, ” Formation of zinc-oxide nanoparticles in SiO2 by ion implantation combined with thermal oxidation,” Nucl. Instrum. Methods Phys. Res. B, vol. 91, 96 -99 (2007).
[61] C. Y. Lee, M. Y. Lin, W. H. Wu, J. Y. Wang, Y. Chou, W. F. Su, Y. F. Chen and C. F. Lin, “Flexible ZnO transparent thin-film transistors by a solution-based process at various solution concentrations,” Semicond. Sci. Technol., vol. 25, 105008 (2010).
[62] L. W. Ji, C. Z. Wu, C. M. Lin, T. H. Meen, K. T. Lam,S. M. Peng, S. J. Young and C. H. Liu, “Characteristic Improvements of ZnO-Based Metal–Semiconductor–Metal Photodetector on Flexible Substrate with ZnO Cap Layer,”Jpn. J. Appl. Phys., vol. 49, 052201 (2010).
[63] T. P. Chen, S. J. Young, S. J. Chang, C. H. Hsiao, Y. J. Hsu, “Bending effects of ZnO nanorods metal-semiconductor-metal photodetectors on flexible Polyimide substrate,” Nanoscale Research Letters, vol. 7, 214 (2012).
[64] E. Monroy, F. Omnes and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol., vol. 18, R33- R51 (2003).

References in chapter 2
[1] Al. L. Efros and A. L. Efros, “Interband absorption in a semiconductor sphere,” Fiz. Tekh. Poluprovodn., vol. 16, 1209-1214 (1982).
[2] L. E. Brus, “Electron–electron and electron‐hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state ,” J. Chem. Phys., vol. 80, 4403-4409 (1984).
[3] U. Meirav, M. A. Kastner and S. J. Wind, “Single-electron charging and periodic conductance resonances in GaAs nanostructures,” Phys. Rev. Lett., vol. 65, 771-774 (1990).
[4] H. Yoshimura, J. N. Schulman and H. Sakaki, “Charge accumulation in a double-barrier resonant-tunneling structure studied by photoluminescence and photoluminescence-excitation spectroscopy,” Phys. Rev. Lett., vol. 64, 2422-2425 (1990).
[5] Q. Y. Ye, R. Tsu, and E. H. Nicollian, “Resonant Tunneling Via Microcrystalline Silicon Quantum Confinement,” Phys. Rev. B, vol. 44, 1806-1811 (1991).
[6] G. Allan, C. Delerue, M. Lannoo, and E. Martin, “Hydrogenic impurity levels, dielectric constant, and Coulomb charging effects in silicon crystallites,” Phys. Rev. B, vol. 52, 11982-11988 (1995).
[7] Y. Y. Peng, T.E. Hsieh and C. H. Hsu, “Optical characteristics and microstructure of ZnO quantum dots-SiO2 nanocomposite films prepared by sputtering methods,” Appl. Phys. Lett., vol. 89, 211909 (2006).
[8] J. T. Chen, W. C. Lai, C. H. Chen, Y. Y. Yang, J. K. Sheu and L. W. Lai, “Electroluminescence of ZnO nanocrystal in sputtered ZnO-SiO2 nanocomposite light-emitting devices,” Opt. Express, vol. 19, 11873–11879 (2011).
[9] Y. Y. Peng, T. E. Hsieh and C. H. Hsu, “Dielectric confinement effect in ZnO quantum dots embedded in amorphous SiO2 matrix,” J. Phys. D: Appl. Phys., vol. 40, 6071–6075 (2007).
[10] W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to1 Ceramics, “ (1991) (New York: Wiley).
[11] S. Panigrahi, A. Bera and D. Basak, “Ordered dispersion of ZnO quantum dots in SiO2 matrix and its strong emission properties,” J Colloid Interface Sci., vol. 353, 30-8 (2011).
[12] Y. T. Shih, M. K. Wu, W. C. Li, H. Kuan, J. R. Yang, M. Shiojiri and M. J. Chen, “Amplified spontaneous emission from ZnO in n-ZnO/ZnO nanodots–SiO2 composite/p-AlGaN heterojunction light-emitting diodes,” Nanotechnology, vol. 20, 165201 (2009).
[13] M. K. Wu, Y. T. Shih, M. J. Chen, J. R. Yang and M. Shiojiri, “ZnO quantum dots embedded in a SiO2 nanoparticle layer grown by atomic layer deposition,” Phys. Stat. Sol. RRL, vol. 3, 88-90 (2009).
[14]K. K. Kim, N. Koguchi, Y. W. Ok, T. Y. Seong and S. J. Park, “Fabrication of ZnO quantum dots embedded in an amorphous oxide layer,” Appl. Phys. Lett., vol. 84, 3810-3812 (2004).
[15]D. K. Schroder, “Semiconductor material and device characterization,” (2005) (New York: Wiley).
[16]張能傑, “利用磁控濺鍍成長氧化鋅奈米點及其形貌,成分與性質分析,” 成功大學碩士論文 (2008).
[17]R. Zhang, P. G. Yin, N. Wang, L. Guo, “Photoluminescence and Raman scattering of ZnO nanorods,” Solid State Sciences, vol. 11, 865–869 (2009).
[18] J. M. Calleja and M. Cardona, “Resonant Raman scattering in ZnO,” Phys. Rev. B, vol. 16, 3753-3761 (1977).
[19] T. C. Damen, S.P.S. Porto and B. Tell, “Raman effect of zinc oxide,” Phys. Rev. , vol. 142, 570-574 (1966).
[20] X. H. Zhang, Y. C. Liu and S. H. Chen, “A novel method for measuring distribution of orientation of one-dimensional ZnO using resonance Raman spectroscopy,” J. Raman Spectrosc., vol. 36, 1101-1105 (2005).
[21]M. Cardona, “Light Scattering in Solid I,” (1983) (New York: Springer).
[22] F. Decremps, J. Pellicer-Porres, A.M. Saitta, J. Chervin and A. Polian, “High-pressure Raman spectroscopy study of wurtzite ZnO,” Phys. Rev. B, vol. 65, 092101 (2002).
[23] L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. H. Fang, M. Y. Liao, Y. Koide, Y. Bando and D. Golberg, “Ultrahigh-Performance Solar-Blind Photodetectors Based on Individual Single-crystalline In2Ge2O7 Nanobelts”, Adv. Mater., vol. 22, 5145–5149 (2010).
[24]Kai Huang, Qing Zhang, Feng Yang, and Deyan He, “Ultraviolet Photoconductance of a Single Hexagonal WO3 Nanowire”, Nano Res., vol. 3, 281–287 (2010).
[25]S. M. Sze., “Semiconductor Devices Physics and Technology,” (2002) (Hsinchu: National Chiao Tung University).
[26]O. Katz, V. Garber, B. Meyler, G. Bahir and J. Salzman, “Anisotropy in detectivity of GaN Schottky ultraviolet detectors : Comparing lateral and vertical geometry,” Appl. Phys. Lett. 80, 347-349 (2002).
[27] C. T. Lee, T. S. Lin and H. Y. Lee, “Mechanisms of Low Noise and High Detectivity of p-GaN/i-ZnO/n-ZnO:Al-Heterostructured Ultraviolet Photodetectors,” IEEE Photon. Technol. Lett. 22, 1117-1119 (2010).
[28] C. Y. Lu, S. P. Chang, S. J. Chang, Y. Z. Chiou, C. F. Kuo, H. M. Chang, C. L. Hsu and I. C. Chen, “Noise Characteristics of ZnO-Nanowire Photodetectors Prepared on ZnO:Ga/Glass Templates,” IEEE Sens. J. 7, 1020-1024 (2007).
[29]S. M. Peng, Y. K. Su, L. W. Ji, S. J. Young, C. N. Tsai, C. Z. Wu, W. C. Chao, W. B. Cheng and C. J. Huang, “Photoconductive Gain and Low-Frequency Noise Characteristics of ZnO Nanorods,” Electrochem. Solid-State Lett. 14, J13-J15 (2011).
[30] Y. Z. Chiou, “DC and Noise Characteristics of 4H-SiC Metal–Semiconductor–Metal Ultraviolet Photodetectors”, Jpn. J. Appl. Phys. 43, 2432–2434 (2004).
[31] S. J. Young, L. W. Ji, S. J. Chang and Y. K. Su, “ZnO metal– semiconductor–metal ultraviolet sensors with various contact electrodes”, J. Cryst. Growth 293, 43–47 (2006).
[32] K. K. Hung, P. K. Ko, C. Hu and Y. C. Cheng, “A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors”, IEEE Trans. Electron Dev. 37, 654-665 (1990).

References in chapter 4
[1] S. Panigrahi, A. Bera and D. Basak, “Encapsulation of 2-3-nm-Sized ZnO Quantum Dots in a SiO2 Matrix and Observation of Negative Photoconductivity,” ACS Appl. Mater. Interfaces, vol. 1, 2408-2411 (2009).
[2] M. J. Chen, Y. T. Shih, M. K. Wu, H. C. Chen, H. L. Tsai, W. C. Li, J. R. Yang, H. Kuan and M. Shiojiri, “Structure and Ultraviolet Electroluminescence of n-ZnO/SiO2-ZnO Nanocomposite/p-GaN Heterostructure Light-Emitting Diodes,” IEEE Trans. Electron. Dev. , vol. 57, 2195–2202 (2010).
[3] Y. T. Shih, M. K. Wu, W. C. Li, H. Kuan, J. R. Yang, M. Shiojiri and M. J. Chen, “Amplified spontaneous emission from ZnO in n-ZnO/ZnO nanodots–SiO2 composite/p-AlGaN heterojunction light-emitting diodes,” Nanotechnology, vol. 20, 1–8 (2009).
[4] J. Y. Lee, J. H. Lee, H. S. Kim, C. H. Lee, H. S. Ahn, H. K. Cho, Y. Y. Kim, B. H. Kong and H. S. Lee, “A study on the origin of emission of the annealed n-ZnO/p-GaN heterostructure LED,” Thin Solid Films, vol. 517, 5157–5160 (2009).
[5] M. Smith, G. D. Chen, J. Y. Lin, H. X. Jiang, A. Salvador, B. N. Sverdlov, A. Botchkarev, H. Morkoc and B. Goldenberg, “Mechanisms of band-edge emission in Mg-doped p-type GaN,” Appl. Phys. Lett., vol. 68, 1883-1885 (1996).
[6] Y. I. Alivov, J. E. Van Nostrand, D. C. Look, M. V. Chukichev and B. M. Ataev, “Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes,” Appl. Phys. Lett., vol. 83, 2943-2945(2003).
[7] I. Martil, E. Redondo and A. Ojeda, “Influence of defects on the electrical and optical characteristics of blue light-emitting diodes on III-V nitrides,” J. Appl. Phys., vol. 81, 2442–2444 (2007).
[8] K. F. Lin, H. M. Cheng, H. C. Hsu and W. F. Hsieh, “Band gap engineering and spatial confinement of optical phonon in ZnO quantum dots,” Appl. Phys. Lett., vol. 88, 263117 (2006).
[9] A. G. Milekhin, N. A. Yeryukov, L. L. Sveshnikova, T. A. Duda, E. I. Zenkevich, S. S. Kosolobov, A. V. Latyshev, C. Himcinski, N. V. Surovtsev, S. V. Adichtchev, Z. C. Feng, C. C. Wu, D. S. Wuu and D. R. T. Zahn, “Surface enhanced Raman scattering of light by ZnO nanostructures,” J. Exp. Theor. Phys., vol. 113, 983–991 (2011).
[10] K. A. Alim, V. A. Fonoberov, M. Shamsa and A. A. Balandin, “Micro-Raman investigation of optical phonons in ZnO nanocrystals,” J. Appl. Phys., vol. 97, 124313 (2005).
[11] H. M. Cheng, K. F. Lin, H. C. Hsu, and W. F. Hsieh, “Size dependence of photoluminescence and resonant Raman scattering from ZnO quantum dots,” Appl. Phys. Lett., vol. 88, 261909 (2006).
[12] C. F. Windisch, G. J. Exarhos, C. Yao and L. Q. Wang, “Raman study of the influence of hydrogen on defects in ZnO,” J. Appl. Phys., vol. 101, 123711 (2007).
[13] H. M. Cheng, H. C. Hsu, S. L. Chen, W. T. Wu, C. C. Kao, L. J. Lin and W. F. Hsieh, “Efficient UV photoluminescence from monodispersed secondary ZnO colloidal spheres synthesized by sol–gel method,” J. Cryst. Growth, vol. 277, 192–199 (2005).
[14] Y. Yang, H. Yan, Z. Fu, B. Yang and J. Zuo, “Correlation between 577 cm−1 Raman scattering and green emission in ZnO ordered nanostructures,” Appl. Phys. Lett., vol. 88, 191909 (2006).
[15] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant and J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett., vol. 68, 403–405 (1996).
[16] D. C. Reynolds, D. C. Look, B. Jogai and H. Morkoc, “Similarities in the bandedge and deep-centre photoluminescence mechanisms of ZnO and GaN,” Solid State Commun., vol. 101, 643–646 (1997).
[17] C. M. Mo, Y. H. Li, Y. S. Liu, Y. Zhang, and L. D. Zhang, “Enhancement effect of photoluminescence in assemblies of nano-ZnO particles/silica aerogels,” J. Appl. Phys., vol. 83, 4389–4391 (1998).

References in chapter 5
[1]M. C. Lin, C. H. Tseng, L. S. Chang and D. S. Wuu, “Characterization of the silicon oxide thin films deposited on polyethylene terephthalate substrates by radio frequency reactive magnetron sputtering”, Thin Solid Films, vol. 515, 4596-4602 (2007).
[2]E. Lugscheider, K. Bobzin, Th. Hornig and M. Maes, “Investigation of the residual stresses and mechanical properties of (Cr,Al)N arc PVD coatings used for semi-solid metal (SSM) forming dies”, Thin Solid Films, vol. 420, 318-323 (2002).
[3]F. Benitez, E. Martinez and J. Esteve, “Improvement of hardness in plasma polymerized hexamethyldisiloxane coatings by silica-like surface modification”, Thin Solid Films, vol. 109, 377-378 (2000).
[4]S. R. Reddy, A. K. Mallik and S.R. Jawalekar,” UV absorption studies of undoped and fluorine-doped tin oxide films,” Thin Solid Films, vol. 143, 113-118 (1986).
[5]J. T. Chen, W. C. Lai, C. H. Chen, Y. Y. Yang, J. K. Sheu and L. W. Lai, “Electroluminescence of ZnO nanocrystal in sputtered ZnO-SiO2 nanocomposite light-emitting devices,” Opt. Express, vol. 19, 11873-11879 (2011).
[6]J. T. Chen, W. C. Lai, C. H. Chen, Y. Y. Yang, J. K. Sheu, K. W. Lin and L. W. Lai, “Sputtered ZnO–SiO2 nanocomposite lightemitting diodes with flat-top nanosecond laser treatment,” Opt. Express, vol. 20, 19635-19642 (2012).
[7]R. R. Mehta and B. S. Sharma, “Photoconductive gain greater than unity in CdSe films with Schottky barriers at the contacts, ” J. Appl. Phys., vol. 44, 325-328 (1973).
[8]C. Li, Y. Bando, M. Liao, Y. Koide and D. Golberg, “Visible-blind deep-ultraviolet Schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire”, Appl. Phys. Lett., vol. 97, 161102 (2010).
[9]M. Liao, X. Wang, T. Teraji, S. Koizumi and Y. Koide, “Light intensity dependence of photocurrent gain in single-crystal diamond detectors”, Physical Review B, vol. 81, 033304-033307 (2010).
[10]P. Sharma, K. Sreenivas and K. V. Rao,” Analysis of ultraviolet photoconductivity in ZnO films prepared by unbalanced magnetron sputtering,” J. Appl. Phys., vol. 93, 3963-3970 (2003).
[11] K. Keem, H. Kim, G. T. Kim, J. S. Lee, B. Min, K. Cho, M. Y. Sung and S. Kim, “Photocurrent in ZnO nanowires grown from Au electrodes,” Appl. Phys. Lett., vol. 84, 4376- 4378 (2004).
[12]Y. W. Heo, B. S. Kang, L. C. Tien, D. P. Norton, F. Ren, J. R. LaRoche and S. J. Pearton, “UV photoresponse of single ZnO nanowires,” Appl. Phys. A, vol. 80, 497-499 (2005).
[13]L. Li, P. S. Lee, C. Yan, T. Zhai, X. Fang, M. Liao, Y. Koide, Y. Bando and D. Golberg, “Ultrahigh-Performance Solar-Blind Photodetectors Based on Individual Single-crystalline In2Ge2O7 Nanobelts”, Adv. Mater., vol. 22, 5145–5149 (2010).
[14]Y. Jin, J. Wang, B. Sun, J. C. Blakesley and N. C. Greenham, “Solution-Processed Ultraviolet Photodetectors Based on Colloidal ZnO Nanoparticles”, Nano Lett., vol. 8, 3640-3644 (2008).
[15]C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. Wang, “Nanowire Photodetectors,” J. Nanosci. Nanotechnol., vol. 10, 1430-1449 (2010).
[16] H. Kind, H. Q. Yan, B. Messer, M. Law and P. D. Yang , “ Nanowire Ultraviolet Photodetectors and Optical Switches, ” Adv. Mater., vol. 14 , 158-160 (2002).
[17] X. G. Zheng, Q. S. Li, J. P. Zhao, D. Chen, B. Zhao, Y. J. Yang and L.C. Zhang, ”Photoconductive ultraviolet detectors based on ZnO films”, Applied Surface Science, vol. 253, 2264–2267 (2006).
[18] S. Hullavarad, N. Hullavarad, D. Look and B. Claflin, “Persistent Photoconductivity Studies in Nanostructured ZnO UV Sensors”, Nanoscale Res Lett., vol. 4, 1421–1427 (2009).
[19]V. S Vavilov , P. C. Euthymiou and G. E. Zardas, “Persistent photoconductivity in semiconducting III-V compounds”, Phys. Usp., vol 42, 199-201 (1999).
[20]K. Huang, Q. Zhang, F. Yang and D. He, “Ultraviolet Photoconductance of a Single Hexagonal WO3 Nanowire”, Nano Res., vol. 3, 281–287 (2010).
[21] J. W. Mares, R. C. Boutwell, M. Wei, A. Scheurer and W. V. Schoenfeld, “Deep-ultraviolet photodetectors from epitaxially grown NixMg1−xO”, Appl. Phys. Lett. 97, 161113 (2010).
[22]S. J. Young, L. W. Ji, S. J. Chang and X. L. Duc, “ZnO Metal-Semiconductor-Metal Ultraviolet Photodiodes with Au Contacts,” J. Electrochem. Soc., vol. 154, H26-H29 (2007).
[23] C. Y. Lu, S. P. Chang, S. J. Chang, Y. Z. Chiou, C. F. Kuo, H. M. Chang, C. L. Hsu and I. C. Chen, “Noise Characteristics of ZnO-Nanowire Photodetectors Prepared on ZnO:Ga/Glass Templates,” IEEE SENS J., vol. 7, 1020–11024 (2007).
[24] K. H. Lee, R. W. Chuang, P. C. Chang, S. J. Chang, Y. C. Wang, C. L. Yu, J. C. Lin and S. L. Wu, “Nitride-Based MSM Photodetectors with a HEMT Structure and a Low-Temperature AlGaN Intermediate Layer,” J. Electrochem. Soc., vol. 155, H959–H963 (20108).
[25] C. T. Lee, T. S. Lin and H. Y. Lee, “Mechanisms of Low Noise and High Detectivity of p-GaN/i-ZnO/n-ZnO:Al-Heterostructured Ultraviolet Photodetectors,” IEEE Phot. Tech. Lett., vol. 22, 1117–1119 (2010).
[26] N. Biyikli, O. Aytur, I. Kimukin, T. Tut and E. Ozbay, “Solar-blind AlGaN-based Schottky photodiodes with low noise and high detectivity,” Appl. Phys. Lett., vol. 81, 3272-3274 (2002).
[27] S. M. Peng, Y. K. Su, L. W. Ji, S. J. Young, C. N. Tsai, C. Z. Wu, W. C. Chao, W. B. Cheng and C. J. Huang, “Photoconductive Gain and Low-Frequency Noise Characteristics of ZnO Nanorods,” J. Electrochem. Soc., vol. 14, J13-J15 (2011).
[28]W. Q. Yang, H. G. Yang, G. X. Qin, Z. Q. Ma, J. Berggren, M. Hammar, R. Soref and W. D. Zhou, “,” Appl. Phys. Lett., vol. 96, 121107 (2010).
[29]U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho and H. Morkoç, “A study on the origin of emission of the annealed n-ZnO/p-GaN heterostructure LED,” J. Appl. Phys., vol. 98, 041301 (2005).
[30] D. S. Liu and C.Y. Wu, “Adhesion enhancement of hard coatings deposited on flexible plastic substrates using an interfacial buffer layer”, J. Phys. D: Appl. Phys., vol. 43, 175301 (2010).
[31] Y. Wu, M. Bekke, Y. Inoue, H. Sugimura, H. Kitaguchi and C. Liu and O. Takai, “A study on the origin of emission of the annealed n-ZnO/p-GaN heterostructure LED,” Thin Solid Films, vol. 457, 122-127 (2004).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-02-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-02-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw