進階搜尋


下載電子全文  
系統識別號 U0026-0601201712282000
論文名稱(中文) 一維氧化鈦與氧化鎢奈米結構製備及其應用於分離式場效電晶體酸鹼值感測器之研究
論文名稱(英文) Fabrication of one-dimensional titanium oxide and tungsten oxide nanostructures and their applications on separated gate field-effect transistor pH sensors
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 105
學期 1
出版年 105
研究生(中文) 黃彥傑
研究生(英文) Yen-Chieh Huang
學號 Q18991285
學位類別 博士
語文別 英文
論文頁數 158頁
口試委員 召集委員-鄭晃忠
口試委員-張國明
口試委員-林嘉洤
口試委員-許渭州
指導教授-王水進
中文關鍵字 水熱法  熱氧化法  氧化鈦  氧化鎢  奈米結構  非典型晶體成長機制  電位式酸鹼值感測器 
英文關鍵字 Hydrothermal thermal growth  thermal oxidation  titanium oxide  tungsten oxide  nanostructures  non-classical crystal growth mechanism  potentiometric-based pH sensors 
學科別分類
中文摘要 本論文旨在製備一維金屬氧化物奈米材料,基於其增強之比表面積與氧化物材料之物理─化學穩定特性將有利於酸鹼值感測之應用。其中,分別利用高壓壺水熱法合成一維氧化鈦奈米柱與水平爐管熱氧化法合成一維氧化鎢奈米帶。於前者,我們控制其前驅物濃度並於相對之相同時間成長,觀測其一維氧化鈦奈米結構合成過程之型態演化與可能成長機制。建立於過去文獻所提出之非典型晶體成長機制用於解釋相關水溶液法下所合成之氧化鈦奈米材料,我們試圖找出更直接之證據用於闡明一維氧化鈦奈米結構水熱法成長於氟摻雜氧化錫透明薄膜基板之型態演化與可能成長機制。初期成長階段,氧化鈦前驅物將於基板上析出凝聚並異質成核且同時間氧化鈦奈米顆粒可能於水溶液中同質成核。隨後成長出奈米線型態,此時奈米線總是約六根並列組成奈米帶,此型態與尺寸大小將與成長條件密切相關,在持續成長下,將形成奈米片與最終之奈米柱型態。氧化鈦奈米結構於水熱法成長過程中,其方向性附著與形成等向性晶體之特徵,可用於支撐其成長過程將由非典型成長機制主導。後者,其部分成長機制已於本實驗室先前研究所提出,其平行並列之氧化鎢奈米線可沿主要成長取向[010]做接合而形成奈米帶,在接合界面應力釋放下,因而產生一維週期性缺陷特徵。利用水熱法與熱氧化法所製備出一維氧化鈦與氧化鎢奈米結構顯現出不同之晶體成長特徵,探討奈米材料之晶體成長機制將有利於控制其奈米結構之型態、尺寸、晶相或缺陷種類與數量,因而可評估其酸鹼值感測器應用之可行性與探討感測機制。最後,所合成之一維氧化鈦奈米柱與氧化鎢奈米帶將實際應用於分離式閘極酸鹼值感測器中,期許可有效增加酸鹼值響應度,並探討其可能感測機制與造成響應特性劣化之因子。
首先,於第一章中,將介紹現階段金屬氧化物奈米材料之發展,藉由金屬氧化物材料奈米結構化,將顯現出有別於塊材材料之獨特光、電、熱等物理、化學性質。其中,隨元件尺寸奈米微縮化下,導致之「量子侷限效」以優化光電元件為主,然而其能隙寬度增大之效應,可望減少可見光之干擾,降低於感測器元件應用之雜訊。更有甚者,金屬氧化物奈米尺寸微縮化下導致吸附物質能力呈指數增強之效應有利於強化感測器元件之響應度。
第二章中,為一維金屬氧化物合成與電壓型酸鹼值感測器操作之相關基礎理論部分,首先介紹金屬氧化物或半導體材料在尺寸奈米微縮化下導致之吸附物質能力呈指數增強之效應。接著,引入典型與非典型晶體成長機制用於解釋金屬氧化物奈米材料之合成過程。其中,非典型晶體成長機制多發生於利用有機化合物為前驅物或界面活性劑添加下之水溶液合成法。根據熱力學觀點,在典型晶體成長過程中,當材料尺寸成長超越物質穩定狀態之臨界尺寸,其淨吉布斯能量將持續下降(熱動力學主導)。然而,非典型晶體成長機制可經歷多階段亞穩態狀態才形成最終之單晶晶體(動能主導)。最後,於酸鹼值感測器應用面,將介紹電極薄膜感測機制,如電化學電位、能斯特方程式與電雙層結構,並闡明分離式閘極酸鹼值感測器之操作原理與特性評估。
第三章中,為使用高壓壺水熱法於氟摻雜二氧化錫透明玻璃基板上合成氧化鈦奈米結構,並調變前驅物濃度於相同時間下成長而製備出用於分析晶體成長過程之樣品。藉由穿隧式電子掃描顯微鏡、穿透式電子顯微鏡、電子選區繞射圖案與X光射線繞射儀觀測,探討其型態演化與可能之晶體成長機制。研究結果顯示,其型態演化可細分為四個階段:分別為於基板異質成核與可能同時間下水溶液中可形成非晶相奈米顆粒,隨後同時成長為奈米線/奈米帶,接著為奈米片與最終之奈米柱。所合成之氧化鈦奈米結構經由X光─射線繞射儀器分析皆呈現金紅石相。更有甚者,經由穿透式電子顯微鏡與電子選區繞射圖案分析,其非晶相之奈米顆粒可預先形成並組合成後續奈米結構,並發現可能存在於亞穩態狀態下之等向性晶體,此過程與現象為本實驗首次提出,因此,其奈米結構成長經由方向性附著並形成等向性晶體之路徑可用於支撐其非典型晶體成長機制。綜合實驗結果,我們建立出一個簡化模型用於闡明高壓壺水熱法下所製備之氧化鈦奈米結構之型態演化與可能成長機制。
第四章中,結合可控制之氧化鈦奈米柱與眾多優勢之分離式場效電晶體酸鹼值感測器,此種組合在本實驗中首次應用,且展現能斯特響應度。其奈米結構增強之比表面積有利於增加物質吸附能力進而提升響應度。尤其氧化鈦物質之抗腐蝕性本質,極適合應用於強酸鹼值環境中之量測,本實驗中,其量測範圍達pH = 2 ~ 12。為了探討比表面積增強效應,在相同成長條件下,僅改變高壓壺水熱法成長環境中之氟摻雜氧化錫玻璃基板放置角度,成功製備出氧化鈦薄膜型態,可用於比較其酸鹼值響應特性。實驗結果顯示,相較於薄膜式電極之50 mV/pH酸鹼值響應度,一維奈米柱型態作為感測電極顯現出較佳之響應度達62 mV/pH。其中酸鹼值響應度改善率達24%,可歸因於一維金紅石相氧化鈦奈米柱結構之非等向性沿c-軸成長之取向、增強之比表面積與較佳之結晶特性。
第五章中,利用直流濺鍍機沉積之金屬鎢薄膜於n-型矽基板,並置入水平爐管中以熱氧化法成長出一維氧化鎢(W18O49)奈米帶結構,且首次應用於分離式酸鹼值感測器中。實驗結果顯示,其一維氧化鎢奈米帶結構作為感測電極其酸鹼值響應度僅達33.1 mV/pH (r2=0.97522)。為了比較與探討其感測機制,在相同成長環境與時間下僅調變退火溫度,分別製備出無退火與退火溫度達350oC、550oC之鎢金屬電極,並作為感測電極應用於酸鹼值感測器,其響應度分別呈現65.86 mV/pH (r2=0.99722)、61.4 mV/pH (r2=0.99511)與44.3 mV/pH (r2=0.95158)之特性。雖然無退火之鎢金屬薄膜呈現超越能斯特之響應,然而於穩定性分析實驗中,其特性仍低於現階段發展以金屬氧化物薄膜電極為主之酸鹼值感測器。為了闡明其造成酸鹼值響應特性劣化之因子,X光─射線繞射儀、能量散佈分析、霍爾量測與接觸式原子力顯微鏡分別應用於量測所製備之鎢/氧化鎢電極材料特性。其結果顯示,在塊材電阻率為金屬性質樣品中,其表面晶界缺陷數量多寡對於酸鹼值響應度劣化特徵扮演關鍵角色;而屬半導體特性之一維氧化鎢奈米片樣品中,可歸因於氧化鎢奈米帶之單斜晶體結構與其非沿c-軸成長之取向,其可能間接造成電極表面電雙層之等效電荷量降低。雖然一維氧化鎢奈米帶在酸鹼值響應當中未獲得良好特性,但其可能劣化因子在此實驗中被釐清,我們相信此研究資料可促進其分離式場效電晶體型酸鹼值感測器之發展。
論文最後,綜合實驗結果,歸結出分別利用水熱法與熱氧化法所製備之一維氧化鈦與氧化鎢奈米結構材料應用於酸鹼值感測器之響應特性與優缺點,並提出建議與未來研究方向。
英文摘要 This dissertation aims at fabricating one-dimensional (1D) nanostructured metal oxide materials and applying them into pH sensor application due to theirs higher surface-to-volume (SV) ratio and physical-chemical stability. 1D titanium oxide (TiOx) nanorods (NR) and tungsten oxide (WOx) nanotape (NT) are fabricated by hydrothermal growth method (HTG) using autoclave and thermal oxidation method in a furnace, respectively. In the former, the morphology evolution and possible growth mechanism of the processes of 1D TiOx nanostructures synthesis are investigated by controlling varied precursor concentrations in the same growing times. For the past, many papers had been used the ‘non-classical growth mechanism’ to explain the process of the relevant TiOx nanostructures fabricated by solution method. But, the more direct evidences are need to be found to clarify the morphology evolution and possible growth mechanism for the case of 1D TiOx nanostructures hydrothermally grown on fluorine-doped tin oxide (FTO) transparent thin-film substrate. In the initial growth stage, TiOx based precursors can be precipitated and agglomerated on the substrate by heterogeneous nucleation and amorphous TiOx nanoparticles (NPs) may be simultaneously formed in the solution by homogeneous nucleation, respectively. Then, the nanowires (NWs) are formed with time and it is noted that they are always parallel arranged by six to form nanotapes (NTs). These morphologies and sizes are intimately dependent on the growth conditions. With growing up, these nanostructures proceeded nanosheets (NSs) and final into nanorods (NRs) morphology. Furthermore, the growth characteristics such as oriented attachment (OA) and ‘iso-oriented crystal’ formation, which occur in the synthesis of TiOx nanostructures by HTG, stands that the growth process is dominant by ‘non-classical growth mechanism’. The latter, some growth mechanisms had been proposed in the early studies and indicated that the parallel-growth WOx NTs can be cohered along preferential growth direction [010] to form NSs. Due to stress relaxation between the cohered interface, the 1D periodic defects are presented. Different crystal growth characteristics are appeared in TiOx and WOx nanostructures, which are fabricated by HTG and thermal oxidation methods, respectively. To realize the crystal growth mechanism can help us tailor the morphology, size, crystal phase or the type/number of defects for nanostructures and whether they can be used as the sensing part of pH sensors or discover the sensing mechanism. Finally, these fabricated 1D TiOx NRs and WOx NTs are applied to separated-gate field effect transistor (SGFET) pH sensors. We expect that when they are used as the sensing electrodes of pH sensors, the sensitivity can be effectively improved. Furthermore, the possible pH sensing mechanism and degradation factors for sensitivity are discussed.
In the first chapter, the development of nowadays nanostructured metal oxides will be introduced with the unique optical, electrical, thermal, physical and chemical characteristics in which compared to that counterpart bulk material. With the devices nanoscaling, the ‘quantum confinement effect (QCE)’ is occurred and widely used to modify optoelectronic devices. However, for sensor applications, the band gap widening effect could reduce the visible light interference to decrease noise. Furthermore the exponential enhanced material adsorption ability of nanostructured metal oxides will be favorable for improving pH sensitivity.
The relevant theories of 1D metal oxide growth and sensing mechanism of potentiometric based pH sensor are introduced in the second chapter. In the beginning, we theoretical describe the presented exponential enhanced material adsorption ability through nanostructuring the metal oxides or semiconductors. Then classical and non-classical crystal growth mechanisms are introduced to explain the processes of metal oxide nanostructures syntheses. Generally, non-classical crystal growth mechanism is occurred on solution-based methods in which using organic compounds as precursors or adding surfactants. According to thermodynamic concept, for classical growth mechanism, when the sizes of nanostructures grow overwhelming the critical size of material stable state, the net Gibbs free energy will continue to decrease (thermodynamic control). On the other hand, non-classical growth mechanism can be proceeded multi-steps of metastable states and final form the single crystal (kinetic control). Then, for pH sensors application, the sensing mechanisms of electrodes of pH sensors such as electrochemical potential, Nernst equation and electrical double layer (EDL) are introduced. Finally, the operation principle and performance evaluation for the SGFET pH sensor are demonstrated.
In the third chapter, to prepare the analyzing samples based on TiOx nanostructures which hydrothermally grown on transparent FTO glass substrate, the varied precursor concentrations with the same growth times, respectively, are controlled. The morphology evolution and possible crystal growth mechanism are investigated by scanning-electron microscopy (SEM), transmission-electron microscopy (TEM), selected area electron diffraction (SAED) pattern and X-ray diffraction (XRD) instruments. These results indicate that the morphology evolution can be classified into four stages, i.e. heterogeneous nucleation on substrate and simultaneous amorphous NPs formation in solution, then formation the morphologies of NWs/NTs in the same time. Successively, the NSs and NRs were formed with the growth time. These crystal phases of TiOx nanostructures analyzed by XRD all present rutile characteristic. Furthermore, by TEM images and SAED patterns investigation, the amorphous NPs can be preformed and composed into successive TiOx nanostructures, and we also find that the possible metastable state of ‘iso-oriented crystal’. As our best knowledge, this process and phenomenon are first proposed in the experiment. Thus, these growth processes of nanostructures through orientated attachment (OA) phenomenon and iso-oriented crystal pathways can be ascribed to non-classical growth mechanism. Summary the experimental results, we construct a simplified model used to explaining that the morphology evolution and possible growth mechanism of TiOx nanostructures, which are fabricated in autoclave by HTG method.
In the fourth chapter, the controllable morphology and growth process of TiOx nanostructures and many merits of SGFET pH sensor are first combined and shows Nernstian response. The enhanced SV ratio of nanostructured TiOx can facilitate the pH sensitivity by adsorbing/absorbing more detecting ions/molecules. Due to the intrinsic anti-corrosion property of TiOx, it is suitable for strong acid-base measuring environment. In the experiments, the measuring scales are in the wide range of pH=2~12. In order to elucidate the effect of enhanced SV ratio in which resulting the better pH sensitivity. Thus, based on the same HTG condition, we merely tune the placing angle of FTO glass substrate in autoclave and successively fabricate the TiOx thin-film morphology as the sensing electrode of pH sensor. According to experimental results, 1D TiOx NRs as sensing electrode of SGFET pH sensor shows superior pH sensitivity of 62 mV/pH in which compared to thin-film type (50 mV/pH). The pH sensitivity has been improved by 24% and it can be ascribed to 1D rutile TiOx NRs with anisotropic growth direction along c-axis, higher SV ratio and the better crystallinity.
In the fifth chapter, the metallic W film is firstly deposited on n-Si substrate by DC sputter and then put it into horizontal furnace to synthesize 1D W18O49 NTs by thermal oxidation method. This 1D W18O49 NTs is first employed into SGFET pH sensor in the experiment. After applying it as the sensing electrode of SGFET pH sensor, it shows 33.1 mV/pH (r2=0.97522) pH sensing response. For comparison purpose, three metallic W films without and with thermal annealing of 350oC and 550oC are fabricated in the same growth condition and then applied as sensing electrodes of SGFET pH sensors. They present the pH sensitivity of 65.86 mV/pH (r2=0.99722), 61.4 mV/pH (r2=0.99511) and 44.3 mV/pH (r2=0.95158), respectively. Although the metallic W film as sensing electrode of SGFET pH sensor presents super-Nernstian response, the stability is poor than on the state-of-art of metal oxide based pH sensors after carrying out the stability measurements. Furthermore, in order to demonstrate the degradation factors of pH sensitivity, material analyses such as XRD, energy dispersive spectroscopy (EDS), hall-effect measurement and contact-mode conducting atomic force microscopy (c-AFM) are carried out. The results show that the numbers of grain boundaries play a key role in degradation the pH sensitivity, based on metallic bulk samples. On the other hand, for semiconductor 1D W18O49 NTs, the poor sensitivity can be ascribed to intrinsic monoclinic crystal structure and not along c-axis preferential growth direction, which can possibly reduce the equivalent total charge distribution of EDL. Notwithstanding 1D W18O49 NTs is applied as the sensing part of SGFET pH sensor and it can’t acquire the good pH sensitivity. But the possible degradation factors for sensing mechanism is demonstrated, we believe that this data can facilitate the development of SGFET pH sensor.
Finally, the advantages and disadvantages of the SGFET pH sensors operation performance by using TiOx and WOx nanostructures, respectively, are summarized. Furthermore some suggestions and future works are listed to facilitate the development of metal oxide based SGFET pH sensors.
論文目次 Abstract (in Chinese)
Abstract (in English)
Acknowledgement (in Chinese)
Contents
Table captions
Figure captions
Chapter 1 Introduction
1.1 Functional metal oxide nanostructures 1
1.2 Material properties of TiO2 and WO3 3
1.2.1 TiO2 crystal structures 6
1.2.2 WO3 crystal structures 12
1.3 Specific topic on 1D nanostructures growth 15
1.4 Fabrication methods and measurement equipments 18
1.4.1 TiOx nanostructures fabrication using hydrothermal growth method 19
1.4.2 WOx nanostructures fabrication using thermal oxidation method 20
1.4.3 Material analysis and electrical measurements 22
1.5 Overview on the potentiometric based pH sensors 23
1.6 Motivation and dissertation organization 30
Chapter 2 Theoretical bases for one-dimensional metal oxide growth and sensing mechanism of potentiometric based pH sensor
2.1 Adsorption ability for nanoscale materials 32
2.2 Nucleation theory and growth of nanostructures 35
2.2.1 Classical crystal growth mechanism 36
2.2.1.1 Homogeneous nucleation 36
2.2.1.2 Heterogeneous nucleation 37
2.2.1.3 Self-induced islands in lattice-mismatch systems 39
2.2.1.4 Ostwald ripening 40
2.2.2 Nonclassical crystal growth mechanism 42
2.2.2.1 Oriented attachment (OA) 45
2.2.2.2 Mesocrystal 47
2.3 Sensing mechanism of potentiometric based pH sensor 49
2.3.1 Chemical potential and electrochemical potential 49
2.3.2 Nernst equation and electrical double layer (EDL) 51
2.3.2.1 Nernst equation and electrode potential 51
2.3.2.2 The pH electrode 55
2.3.2.3 Electrical double layer at solid/aqueous solution interfaces 56
2.3.3 The operation mechanism of SGFET pH sensor 59
2.3.4 Evaluation for pH sensor performance 61
2.3.4.1 Sensitivity 61
2.3.4.2 Selectivity 62
2.3.4.3 Stability and repeatability 64
Chapter 3 Morphology evolution and growth mechanism of TiOx nanostructures hydrothermally grown on FTO substrate
3.1 Introduction 67
3.2 Experimental procedure 70
3.3 Results and discussions 70
3.3.1 Material analysis and morphology evolution 72
3.3.2 Growth mechanism for the formation of TiOx nanostructures 83
3.4 Summary 88
Chapter 4 Preparation of thin-film and one-dimensional TiOx nanorods through hydrothermal growth method and theirs pH sensing characteristics
4.1 Introduction 89
4.2 Experimental procedure 91
4.3 Results and discussions 93
4.4 Summary 99
Chapter 5 Preparation of W/WOx sensing electrodes and their application on separated-gate field effect transistor pH sensors
5.1 Introduction 101
5.2 Experimental procedure 103
5.3 Results and discussions 104
5.3.1 W/WOx based electrodes characterization 104
5.3.2 The pH sensing performance 108
5.3.3 Factors causing degradation of W/WOx based pH sensors 114
5.4 Summary 117
Chapter 6 Conclusions and future prospects 118
6.1 Conclusions 118
6.2 Future prospects 116
Reference 123
Publication list
Vita
參考文獻 [1] J. Wu, J. Cao, W. Q. Han, A. Janotti and H. C. Kim, Functional metal oxide nanostructures. “Springer Science & Business Media. Vol. 149, 2011.
[2] C. Suryanarayana, “Recent developments in nanostructured materials,” Advanced Engineering Materials, vol. 7, pp. 983-992, 2005.
[3] P. Vaqueiro and A. V. Powell, “Recent developments in nanostructured materials for high-performance thermoelectric,” Journal of Materials Chemistry, vol. 20, pp. 9577-9584, 2010.
[4] Y. F. Sun, S. B. Liu, F. L. Meng, J. Y. Liu, Z. Jin, L. T. Kong and J. H. Liu, “Metal oxide nanostructures and their gas sensing properties: a review,” Sensors, vol. 12, pp. 2610-2631, 2012.
[5] R. S. Devan, R. A. Patil, J. H. Lin and Y. R. Ma, “One‐Dimensional Metal‐Oxide Nanostructures: Recent Developments in Synthesis, Characterization, and Applications,” Advanced Functional Materials, vol. 22, pp. 3326-3370, 2012.
[6] K. S. Lee, J. W. Lim, H. K. Kim, T. L. Alford and G. E. Jabbour, “Transparent conductive electrodes of mixed TiO2− x–indium tin oxide for organic photovoltaics,” Applied Physics Letters, vol. 100, pp. 1-3, 213302, 2012.
[7] J. R. Manders, S. W. Tsang, M. J. Hartel, T. H. Lai, S. Chen, C. M. Amb, J. R. Reynolds and F. So, “Solution‐Processed Nickel Oxide Hole Transport Layers in High Efficiency Polymer Photovoltaic Cells,” Advanced Functional Materials, vol. 23, pp. 2993-3001, 2013.
[8] Q.Yang, Y. Liu, C. Pan, J. Chen, X. Wen and Z. L. Wang, “Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect,” Nano letters, vol. 13, pp. 607-613, 2013.
[9] J. Huang, S. Chu, J. Kong, L. Zhang, C. M. Schwarz, G. Wang, L. Chernyak, Z. Chen and J. Liu, “ZnO p–n Homojunction Random Laser Diode Based on Nitrogen‐Doped p‐type Nanowires,” Advanced Optical Materials, vol. 1, pp. 179-185, 2013.
[10] E. Comini, C. Baratto, I. Concina, G. Faglia, M. Falasconi, M. Ferroni, V. Galstyan, E. Gobbi, A. Ponzoni, A. Vomiero, D. Zappa, V. Sberveglieri and G. Sberveglieri, “Metal oxide nanoscience and nanotechnology for chemical sensors,” Sensors and Actuators B: Chemical, vol. 179, pp. 3-20, 2013.
[11] H.-H. Hsu, C. Y. Chang, C. H. Cheng, S. H. Chiou and C. H. Huang, “High Mobility Bilayer Metal–Oxide Thin Film Transistors Using Titanium-Doped InGaZnO,” Electron Device Letters, IEEE. Vol. 35, pp. 87-89, 2014.
[12] C. G. Granqvist, “Oxide electrochronics: An introduction to devices and materials,” Solar Energy Materials and Solar Cells, vol. 99, pp. 1-13, 2012.
[13] Y. Fujisaki, “Review of emerging new solid-state non-volatile memories,” Japanese Journal of Applied Physics, vol. 52, pp. 1-11, 040001, 2013.
[14] W. Guo, X. Xue, S. Wang, C. Lin and Z. L. Wang, “An integrated power pack of dye-sensitized solar cell and Li battery based on double-sided TiO2 nanotube arrays,” Nano letters, vol. 12, pp. 2520-2523, 2012.
[15] X. Wang, “Piezotronics: A new field of strain-engineered functional semiconductor devices,” Am. Ceram. Soc. Bull, vol. 92, pp. 18-23, 2013.
[16] A. D. Lee, Q. Jiang, M. Tang, Y. Zhang, A. J. Seeds and H. Liu, “InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge and Ge-on-Si substrates,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, pp. 1-7, 1901107, 2013.
[17] Z. I. Alferov, “The history and future of semiconductor heterostructures,” Semiconductors, vol. 32, pp. 1-14, 1998.
[18] Z. Alferov, “Heterostructures for optoelectronics: history and modern trends,” Proceedings of the IEEE, vol. 101, pp. 2176-2182, 2013.
[19] L. Wang, H. Ji, S. Wang, L. Kong, X. Jiang and G. Yang, “Preparation of Fe3O4 with high specific surface area and improved capacitance as a supercapacitor,” Nanoscale, vol. 5, pp. 3793-3799, 2013.
[20] M. Zhi, C. Xiang, J. Li, M. Li and N. Wu, “Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review,” Nanoscale, vol. 5, pp. 72-88, 2013.
[21] F. Zaera, “Nanostructured materials for applications in heterogeneous catalysis,” Chemical Society Reviews, vol. 42, pp. 2746-2762, 2013.
[22] N. Daude, C. Gout and C. Jouanin, “Electronic band structure of titanium dioxide,” Physical Review B, vol. 15, 3229, 1977.
[23] D. G. Barton, M. Shtein, R. D. Wilson, S. L. Soled and E. Iglesia, “Structure and electronic properties of solid acids based on tungsten oxide nanostructures,” The Journal of Physical Chemistry B, vol. 103, pp. 630-640, 1999.
[24] H. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell and K. Kalantar‐zadeh, “Nanostructured tungsten oxide–properties, synthesis, and applications,” Advanced Functional Materials, vol. 21, pp. 2175-2196, 2011.
[25] M. Grätzel, “Photoelectrochemical cells,” Nature, vol. 414, pp. 338-344, 2001.
[26] A. R. Khataee and G. A. Mansoori, Nanostructured titanium dioxide materials: Properties, preparation and applications. Singapore; Hackensack, N.J: World Scientific Pub. Co., 2012.
[27] H. Zhang, G. Chen and D. W. Bahnemann, “Photoelectrocatalytic materials for environmental applications,” Journal of Materials Chemistry, vol. 19, pp. 5089-5121, 2009.
[28] X. Chen, and S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications,” Chemical reviews, vol. 107, pp. 2891-2959, 2007.
[29] A. R. Khataee and M. B. Kasiri, “Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes,” Journal of Molecular Catalysis A: Chemical, vol. 328, pp. 8-26, 2010.
[30] M. Hirano, C. Nakahara, K. Ota, O. Tanaike and M. Inagaki, “Photoactivity and phase stability of ZrO2-doped anatase-type TiO2 directly formed as nanometer-sized particles by hydrolysis under hydrothermal conditions,” Journal of Solid State Chemistry, vol. 170, pp. 39-47, 2003.
[31]J. Kim, K. C. Song, S. Foncillas and S. E. Pratsinis, “Dopants for synthesis of stable bimodally porous titania,” Journal of the European Ceramic Society, vol. 21, pp. 2863-2872, 2001.
[32] J. Zhang, Q. Xu, Z. Feng, M. Li and C. Li, “Importance of the relationship between surface phases and photocatalytic activity of TiO2,” Angewandte Chemie, vol. 120, pp. 1790-1793, 2008.
[33] D. A. H. Hanaor and C. C. Sorrell, “Review of the anatase to rutile phase transformation,” Journal of Materials science, vol. 46, pp. 855-874, 2011.
[34] H. Zhang and J. F. Banfield, “Thermodynamic analysis of phase stability of nanocrystalline titania,” Journal of Materials Chemistry, vol. 8, pp. 2073-2076, 1998.
[34] A. A. Gribb and J. F. Banfield, “Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2,” American Mineralogist, vol. 82, pp. 717-728, 1997.
[36] H. Zhang and J. F. Banfield, “Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2,” The Journal of Physical Chemistry B, vol. 104, pp. 3481-3487, 2000.
[37] M. R. Ranade, A. Navrotsky, H. Z. Zhang, J. F. Banfield, S. H. Elder, A. Zaban, P. H. Borse, S. K. Kulkarni, G. S. Doran and H. J. Whitfield, “Energetics of nanocrystalline TiO2,” Proceedings of the National Academy of Sciences, vol. 99, pp. 6476-6481, 2002.
[38] P. Roussel, P. Labbe and D. Groult, “Symmetry and twins in the monophosphate tungsten bronze series (PO2)4(WO3)2m (2≤ m≤ 14),” Acta Crystallographica Section B: Structural Science, vol. 56, pp. 377-391, 2000.
[39] H. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell and K. Kalantar‐zadeh, “Nanostructured tungsten oxide–properties, synthesis, and applications,” Advanced Functional Materials, vol. 21, pp. 2175-2196, 2011.
[40] E. K. Salje, S. Rehmann, F. Pobell, D. Morris, K. S. Knight, T. Herrmannsdörfer and M. T. Dove, “Crystal structure and paramagnetic behaviour ofε-WO3-x,” Journal of Physics: Condensed Matter, vol. 9, pp. 6563-6577, 1997.
[41] B. Gerand, G. Nowogrocki, J. Guenot and M. Figlarz, “Structural study of a new hexagonal form of tungsten trioxide,” Journal of Solid State Chemistry, vol. 29, pp. 429-434, 1979.
[42] S. Balaji, Y. Djaoued, A. S. Albert, R. Z. Ferguson and R. Brüning, “Hexagonal tungsten oxide based electrochromic devices: spectroscopic evidence for the Li ion occupancy of four-coordinated square windows,” Chemistry of Materials, vol. 21, pp. 1381-1389, 2009.
[43] M. Boulova and G. Lucazeau, “Crystallite nanosize effect on the structural transitions of WO3 studied by Raman spectroscopy,” Journal of Solid State Chemistry, vol. 167, pp. 425-434, 2002.
[44] D. Y. Lu, J. Chen, H. J. Chen, L. Gong, S. Z. Deng, N. S. Xu, and Y. L. Liu, “Raman study of thermochromic phase transition in tungsten trioxide nanowires,” Applied physics letters, vol. 90, 1919, 2007.
[45] R. S. Wagner and W. C. Ellis, “Vapor‐liquid‐solid mechanism of single crystal growth,” Applied Physics Letters, vol. 4, pp. 89-90, 1964.
[46] V. G. Dubrovskii, Nucleation theory and growth of nanostructures. Heidelberg: Springer, 2014.
[47] V. Consonni, V. G. Dubrovskii, A. Trampert, L. Geelhaar and H. Riechert, “Quantitative description for the growth rate of self-induced GaN nanowires,” Physical Review B, vol. 85, pp. 1-7, 155313, 2012.
[48] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, “Formation of titanium oxide nanotube,” Langmuir, vol. 14, pp. 3160-3163, 1998.
[49] R. L. Penn and J. F. Banfield, “Formation of rutile nuclei at anatase {112} twin interfaces and the phase transformation mechanism in nanocrystalline titania,” American Mineralogist, vol. 84, pp. 871-876, 1999.
[50] R. L. Penn and J. F. Banfield, “Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania,” Geochimica et cosmochimica acta, vol. 63, pp. 1549-1557, 1999.
[51] S. Yamabi and H. Imai, “Crystal phase control for titanium dioxide films by direct deposition in aqueous solutions,” Chemistry of materials, vol. 14, pp. 609-614, 2002.
[52] E. Hosono, S. Fujihara, K. Kakiuchi and H. Imai, “Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions,” Journal of the American Chemical Society, vol. 126, pp. 7790-7791, 2004.
[53] J. E. Boercker, E. Enache-Pommer and E. S. Aydil, “Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells,” Nanotechnology, vol. 19, 095604, 2008.
[54] B. Liu and E. S. Aydil, “Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells,” Journal of the American Chemical Society, vol. 131, pp. 3985-3990, 2009.
[55] A. Kumar, A. R. Madaria and C. Zhou, “Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells,” The Journal of Physical Chemistry C, vol.114, pp. 7787-7792, 2010.
[56] N. M. Kinsinger, A. Wong, D. Li, F. Villalobos and D. Kisailus, “Nucleation and crystal growth of nanocrystalline anatase and rutile phase TiO2 from a water-soluble precursor,” Crystal Growth & Design, vol. 10, pp. 5254-5261, 2010.
[57] C. Chen, R. Hu, K. Mai, Z. Ren, H. Wang, G. Qian and Z. Wang, “Shape evolution of highly crystalline anatase TiO2 nanobipyramids,” Crystal Growth & Design, vol. 11, pp. 5221-5226, 2011.
[58] X. Meng, D. W. Shin, S. M. Yu, M. H. Park, C. Yang, J. H. Lee and J. B. Yoo, “Formation Mechanism of Rutile TiO2 Rods on Fluorine Doped Tin Oxide Glass,” Journal of nanoscience and nanotechnology, vol. 14, 8839-8844, 2014.
[59] X.-L. Li, J.-F. Liu and Y.-D. Li, “Large-scale synthesis of tungsten oxide nanowires with high aspect ratio,” Inorganic chemistry, vol. 42, pp. 921-924, 2003.
[60] X. W. Lou and H. C. Zeng, “An inorganic route for controlled synthesis of W18O49 nanorods and nanofibers in solution,” Inorganic chemistry, vol. 42, pp. 6169-6171, 2003.
[61] Y.-R. Ma, C. M. Lin, C. L. Yeh and R. T. Huang, “Synthesis and characterization of one-dimensional WO2 nanorods,” Journal of Vacuum Science and Technology-Section B, vol. 23, pp. 2141-2145, 2005.
[62] Z. Gu, H. Li, T. Zhai, W. Yang, Y. Xia, Y. Ma and J. Yao, “Large-scale synthesis of single-crystal hexagonal tungsten trioxide nanowires and electrochemical lithium intercalation into the nanocrystals,” Journal of Solid State Chemistry, vol. 180, pp. 98-105, 2007.
[63] J. Wang, E. Khoo, P. S. Lee and J. Ma, “Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods,” The Journal of Physical Chemistry C, vol. 112, pp. 14306-14312, 2008.
[64] R. M. Ko, S. J. Wang, W. C. Tsai, B. W. Liou and Y. R. Lin, “The evolution of tungsten oxide nanostructures from nanowires to nanosheets,” CrystEngComm, vol. 11, pp. 1529-1531, 2009.
[65] R. M. Ko, S. J. Wang, W. C. Tsai, B. W. Liou and Y. R. Lin, “From metastable to stable: possible mechanisms for the evolution of W18O49 nanostructures,” CrystEngComm, vol. 13, pp. 4145-4150, 2011.
[66] B. J. W. Liu, J. Zheng, J. L. Wang, J. Xu, H. H. Li and S. H. Yu, “Ultrathin W18O49 nanowire assemblies for electrochromic devices,” Nano letters, vol. 13, pp. 3589-3593, 2013.
[67] S. Coşkun and K. K. K. Koziol, “Synthesis of high aspect ratio WO2 nanostructures,” Journal of Nanoparticle Research, vol. 18, pp. 1-12, 2016.
[68] M. H. Yaacob, M. Z. Ahmad, A. Z. Sadek, J. Z. Ou, J. Campbell, K. Kalantar-zadeh and W. Wlodarski, “Optical response of WO3 nanostructured thin films sputtered on different transparent substrates towards hydrogen of low concentration,” Sensors and Actuators B: Chemical, vol. 177, pp. 981-988, 2013.
[69] Z. R. Dai, Z. W. Pan and Z. L. Wang, “Novel nanostructures of functional oxides synthesized by thermal evaporation,” Advanced Functional Materials, vol. 13, pp. 9-24, 2003.
[70] W. Yu, and C. Pan, “Low temperature thermal oxidation synthesis of ZnO nanoneedles and the growth mechanism,” Materials Chemistry and Physics, vol. 115, pp. 74-79, 2009.
[71] S. Donthu, Z. Pan, B. Myers, G. Shekhawat, N. Wu and V. Dravid, “Facile scheme for fabricating solid-state nanostructures using e-beam lithography and solution precursors,” Nano letters, vol. 5, pp. 1710-1715, 2005.
[72] R. Kumar, G. Kumar and A. Umar, “Pulse laser deposited nanostructured ZnO thin films: A review,” Journal of nanoscience and nanotechnology, vol. 14, pp. 1911-1930, 2014.
[73] R. Kumar, R. K. Singh, P. K. Dubey, R. M. Yadav, D. P. Singh, R. S. Tiwari and O. N. Srivastava, “Highly zone-dependent synthesis of different carbon nanostructures using plasma-enhanced arc discharge technique,” Journal of Nanoparticle Research, vol. 17, pp. 1-9, 2015.
[74] M. C. Hales, T. A. Steinberg and W. N. Martens, “Synthesis and characterization of titanium sol–gels in varied gravity,” Journal of Non-Crystalline Solids, vol. 396, pp. 13-19, 2014.
[75] Y. Liu, J. Goebl and Y. Yin, “Templated synthesis of nanostructured materials,” Chemical Society Reviews, vol. 42, pp. 2610-2653, 2013.
[76] L. Zaraska, N. Czopik, M. Bobruk, G. D. Sulka, J. Mech and M. Jaskuła, “Synthesis of nanoporous tin oxide layers by electrochemical anodization,” Electrochimica Acta, vol. 104, pp. 549-557, 2013.
[77] S. Baruah and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Science and Technology of Advanced Materials, 013001, 2016.
[78] D. S. Tarbell and A. T. Tarbell, “The development of the pH meter,” J. Chem. Educ., vol. 57, pp. 133-134, 1980.
[79] P. Bühlmann, E. Pretsch and E. Bakker, “Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors,” Chemical Reviews, vol. 98, pp. 1593-1688, 1998.
[80] W. E. Morf. The principles of ion-selective electrodes and of membrane transport. Elsevier, vol. 2, 2012.
[81] P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiological measurement,” IEEE Transactions on Biomedical Engineering, BME-17, pp. 70-71, 1970.
[82] J. V. D. Spiegel, P. Chan and D. Babic, “The extended gate chemically sensitive field effect transistor as multi-species microprobe,” Sensors and Actuators, vol. 4, pp. 291-298, 1983.
[83] L.-T. Yin, J. C. Chou, W. Y Chung, T. P. Sun and S. K. Hsiung, “Separate structure extended gate H+-ion sensitive field effect transistor on a glass substrate,” Sensors and Actuators B: Chemical, vol. 71, pp. 106-111, 2000.
[84] Y. Qin, H. J., M. M. Howlader, and M. J. Deen, “Microfabricated electrochemical pH and free chlorine sensors for water quality monitoring: recent advances and research challenges,” RSC Advances, vol. 5, pp. 69086-69109, 2015.
[85] Heng, Stefan, “Industry 4.0: Upgrading of Germany's Industrial Capabilities on the Horizon,” Available at SSRN 2656608, 2014.
[86] F. Edition, Guidelines for Drinking-water Quality. WHO chronicle, vol. 38, 2011.
[87] S. Brunauer, P. H. Emmett and E. Teller, “Adsorption of gases in multimolecular layers,” Journal of the American chemical society, vol. 60, pp. 309-319, 1938.
[88] M. Déchamps, B. Djuriçić and S. Pickering, “Structure of zirconia prepared by homogeneous precipitation,” Journal of the American Ceramic Society, vol. 78, pp. 2873-2880, 1995.
[89] S. Shukla and S. Seal, “Mechanisms of room temperature metastable tetragonal phase stabilisation in zirconia,” International materials reviews, vol. 50, pp. 45-64, 2005.
[90] G. S. Redner, C. G. Wagner, A. Baskaran and M. F. Hagan, “A classical nucleation theory description of active colloid assembly,” arXiv preprint arXiv:1603, 2016.
[91] D. W. Oxtoby, “Homogeneous nucleation: theory and experiment,” Journal of Physics: Condensed Matter, vol. 4, pp. 7627-7650, 1992.
[92] C. Ratsch and J. A. Venables, “Nucleation theory and the early stages of thin film growth,” Journal of Vacuum Science & Technology A, vol. 21, pp. S96-S109, 2003.
[93] E. R. Leite and Caue Ribeiro. Crystallization and growth of colloidal nanocrystals. Springer Science & Business Media, 2011.
[94] J. H. Adair and Ender Suvaci, “Morphological control of particles,” Current opinion in colloid & interface science, vol. 5, pp. 160-167, 2000.
[95] B. L. Cushing, V. L. Kolesnichenko and C. J. O'Connor, “Recent advances in the liquid-phase syntheses of inorganic nanoparticles,” Chemical reviews, vol. 104, pp. 3893-3946, 2004.
[96] F.-P. Ludwig and J. Schmelzer, “On von Weimarn's law in nucleation theory,” Journal of colloid and interface science, vol. 181, pp. 503-510, 1996.
[97] H. Zhang and J. F. Banfield, “Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation,” Journal of Materials Research, vol. 15, pp. 437-448, 2000.
[98] H. Cöelfen, and M. Antonietti. Mesocrystals and nonclassical crystallization. John Wiley & Sons, 2008.
[99] Paul, Amal. Chemistry of glasses. Springer Science & Business Media, 1989.
[100] V. G. Dubrovskii, Nucleation theory and growth of nanostructures. Heidelberg: Springer, 2014.
[101] P. M. Winkler, G. Steiner, A. Vrtala, H. Vehkamäki, M. Noppel, K. E. J. Lehtinen, G. P. Reischl, P. E. Wagner and M. Kulmala, “Heterogeneous nucleation experiments bridging the scale from molecular ion clusters to nanoparticles,” Science, vol 319, pp. 1374-1377, 2008.
[102] S. F. Jones, G. M. Evans and K. P. Galvin, “Bubble nucleation from gas cavities—a review,” Advances in colloid and interface science, vol. 80, pp. 27-50, 1999.
[103] M. Castro, “Phase-field approach to heterogeneous nucleation,” Physical Review B, vol. 67, pp. 1-8, 035412, 2003.
[104] P. W. Voorhees, “The theory of Ostwald ripening,” Journal of Statistical Physics, vol. 38, pp. 231-252, 1985.
[105] G. Y. Hua and C. Z. Hua, “Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening,” The Journal of Physical Chemistry B, vol. 108, pp. 3492-3495, 2004.
[106] C. Z. Hua, “Ostwald ripening: A synthetic approach for hollow nanomaterials,” Current Nanoscience, vol. 3, pp. 177-181, 2007.
[107] B. Krishnamachari, J. McLean, B. Cooper and J. Sethna, “Gibbs-Thomson formula for small island sizes: Corrections for high vapor densities,” Physical Review B, vol. 54, pp. 1-27, 8899, 1996.
[108] C. A. Johnson, “Generalization of the Gibbs-Thomson equation,” Surface Science, vol. 3, pp. 429-444, 1965.
[109] M. Perez, “Gibbs–Thomson effects in phase transformations,” Scripta materialia, vol. 52, pp. 709-712, 2005.
[110] H. Cölfen and M. Antonietti, “Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment,” Angewandte Chemie International Edition, vol. 44, pp. 5576-5591, 2005.
[111] J. F. Banfield, S. A. Welch, H. Zhang, T. T. Ebert and R. L. Penn, “Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products,” Science, vol. 289, pp. 751-754, 2000.
[112] P. R. Lee, and J. F. Banfield, “Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania,” Geochimica et cosmochimica acta, vol. 63, pp. 1549-1557, 1999.
[113] P. R. Lee and J. F. Banfield, “Imperfect oriented attachment: dislocation generation in defect-free nanocrystals,” Science, vol. 281, pp. 969-971,1998.
[114] F. Huang, H. Zhang and J. F. Banfield, “Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS,” Nano Letters, vol. 3, pp. 373-378, 2003.
[115] P. R. Lee, “Kinetics of oriented aggregation,” The Journal of Physical Chemistry B, vol. 108, pp. 12707-12712, 2004.
[116] C. J. Dalmaschio, C. Ribeiro and E. R. Leite, “Impact of the colloidal state on the oriented attachment growth mechanism,” Nanoscale, vol. 2, pp. 2336-2345, 2010.
[117] A. P. Alivisatos, “Naturally aligned nanocrystals,” Science, vol. 289, pp. 736-737, 2000.
[118] H. G. Yang and H. C. Zeng, “Self‐Construction of Hollow SnO2 Octahedra Based on Two‐Dimensional Aggregation of Nanocrystallites,” Angewandte Chemie, vol. 116, pp. 6056-6059, 2004.
[119] H. Cölfen, and M. Antonietti, “Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment,” Angewandte Chemie International Edition, vol. 44, pp. 5576-5591, 2005.
[120] A. N. Kulak, P. Iddon, Y. Li, S. P. Armes, H. Cölfen, O. Paris, R. M. Wilson and F. C. Meldrum, “Continuous structural evolution of calcium carbonate particles: a unifying model of copolymer-mediated crystallization,” Journal of the American Chemical Society, vol. 129, pp. 3729-3736, 2007.
[121] N. Sato, Electrochemistry at metal and semiconductor electrodes. Elsevier, 1998.
[122] M. M. Walczak, D. A. Dryer, D. D. Jacobson, M. G. Foss and N. T. Flynn, “pH Dependent Redox Couple: An Illustration of the Nernst Equation,” J. Chem. Educ, vol. 74, pp. 1195-1197, 1997.
[123] D. C. Grahame, “The electrical double layer and the theory of electrocapillarity,” Chemical reviews, vol. 41, pp. 441-501, 1947.
[124] K. B. Oldham, “A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface,” Journal of Electroanalytical Chemistry, vol. 613, pp. 131-138, 2008.
[125] S. M. Sze and K. K. Ng, Physics of semiconductor devices. John wiley & sons, 2006.
[126] J. C. Chou and C. W. Chen, “Fabrication and application of ruthenium-doped titanium dioxide films as electrode material for ion-sensitive extended-gate FETs,” IEEE Sensors Journal, vol. 9, pp. 277-284, 2009.
[127] T. Katsube, I. Lauks and J. N. Zemel, “pH-sensitive sputtered iridium oxide films,” Sensors and Actuators, vol. 2, pp. 399-410, 1981.
[128] E. Bakker, “Selectivity of liquid membrane ion‐selective electrodes,” Electroanalysis, vol. 9, pp. 7-12, 1997.
[129] T. Sokalski and A. Lewenstam, “Application of Nernst–Planck and Poisson equations for interpretation of liquid-junction and membrane potentials in real-time and space domains,” Electrochemistry Communications, vol. 3, pp. 107-112, 2001.
[130] W. D. Huang, H. Cao, S. Deb, M. Chiao, and J. C. Chiao, “A flexible pH sensor based on the iridium oxide sensing film,” Sensors and Actuators A: Physical, vol. 169, pp. 1-11, 2011.
[131] S. Yao, M. Wang and M. Madou, “A pH electrode based on melt-oxidized iridium oxide,” Journal of the Electrochemical Society, vol. 148, pp. H29-H36, 2001.
[132] L. D. Burke, M. E. Lyons, E. J. M. O'Sullivan and D. P. Whelan, “Influence of hydrolysis on the redox behaviour of hydrous oxide films,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 122, pp. 403-407, 1981.
[133] W. Olthuis, M. A. M. Robben, P. Bergveld, M. Bos and W. E. Van der Linden, “pH sensor properties of electrochemically grown iridium oxide,” Sensors and Actuators B: Chemical, vol. 2, pp. 247-256, 1990.
[134] P. Woias, L. Meixner and P. Fröstl, “Slow pH response effects of silicon nitride ISFET sensors,” Sensors and Actuators B: Chemical vol. 48, pp. 501-504, 1998.
[135] Y. H. Liao and J. C. Chou, “Preparation and characteristics of ruthenium dioxide for pH array sensors with real-time measurement system,” Sensors and Actuators B: Chemical, vol. 128, pp. 603-612, 2008.
[136] C. N. Tsai, J. C. Chou, T. P. Sun and S. K. Hsiung, “Study on the sensing characteristics and hysteresis effect of the tin oxide pH electrode,” Sensors and Actuators B: Chemical, vol. 108, pp. 877-882, 2005.
[137] B. Aydemir, L. Yagmur and S. Fank, “Hysteresis errors of commonly used sensor materials,” Measurement, vol. 43, pp. 792-796, 2010.
[138] T. Preočanin, A. Čop, and N. Kalla, “Surface potential of hematite in aqueous electrolyte solution: Hysteresis and equilibration at the interface,” Journal of colloid and interface science, vol. 299, pp. 772-776, 2006.
[139] R. Greenwood and L. Bergström, “Electroacoustic and rheological properties of aqueous Ce-ZrO2 (Ce-TZP) suspensions,” Journal of the European Ceramic Society, vol. 17, pp. 537-548, 1997.
[140] McMurray, H. Neil, P. Douglas and D. Abbot, “Novel thick-film pH sensors based on ruthenium dioxide-glass composites,” Sensors and Actuators B: Chemical, vol. 28, pp. 9-15, 1995.
[141] A. D. Paola, M. Bellardita and L. Palmisano, “Brookite, the least known TiO2 photocatalyst,” Catalysts, vol. 3, pp. 36-73, 2013.
[142] H. S. Kim, J. W. Lee, N. Yantara, P. P. Boix, S. A. Kulkarni, S. Mhaisalkar, M. Grätzel and N. G. Park, “High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer,” Nano Letters, vol. 13, pp. 2412-2417, 2013.
[143] H. Imahori, Y. Mori and Y. Matano, “Nanostructured artificial photosynthesis,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 4, pp. 51-83, 2003.
[144] D. V. Bavykin, A. A. Lapkin, P. K. Plucinski, J. M. Friedrich and F. C. Walsh, “Reversible storage of molecular hydrogen by sorption into multilayered TiO2 nanotubes,” The Journal of Physical Chemistry B, vol. 109, pp. 19422-19427, 2005.
[145] S. M. Chung, J. H. Shin, C. H. Hong and W. S. Cheong, “Thin Film Transistor Based on TiOx Prepared by DC Magnetron Sputtering,” Journal of Nanoscience and Nanotechnology, vol. 12, pp. 5440-5443, 2012.
[146] J. J. Yang, M. D. Pickett, X. Li, D. A. Ohlberg, D. R. Stewart and R. S. Williams, “Memristive switching mechanism for metal/oxide/metal nanodevices,” Nature Nanotechnology, vol. 3, pp. 429-433, 2008.
[147] Y. Xie, L. Wei, Q. Li, Y. Chen, S. Yan, J. Jiao, and L. Mei, “High-performance self-powered UV photodetectors based on TiO2 nano-branched arrays,” Nanotechnology, vol. 25, pp. 075202, 2014.
[148] Y. C. Huang, F. S. Tsai and S. J. Wang, “Preparation of TiO2 nanowire arrays through hydrothermal growth method and their pH sensing characteristics,” Japanese Journal of Applied Physics, vol. 53, pp. 1-5, 06JG02, 2014.
[149] X. Zhang, L. Yu, J. Tie and X. Dong, “Gas Sensitivity and Sensing Mechanism Studies on Au-Doped TiO2 Nanotube Arrays for Detecting SF6 Decomposed Components,” Sensors, vol. 14, pp. 19517-19532, 2014.
[150] B. C. O’Regan and M. Cratzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, pp. 737-740, 1991.
[151] X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa and C. A. Grimes, “Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications,” Nano Letters, vol. 8, pp. 3781-3786, 2008.
[152] B. Liu and E. S. Aydil, “Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells,” Journal of the American Chemical Society, vol. 131, pp. 3985-3990, 2009.
[153] H. Huang, L. Pan, C. K. Lim, H. Gong, J. Guo, M. S. Tse and O. K. Tan, “Hydrothermal Growth of TiO2 Nanorod Arrays and In Situ Conversion to Nanotube Arrays for Highly Efficient Quantum Dot‐Sensitized Solar Cells,” Small, vol. 9, pp. 3153-3160, 2013.
[154] F. Guo, X. Su, G. Hou, Z. Liu and Z. Mei, “Fabrication of superhydrophobic TiO2 surface with cactus-like structure by a facile hydrothermal approach,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 395, pp. 70-74, 2012.
[155] M. Ye, H. Y. Liu, C. Lin and Z. Lin, “Hierarchical Rutile TiO2 Flower Cluster‐Based High Efficiency Dye‐Sensitized Solar Cells via Direct Hydrothermal Growth on Conducting Substrates,” Small, vol. 9, pp. 312-321, 2013.
[156] B. Li, B. L. Kang, P. Wang and Y. Qiu, “Review of recent progress in solid-state dye-sensitized solar cells,” Solar Energy Materials and Solar Cells, vol. 90, pp. 549-573, 2006.
[157] M. R. Narayan, “Review: dye sensitized solar cells based on natural photosensitizers,” Renewable and Sustainable Energy Reviews, vol. 16, pp. 208-215, 2012.
[158] J. Gong, J. Liang and K. Sumathy, “Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials,” Renewable and Sustainable Energy Reviews, vol. 16, pp. 5848-5860, 2012.
[159] P. W. Voorhees, “The theory of Ostwald ripening,” Journal of Statistical Physics, vol. 38, pp. 231-252, 1985.
[160] C. Herring, “Some theorems on the free energies of crystal surfaces,” Physical Review, vol. 82, 87, 1951.
[161] H.Cölfen and M. Antonietti, “Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment,” Angewandte Chemie International Edition, vol. 44, pp. 5576-5591, 2005.
[162] R. L. Penn and J. F. Banfield, “Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: Insights from nanocrystalline TiO2,” American Mineralogist, vol. 83, pp. 1077-1082, 1998.
[163] R. L. Penn and J. F. Banfield, “Imperfect oriented attachment: dislocation generation in defect-free nanocrystals,” Science, vol. 281, pp. 969-971, 1998.
[164] R. L. Penn and J. F. Banfield, “Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania,” Geochimica et Cosmochimica Acta, vol. 63, pp. 1549-1557, 1999.
[165] M. Niederberger and H. Cölfen, “Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly,” Physical Chemistry Chemical Physics, vol. 8, pp. 3271-3287, 2006.
[166] C. J. Dalmaschio, C. Ribeiro and E. R. Leite, “Impact of the colloidal state on the oriented attachment growth mechanism,” Nanoscale, vol. 2, pp. 2336-2345, 2010.
[167] W. S. Kim, D. Kim, K. J. Choi, J. G. Park and S. H. Hong, “Epitaxial directional growth of tin oxide (101) nanowires on titania (101) substrate,” Crystal Growth & Design, vol. 10, pp. 4746-4751, 2010.
[168] J. Hou, “Preparation of Titania Nanorod Arrays by Hydrothermal Method,” Advanced Materials Research, vol. 721, pp. 241-251, 2013.
[169] A. Kumar, A. R. Madaria and C. Zhou, “Growth of Aligned Single-Crystalline Rutile TiO2 Nanowires on Arbitrary Substrates and Their Application in Dye-Sensitized Solar Cells,” J. Phys. Chem. C, vol. 114, pp. 7787–7792, 2010.
[170] H. Cheng, J. Ma, Z. Zhao and L. Qi, “Hydrothermal preparation of uniform nanosize rutile and anatase particles,” Chemistry of Materials, vol. 7, pp. 663-671, 1995.
[171] J. Su and L. Guo, “High aspect ratio TiO2 nanowires tailored in concentrated HCl hydrothermal condition for photoelectrochemical water splitting,” RSC Advances, vol. 5, pp. 53012-53018, 2015.
[172] Ji. Xie, X. Wang and Y. Zhou, “Understanding Formation Mechanism of Titanate Nanowires through Hydrothermal Treatment of Various Ti-Containing Precursors in Basic Solutions,” Journal of Materials Science & Technology, vol. 28, pp. 488-494, 2012.
[173] S. Yamabi and H. Imai, “Crystal Phase Control for Titanium Dioxide Films by Direct Deposition in Aqueous Solutions,” Chem. Mater, vol. 14, pp. 609-614, 2002.
[174] V. G. Dubrovskii, Nucleation theory and growth of nanostructures. Heidelberg: Springer, 2014.
[175] R.-M. Ko, S. J. Wang, W. C. Tsai, B. W. Liou and Y. R. Lin, “The evolution of tungsten oxide nanostructures from nanowires to nanosheets,” CrystEngComm, vol. 11, pp. 1529-1531, 2009.
[176] R.-M. Ko, S. J. Wang, W. C. Hsu and Y. R. Lin, “From metastable to stable: possible mechanisms for the evolution of W18O49 nanostructures,” CrystEngComm, vol. 13, pp. 4145-4150, 2011.
[177] Q. Li, H. Li, J. Zhang and Z. Xu, “A novel pH potentiometric sensor based on electrochemically synthesized polybisphenol A films at an ITO electrode,” Sensors and Actuators B: Chemical, vol. 155, pp. 730-736, 2011.
[178] P.-Y. Yang, J. L. Wang, P. C. Chiu, J. C. Chou, C. W. Chen, H. H. Li and H. C. Cheng, “pH sensing characteristics of extended-gate field-effect transistor based on Al-doped ZnO nanostructures hydrothermally synthesized at low temperatures,” IEEE Electron Device Letters, vol. 32, pp. 1603-1605, 2011.
[179] A. Fulati, S. M. Usman Ali, M. Riaz, G. Amin, O. Nur and M. Willander, “Miniaturized pH sensors based on zinc oxide nanotubes/nanorods,” Sensors, vol. 9, pp. 8911-8923, 2009.
[180] Q. Li, H. Li, J. Zhang and Z. Xu, “A novel pH potentiometric sensor based on electrochemically synthesized polybisphenol A films at an ITO electrode,” Sensors and Actuators B: Chemical, vol. 155, pp. 730-736, 2011.
[181] S. Zaman, M. H. Asif, A. Zainelabdin, G. Amin, O. Nur and M. Willander, “CuO nanoflowers as an electrochemical pH sensor and the effect of pH on the growth,” Journal of electroanalytical chemistry, vol. 662, pp. 421-425, 2011.
[182] H.-H. Li, W. S. Dai, J. C. Chou and H. C. Cheng, “An Extended-Gate Field-Effect Transistor with Low-Temperature Hydrothermally Synthesized Nanorods as pH Sensor,” IEEE Electron Device Letters, vol. 33, pp. 1495-1497, 2012.
[183] J.-C. Lin, B.-R. Huang and Y.-K. Yang, “IGZO nanoparticle-modified silicon nanowires as extended-gate field-effect transistor pH sensors,” Sensors and Actuators B: Chemical, vol. 184, pp. 27-32, 2013.
[184] J. L. Chou, J. C. Chiang and Y. C. Chen, “Study of the pH-ISFET and EnFET for biosensor applications,” Journal of Medical and Biological Engineering, vol. 21, pp. 135-146, 2001.
[185] S. Y. Yang, C. W. Chen and J. C. Chou, “Investigation on the sensitivity of TiO2: Ru pH sensor by Taguchi design of experiment,” Solid-State Electronics, vol. 77, pp. 82-86, 2012.
[186] U. Diebold, “The surface science of titanium dioxide,” Surface science reports, vol. 48, pp. 53-229, 2003.
[187] Z. Zhang, C. C. Wang, R. Zakaria and J. Y. Ying, “Role of particle size in nanocrystalline TiO2-based photocatalysts,” The Journal of Physical Chemistry B, vol. 102, pp. 10871-10878, 1998.
[188] K. D. Benkstein and S. Semancik, “Mesoporous nanoparticle TiO2 thin films for conductometric gas sensing on microhotplate platforms” Sensors and Actuators B: Chemical, vol. 113, pp. 445-453, 2006.
[189] M. Grätzel, “Photoelectrochemical cells,” Nature, vol. 414, pp. 338-344, 2001.
[190] D. R. Acosta, A. Martínez, C. R. Magana and J. M. Ortega, “Electron and Atomic Force Microscopy studies of photocatalytic titanium dioxide thin films deposited by DC magnetron sputtering,” Thin solid films, vol. 490, pp. 112-117, 2005.
[191] E. Halary-Wagner, T. Bret and P. Hoffmann, “Light-induced chemical vapor deposition painting with titanium dioxide,” Applied Surface Science, vol. 208, pp. 663-668, 2003.
[192] T. Leistner, K. Lehmbacher, P. Härter, C. Schmidt, A. J. Bauer, L. Frey and H. Ryssel, “MOCVD of titanium dioxide on the basis of new precursors,” Journal of non-crystalline solids, vol. 303, pp. 64-68, 2002.
[193] N. Kaliwoh, J. Y. Zhang and I. W. Boyd, “Titanium dioxide films prepared by photo-induced sol–gel processing using 172 nm excimer lamps,” Surface and Coatings Technology, vol. 125, pp. 424-427, 2000.
[194] R. Zhao, M. Xu, J. Wang and G. Chen, “A pH sensor based on the TiO2 nanotube array modified Ti electrode,” Electrochimica Acta, vol. 55, pp. 5647-5651, 2010.
[195] P. K. Shin, “The pH-sensing and light-induced drift properties of titanium dioxide thin films deposited by MOCVD,” Applied surface science, vol. 214, pp. 214-221, 2003.
[196] J. C. Chou and L. P. Liao, “Study on pH at the point of zero charge of TiO2 pH ion-sensitive field effect transistor made by the sputtering method,” Thin Solid Films, vol. 476, pp. 157-161, 2005.
[197] Y. H. Liao and J. C. Chou, “Preparation and characterization of the titanium dioxide thin films used for pH electrode and procaine drug sensor by sol–gel method,” Materials Chemistry and Physics, vol. 114, pp. 542-548, 2009.
[198] J. C. Chou and C. W. Chen, “Fabrication and application of ruthenium-doped titanium dioxide films as electrode material for ion-sensitive extended-gate FETs,” IEEE Sensors Journal, vol. 9, pp. 277-284, 2009.
[199] D. E. Yates, S. Levine and T. W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface,” Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol. 70, pp. 1807-1818, 1974.
[200] A. Kumar, A. R. Madaria and C. Zhou, “Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells,” The Journal of Physical Chemistry C, vol. 114, pp. 7787-7792, 2010.
[201] H. Huang, L. Pan, C. K. Lim, H. Gong, J. Guo, M. S. Tse and O. K. Tan, “Hydrothermal Growth of TiO2 Nanorod Arrays and In Situ Conversion to Nanotube Arrays for Highly Efficient Quantum Dot‐Sensitized Solar Cells,” Small, vol. 9, pp. 3153-3160, 2013.
[202] B. Liu and E. S. Aydil, “Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells,” Journal of the American Chemical Society, vol. 131, pp. 3985-3990, 2009.
[203] C. A. Chen, Y. M. Chen, A. Korotcov, Y. S. Huang, D. S. Tsai and K. K. Tiong, “Growth and characterization of well-aligned densely-packed rutile TiO2 nanocrystals on sapphire substrates via metal–organic chemical vapor deposition,” Nanotechnology, vol. 19, pp. 1-5, 075611, 2008.
[204] B. J. Morgan and G. W. Watson, “A density functional theory +U study of oxygen vacancy formation at the (110), (100), (101) and (001) surfaces of rutile TiO2,” The Journal of Physical Chemistry C, vol. 113, pp. 7322-7328, 2009.
[205] P. C. Pandey, S. Upadhyay, G. Singh, R. Prakash, R. C. Srivastava, and P. K. Seth, “A New solid‐state pH sensor and its application in the construction of all solid‐state urea biosensor,” Electroanalysis, vol. 12, pp. 517-521, 2000.
[206] A. Richter, G. Paschew, S. Klatt, J. Lienig, K. F. Arndt and H. J. P. Adler, “Review on hydrogel-based pH sensors and microsensors,” Sensors, vol. 8, pp. 561-581, 2008.
[207] C. M. Yang, I. S. Wang, Y. T. Lin, C. H. Huang, T. F. Lu, C. E. Lue and C. S. Lai, “Low cost and flexible electrodes with NH3 plasma treatments in extended gate field effect transistors for urea detection,” Sensors and Actuators B Chemical, vol. 187, pp. 274-279, 2013.
[208] Y. Chen, X. Wang, S. Erramilli, P. Mohanty and A. Kalinowski, “Silicon-based nanoelectronic field-effect pH sensor with local gate control,” Applied physics letters, vol. 89, pp. 223512-223512, 2006.
[209] A. Sardarinejad, D. K. Maurya, and K. Alameh, “The effects of sensing electrode thickness on ruthenium oxide thin-film pH sensor,” Sensors and Actuators A: Physical, vol. 214, pp. 15-19, 2014.
[210] P. D. Batista and M. Mulato, “ZnO extended-gate field-effect transistors as pH sensors,” Applied Physics Letters, vol. 87, pp. 143508-143900, 2005.
[211] M. Kevin, W. L. Ong, G. H. Lee and G. W. Ho, “Formation of hybrid structures: copper oxide nanocrystals templated on ultralong copper nanowires for open network sensing at room temperature,” Nanotechnology, vol. 22, pp. 1-10, 235701, 2011.
[212] M. Chen, Y. Jin, X. Qu, Q. Jin and J. Zhao, “Electrochemical impedance spectroscopy study of Ta2O5 based EIOS pH sensors in acid environment,” Sensors and Actuators B Chemical, vol. 192, pp. 399-405, 2014.
[213] Y. S. Chien, W. L. Tsai, I. C. Lee, J. C. Chou and H. C. Cheng, “A novel pH sensor of extended-gate field-effect transistors with laser-irradiated carbon-nanotube network,” IEEE Electron Device Letters, vol. 33, pp. 1622-1624, 2012.
[214] J. C Lin, B. R. Huang and Y.-K. Yang, “IGZO nanoparticle-modified silicon nanowires as extended-gate field-effect transistor pH sensors,” Sensors and Actuators B: Chemical, vol. 184, pp. 27-32, 2013.
[215] P. Y. Yang, J. L. Wang, P. C. Chiu, J. C. Chou, C. W. Chen, , H. H. Li and H. C. Cheng, “pH sensing characteristics of extended-gate field-effect transistor based on Al-doped ZnO nanostructures hydrothermally synthesized at low temperatures,” IEEE Electron Device Letters, vol. 32, pp. 1603-1605, 2011.
[216] R. A. Rahman, M. A. Zulkefle, M. Rusop, W. F. H. Abdullah and S. H. Herman, “Annealing temperature effect on the electrical characteristics and pH sensitivity of TiO2/ZnO bilayer films,” Technology Management and Emerging Technologies (ISTMET), 2015 International Symposium on. IEEE, pp. 39-43, 2015.
[217] C. E. Lue, I. S. Wang, C. H. Huang, Y. T. Shiao, H. C. Wang, C. M. Yang and C. S. Lai, “pH sensing reliability of flexible ITO/PET electrodes on EGFETs prepared by a roll-to-roll process,” Microelectronics Reliability, vol. 52, pp. 1651-1654, 2012.
[218] I. A. Ges, B. L. Ivanov, D. K. Schaffer, E. A. Lima, A. A. Werdich and F. J. Baudenbacher, “Thin-film IrOx pH microelectrode for microfluidic-based Microsystems,” Biosensors and Bioelectronics, vol. 21, pp. 248-256, 2005.
[219] A. Das, D. H. Ko, C. H. Chen, L. B. Chang, C. S. Lai, F. C. Chu and R. M. Lin, “Highly sensitive palladium oxide thin film extended gate FETs as pH sensor,” Sensors and Actuators B: Chemical, vol. 205, pp. 199-205, 2014.
[220] C. G. Granqvist, “Electrochromic tungsten oxide films: review of progress 1993–1998,” Solar Energy Materials and Solar Cells, vol. 60, pp. 201-262, 2000.
[221] Y. S. Kim, S. C. Ha, K. Kim, H. Yang, S. Y. Choi, Y. T. Kim and K. Lee, “Room-temperature semiconductor gas sensor based on nonstoichiometric tungsten oxide nanorod film,” Applied Physics Letters, vol. 86, pp. 1-3, 2005.
[222] L. B. Kriksunov, D. D. Macdonald and P. J. Millett, “Tungsten/tungsten oxide pH sensing electrode for high temperature aqueous environments,” Journal of the Electrochemical Society, vol. 141, pp. 3002-3005, 1994.
[223] Y. Wen and X. Wang, “Characterization and application of a metallic tungsten electrode for potentiometric pH measurements,” Journal of Electroanalytical Chemistry, vol. 714, pp. 45-50, 2014.
[224] H. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell and K. Kalantar‐zadeh, “Nanostructured tungsten oxide–properties, synthesis, and applications,” Advanced Functional Materials, vol. 21, pp. 2175-2196, 2011.
[225] S. Sun, Y. Zhao, Y. Xia, Z. Zou, G. Min and Y. Zhu, “Bundled tungsten oxide nanowires under thermal processing,” Nanotechnology, vol. 19, 305709, 2008.
[226] M-H. Cho, S. A. Park, K. D. Yang, I. W. Lyo, K. Jeong, S. K. Kang and H. J. Shin, “Evolution of tungsten-oxide whiskers synthesized by a rapid thermal-annealing treatment,” Journal of Vacuum Science & Technology B, vol. 22, pp. 1084-1087, 2004.
[227] R. M. Ko, S. J. Wang, W. C. Tsai, B. W. Liou and Y. R. Lin, “The evolution of tungsten oxide nanostructures from nanowires to nanosheets,” CrystEngComm, vol. 11, pp. 1529-1531, 2009.
[228] R. M. Ko, S. J. Wang, W. C. Hsu and Y. R. Lin, “From metastable to stable: possible mechanisms for the evolution of W18O49 nanostructures,” CrystEngComm, vol. 13, pp. 4145-4150, 2011.
[229] R. S. Lillard, G. S. Kanner, and D. P. Butt, “The nature of oxide films on tungsten in acidic and alkaline solutions,” Journal of the Electrochemical Society, vol. 145, pp. 2718-2725, 1998.
[230] Y. C. Huang and S. J. Wang, “Super-Nernstian response of pH detection using metallic tungsten sensing electrode and extended-gate field effect transistor,” 2015 73rd Annual Device Research Conference (DRC). IEEE, 2015.
[231] L. Bousse, S. Mostarshed, B. van der Schoot, and N. F. De Rooij, “Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulators,” Sensors and Actuators B: Chemical, vol. 17, pp. 157-164, 1994.
[232] S. Jamasb, S. Collins, and R. L. Smith, “A physical model for drift in pH ISFETs,” Sensors and Actuators B: Chemical, vol. 49, pp. 146-155, 1998.
[233] W. D. Huang, H. Cao, S. Deb, M. Chiao and J. C. Chiao, “A flexible pH sensor based on the iridium oxide sensing film,” Sensors and Actuators A: Physical, vol. 169, pp. 1-11, 2011.
[234] H. H. Li, W. S. Dai, J. C. Chou and H. C. Cheng, “An Extended-Gate Field-Effect Transistor with Low-Temperature Hydrothermally Synthesized Nanorods as pH Sensor,” IEEE Electron Device Letters, vol. 33, pp. 1495-1497, 2012.
[235] Y. C. Huang, F. S. Tsai and S. J. Wang, “Preparation of TiO2 nanowire arrays through hydrothermal growth method and their pH sensing characteristics,” Japanese Journal of Applied Physics, vol. 53, pp. 1-5, 06JG02, 2014.
[236] M. Anik and K. Osseo-Asare, “Effect of pH on the Anodic Behavior of Tungsten,” Journal of the Electrochemical Society, vol. 149, pp. B224-B233, 2002.
[237] A. A. Green, “The preparation of acetate and phosphate buffer solutions of known pH and ionic strength,” Journal of the American Chemical Society, vol. 55, pp. 2331-2336, 1933.
[238] N. Sato, Electrochemistry at metal and semiconductor electrodes. Elsevier, 1998.
[239] M. E. Franke, T. J. Koplin and U. Simon. “Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter ?,” Small, vol. 2, pp. 36-50, 2006.
[240] A. Bietsch and B. Michel, “Size and grain-boundary effects of a gold nanowire measured by conducting atomic force microscopy,” Applied physics letters, vol. 80, pp. 3346-3348, 2002.
[241] J. A. Davis, R. O. James, and J. O. Leckie, “Surface ionization and complexation at the oxide/water interface: I. Computation of electrical double layer properties in simple electrolytes,” Journal of colloid and interface science, vol. 63, pp. 480-499, 1978.
[242] J. A. Davis and James O. Leckie, “Surface ionization and complexation at the oxide/water interface. 3. Adsorption of anions,” Journal of Colloid and Interface Science, vol. 74, pp. 32-43, 1980.
[243] D. E. Yates, S. Levine and T. W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface,” Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol. 70, pp. 1807-1818, 1974.
[244] A. Lale et al., “Integration of tungsten layers for the mass fabrication of WO3-based pH-sensitive potentiometric microsensors,” Sensors and Actuators B: Chemical, vol. 206, pp. 152-158, 2015.
[245] L. Santos, A. Tsopela, A. Civélas, L. Salvagnac, J. Launay and P. Temple-Boyer, “WO3 nanoparticle-based conformable pH sensor,” ACS applied materials & interfaces, vol. 6, pp. 12226-12234, 2014.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-01-19起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-01-19起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw