進階搜尋


 
系統識別號 U0026-0512201214501100
論文名稱(中文) 電場對於石墨烯庫倫激發的影響
論文名稱(英文) Electric-Field Effects on Coulomb Excitations in Graphene
校院名稱 成功大學
系所名稱(中) 物理學系碩博士班
系所名稱(英) Department of Physics
學年度 101
學期 1
出版年 101
研究生(中文) 莊英志
研究生(英文) Ying-Chih Chuang
學號 L28951144
學位類別 博士
語文別 英文
論文頁數 93頁
口試委員 指導教授-林明發
口試委員-呂欽山
口試委員-林德鴻
口試委員-張振鵬
口試委員-蔡炎熾
口試委員-盧炎田
中文關鍵字 石墨烯  庫倫激發  電場 
英文關鍵字 graphene  Coulomb excitations  electric field 
學科別分類
中文摘要 AA和AB堆疊少層石墨烯在均勻垂直電場下的單粒子和多粒子激發譜,可由數值和解析的緊束模型和隨機相位近似來研究。在AB雙層石墨烯,電場引起的震盪拋物線型能帶擁有鞍點和區域極值,分別在極化函數中導致對數發散峰和不連續階梯,這些特殊結構和屏蔽散逸譜的電漿子峰相關,顯著的能帶間電漿子因此產生。而在AA雙層石墨烯,電子激發和費米動量的電場相依性有關,電場破壞四個次晶格的均勻機率分佈,趨使同對能帶內的層內和層間極化強度的對稱性破壞,因此除了電場調制的固有聲、光電漿子外,也浮現另一個聲電漿子。三個模態頻率在長波極限下顯示不同的色散關係和電場相依性,這計算不論由介電函數行列式實部或數值散逸函數皆獲得一致的結果,而此一電場誘發和調制模態的物理機制也存在於其他AA堆疊少層石墨烯中,AA堆疊三層和四層石墨烯光電漿子模態的能量、強度和數量亦可被電場操控。這些預測結果皆可被非彈性光學散射光譜儀和電子能量散逸光譜儀所檢驗,而解析推導對於了解其他多體現象則是相當有用的。
英文摘要 The single- and many-particle Coulomb excitation spectra modulated by a uniform perpendicular electric field in AA- and AB-stacked few-layer graphenes are numerically and analytically investigated within the tight-binding model and the random-phase approximation. In Bernal bilayer graphene, the field-induced oscillatory parabolic
bands possess saddle points and local extrema, which, respectively, lead to logarithmically divergent peaks and discontinuous steps in the bare response functions. Such special structures are associated with the plasmon peaks in the screened loss spectra. A few prominent interband plasmons are thus generated. For simple hexagonal bilayer
graphene, the electronic excitations are related to field-dependent Fermi-momentum states. The presence of such a field destroys the uniform probability distribution of the four sublattices. This drives a symmetry breaking between the intralayer and interlayer polarization intensities in the intrapair band excitations. A field-induced acoustic plasmon thus emerges in addition to the field-tunable intrinsic acoustic and optical plasmons. At long wavelengths, the three modes show different dispersions and field dependence. The frequencies calculated from the vanishing real-part determinant of the dielectric function matrix are consistent with those obtained from the numerical loss functions. The definite physical mechanism of the electrically inducible and tunable mode is also present in other AA-stacked few-layer graphenes. The field is further capable of manipulating the energy, intensity, and number of the optical plasmon modes in AA-stacked trilayer and tetralayer graphenes. The predicted results could be examined by inelastic light scattering spectroscopy and electron-energy-loss spectroscopy. These analytical derivations are useful in understanding other
many-body effects.
論文目次 Chapter 1. Introduction 1
References 5

Chapter 2. Analytical Calculations on Low-Frequency
Excitations in AA-Stacked Bilayer Graphene 10
2.1 Introduction 10
2.2 Tight-Binding Hamiltonian 11
2.3 Bare Response Function 14
2.4 Dielectric Function Matrix 20
2.5 Plasmons 21
2.6 Conclusions 24
References 26

Chapter 3. Electric Field Dependence of Excitation Spectra
in AB-Stacked Bilayer Graphene 28
3.1 Introduction 28
3.2 Methods 29
3.3 Results and Discussion 31
3.4 Conclusions 38
References 39

Chapter 4. Electric-Field-Induced Plasmon in AA-Stacked
Bilayer Graphene 41
4.1 Introduction 41
4.2 Tight-Binding Hamiltonian 42
4.3 Bare Response Function 45
4.4 Dielectric Function Matrix 48
4.5 Plasmons 49
4.6 Comparison between AA- and AB-Stacked Bilayer
Graphenes 53
4.7 Conclusions 53
References 60

Chapter 5. Electrically Tunable Plasma Excitations in
AA-Stacked Few-Layer Graphenes 62
5.1 Introduction 62
5.2 Methods 63
5.3 Results and Discussion 66
5.4 Conclusions 74
References 82

Chapter 6. Summary 86

Appendix. Coulomb Scattering Rates in Few-Layer Graphenes 89
References 92
參考文獻 Chapter 1.
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
[2] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. P. Kim, J.-Y. Choi, and B. H. Hong, Nature 457, 706 (2009).
[3] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 1324, 1312 (2009).
[4] W. Bao, L. Jing , J. Velasco Jr., Y. Lee, G. Liu, D. Tran, B. Standley, M. Aykol, S. B. Cronin, D. Smirnov, M. Koshino, E. McCann, M. Bockrath, and C. N. Lau, Nat. Phys. 7, 948 (2011).
[5] C. H. Lui, Z. Li, Z. Chen, P. V. Klimov, L. E. Brus, and T. F. Heinz, Nano Lett. 11, 164 (2011).
[6] Y. Liu, W. S. Lew, S. Goolaup, H. F. Liew, S. K. Wong, and T. Zhou, ACS Nano 5, 5490 (2011).
[7] K. F. Mak, J. Shan, T. F. and Heinz, Phys. Rev. Lett. 104, 176404 (2010).
[8] F. Zhang, B. Sahu, H. Min, and A. H. MacDonald, Phys. Rev. B 82, 035409 (2010).
[9] T. Ohta, A. Bostwick, J. L. McChesney, T. Seyller, K. Horn, and E. Rotenberg, Phys. Rev. Lett. 98, 206802 (2007).
[10] S. Latil and L. Henrard, Phys. Rev. Lett. 97, 036803 (2006).
[11] C. L. Lu, C. P. Chang, Y. C. Huang, J. M. Lu, C. C. Hwang, and M. F. Lin, J. Phys.: Condens. Matter 18, 5849 (2006).
[12] W. Zhang, C. T. Lin, K. K. Liu, T. Tite, C. Y. Su, C. H. Chang, Y. H. Lee, C. W. Chu, K. H. Wei, J. L. Kuo, and L. J. Li, ACS Nano 5, 7517 (2011).
[13] K. Tang, R. Qin, J. Zhou, H. Qu, J. Zheng, R. Fei, H. Li, Q. Zheng, Z. Gao, and J. Lu, J. Phys. Chem. C 115, 9458 (2011).
[14] S. Bala Kumar and J. Guo, Appl. Phys. Lett. 98, 222101 (2011).
[15] E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. Lopes dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Castro Neto, Phys. Rev. Lett. 99, 216802 (2007).
[16] T. Khodkov, F. Withers, D. C. Hudson, M. F. Craciun, and S. Russo, Appl. Phys. Lett. 100, 013114 (2012).
[17] C. H. Lui, Z. Li, K. F. Mak, E. Cappelluti, and T. F. Heinz, Nat. Phys. 7, 944 (2011).
[18] J. -C. Charlier, X. Gonze, and J. -P. Michenaud, Carbon 32, 289 (1994).
[19] J. -C. Charlier, and J. -P. Michenaud, Phys. Rev. B 46,
4531 (1992).
[20] Y. H. Ho, Y. H. Chiu, D. H. Lin, C. P. Chang, and M. F. Lin, ACS Nano 4, 1465 (2010).
[21] G. Borghi, M. Polini, R. Asgari, and A. H. MacDonald, Phys. Rev. B 80, 241402 (2009).
[22] X. F. Wang, and T. Chakraborty, Phys. Rev. B 75, 041404
(2007).
[23] J. K. Lee, S. C. Lee, J. P. Ahn, S. C. Kim, J. I. B. Wilson, and P. John, J. Chem. Phys. 129, 234709 (2008).
[24] Z. Liu, K. Suenaga, P. J. F. Harris, and S. Iijima, Phys. Rev. Lett. 102, 015501 (2009).
[25] I. Lobato and B. Partoens, Phys. Rev. B 83, 165429 (2011).
[26] Y. H. Ho, J. Y. Wu, R. B. Chen, Y. H. Chiu, and M. F. Lin, Appl. Phys. Lett. 97, 101905 (2010).
[27] Y. F. Hsu and G. Y. Guo, Phys. Rev. B 82, 165404 (2010).
[28] Y. Xu, X. Li, and J. Dong, Nanotechnology 21, 065711 (2010).
[29] T. Taychatanapat and P. Jarillo-Herrero, Phys. Rev. Lett. 105, 166601 (2010).
[30] Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, Nature 459, 820 (2009).
[31] T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science 313, 951 (2006).
[32] D. Wang, Phys. Lett. A 375, 4070 (2011).
[33] P. E. Trevisanutto, C. Giorgetti, L. Reining, M. Ladisa, and V. Olevano, Phys. Rev. Lett. 101, 226405 (2008).
[34] W. Pan, A. J. Ross III, S. W. Howell, T. Ohta, T. A. Friedmann, and C.-T. Liang, New J. Phys. 13, 113005 (2011).
[35] W. Zhang and L. J. Li, New J. Phys. 12, 103037 (2010).
[36] S. Das Sarma and E. H. Hwang, Phys. Rev. Lett. 81, 4216 (1998).
[37] P. R. Wallace, Phys. Rev. 71, 622 (1947).
[38] C. W. Chiu, S. H. Lee, S. C. Chen, and M. F. Lin, J. Appl. Phys. 106, 113711 (2009).
[39] E. H. Hwang and S. Das Sarma, Phys. Rev. B 75, 205418 (2007).
[40] B. Wunsch, T. Stauber, F. Sols, and F. Guinea, New J. Phys. 8, 318 (2006).
[41] M. F. Lin and F. L. Shyu, J. Phys. Soc. Jpn. 69, 607 (2000).
[42] J. Y. Wu, S. C. Chen, O. Roslyak, G. Gumbs, and M. F. Lin, ACS Nano 5, 1026 (2011).
[43] R. Roldan, J.-N. Fuchs, and M. O. Goerbig, Phys. Rev. B 80, 085408 (2009).
{[44] O. L. Berman, G. Gumbs, and Y. E. Lozovik, Phys. Rev. B 78, 085401 (2008).
[45] J. H. Ho, C. L. Lu, C. C. Hwang, C. P. Chang, and M. F. Lin, Phys. Rev. B 74, 085406 (2006).
[46] K. W.-K. Shung, Phys. Rev. B 34, 979 (1986).
[47] J. H. Ho, C. P. Chang, and M. F. Lin, Phys. Lett. A 352, 446 (2006).
[48] H. Ehrenreich, and M. H. Cohen, Phys. Rev. 115, 786 (1959).
[49] J. P. Reed, B. Uchoa, Y. I. Joe, Y. Gan, D. Casa, E. Fradkin, and P. Abbamonte, Science 330, 805 (2010).
[50] K. F. Mak, C. H. Lui, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 102, 256405 (2009).
[51] R. Hambach, C. Giorgetti, N. Hiraoka, Y. Q. Cai, F. Sottile, A. G. Marinopoulos, F. Bechstedt, and L. Reining, Phys. Rev. Lett. 101, 266406 (2008).
[52] V. B. Jovanovic, I. Radovic, D. Borka, and Z. L. Miskovic, Phys. Rev. B 84, 155416 (2011).
[53] S. Y. Shin, C. G. Hwang, S. J. Sung, H. S. Kim, and J. W. Chung, Phys. Rev. B 83, 161403 (2011).
[54] T. Eberlein, U. Bangert, R. R. Nair, R. Jones, M. Gass, A. L. Bleloch, K. S. Novoselov, A. Geim, and P. R. Briddon, Phys. Rev. B 77, 233406 (2008).

Chapter 2.
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
[2] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. P. Kim, J.-Y. Choi, and B. H. Hong, Nature 457, 706 (2009).
[3] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312 (2009).
[4] J. K. Lee, S. C. Lee, J. P. Ahn, S. C. Kim, J. I. B. Wilson, and P. John, J. Chem. Phys. 129, 234709 (2008).
[5] Z. Liu, K. Suenaga, P. J. F. Harris, and S. Iijima,
Phys. Rev. Lett. 102, 015501 (2009).
[6] B. Wunsch, T. Stauber, F. Sols, and F. Guinea, New J. Phys. 8, 318 (2006).
[7] O. L. Berman, G. Gumbs, and Y. E. Lozovik, Phys. Rev. B 78, 085401 (2008).
[8] R. Roldan, J.-N. Fuchs, and M. O. Goerbig, Phys. Rev. B
80, 085408 (2009).
[9] J. H. Ho, C. L. Lu, C. C. Hwang, C. P. Chang, and M.
F. Lin, Phys. Rev. B 74, 085406 (2006). Numerical calculations in AA-stacked graphene are not precise.
[10] K. W.-K. Shung, Phys. Rev. B 34, 979 (1986).
[11] J.-C. Charlier, J.-P. Michenaud, and X. Gonze, Phys. Rev. B 46, 4531 (1992).
[12] H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959).
[13] J. H. Ho, C. P. Chang, and M. F. Lin, Phys. Lett. A 352, 446 (2006).
[14] T. Vazifehshenas, T. Amlaki, M. Farmanbar, and F. Parhizgar, Phys. Lett. A 374, 4899 (2010).
[15] M. A. Eriksson, A. Pinczuk, B. S. Dennis, S. H. Simon, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 82, 2163 (1999).
[16] D. Richards, Phys. Rev. B 61, 7517 (2000).
[17] P. Laitenberger and R. E. Palmer, Phys. Rev. Lett. 76, 1952 (1996).
[18] S. Y. Shin, N. D. Kim, J. G. Kim, K. S. Kim, D. Y. Noh, Kwang S. Kim, and J. W. Chung, Appl. Phys. Lett. 99,
082110 (2011).
[19] C. W. Chiu and M. F. Lin, Nanotechnology 18, 435401 (2007).

Chapter 3.
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
[2] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. P. Kim, J.-Y. Choi, and B. H. Hong, Nature 457, 706 (2009).
[3] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 1324, 1312 (2009).
[4] C. L. Lu, C. P. Chang, Y. C. Huang, R. B. Chen, and M. L. Lin, Phys. Rev. B 73, 144427 (2006).
[5] E. McCann, Phys. Rev. B 74, 161403 (2006).
[6] Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, Nature 459 820 (2009).
[7] T. Taychatanapat and P. Jarillo-Herrero, Phys. Rev. Lett. 105, 166601 (2010).
[8] M. F. Lin and F. L. Shyu, J. Phys. Soc. Jpn. 69, 607 (2000).
[9] J. Y. Wu, S. C. Chen, O. Roslyak, G. Gumbs, and M. F. Lin, ACS Nano 5, 1026 (2011).
[10] J. H. Ho, C. L. Lu, C. C. Hwang, C. P. Chang, and M.
F. Lin, Phys. Rev. B 74, 085406 (2006). Numerical calculations in AB-stacked graphene for the absence of an electric field are not precise.
[11] K. Nakao, J. Phys. Soc. Jpn. 40, 761 (1976).
[12] J. H. Ho, C. P. Chang, and M. F. Lin, Phys. Lett. A 352, 446 (2006).
[13] E. H. Hwang, and S. Das Sarma, Phys. Rev. B 80, 205405 (2009).
[14] S. M. Badalyan, and F. M. Peeters, Phys. Rev. B 85, 195444 (2012).
[15] E. H. Hwang, and S. Das Sarma, Phys. Rev. Lett. 101, 156802 (2008).
[16] M. A. Eriksson, A. Pinczuk, B. S. Dennis, S. H. Simon, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 82, 2163 (1999).
[17] P. Laitenberger and R. E. Palmer, Phys. Rev. Lett. 76,
1952 (1996).
[18] S. Y. Shin, N. D. Kim, J. G. Kim, K. S. Kim, D. Y. Noh, Kwang. S. Kim, and J. W. Chung, Appl. Phys. Lett. 99, 082110 (2011).

Chapter 4.
[1] W. Bao, L. Jing, J. Velasco Jr., Y. Lee, G. Liu, D. Tran, B. Standley, M. Aykol, S. B. Cronin, D. Smirnov, M. Koshino, E. McCann, M. Bockrath, and C. N. Lau, Nat. Phys. 7, 948 (2011).
[2] C. H. Lui, Z. Li, Z. Chen, P. V. Klimov, L. E. Brus, and T. F. Heinz, Nano Lett. 11, 164 (2011).
[3] Y. Liu, W. S. Lew, S. Goolaup, H. F. Liew, S. K. Wong, and T. Zhou, ACS Nano 5, 5490 (2011).
[4] K. F. Mak, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 104, 176404 (2010).
[5] T. Ohta, A. Bostwick, J. L. McChesney, T. Seyller, K. Horn, and E. Rotenberg, Phys. Rev. Lett. 98, 206802 (2007).
[6] S. Latil and L. Henrard, Phys. Rev. Lett. 97, 036803 (2006).
[7] J. K. Lee, S. C. Lee, J. P. Ahn, S. C. Kim, J. I. B. Wilson, and P. John, J. Chem. Phys. 129, 234709 (2008).
[8] Z. Liu, K. Suenaga, P. J. F. Harris, and S. Iijima, Phys. Rev. Lett. 102, 015501 (2009).
[9] I. Lobato and B. Partoens, Phys. Rev. B 83, 165429 (2011).
[10] Y. H. Ho, J. Y. Wu, R. B. Chen, Y. H. Chiu, and M. F. Lin, Appl. Phys. Lett. 97, 101905 (2010).
[11] Y. F. Hsu and G. Y. Guo, Phys. Rev. B 82, 165404 (2010).
[12] Y. Xu, X. Li, and J. Dong, Nanotechnology 21, 065711 (2010).
[13] D. Wang, Phys. Lett. A 375, 4070 (2011).
[14] P. E. Trevisanutto, C. Giorgetti, L. Reining, M. Ladisa, and V. Olevano, Phys. Rev. Lett. 101, 226405 (2008).
[15] W. Pan, A. J. Ross III, S. W. Howell, T. Ohta, T. A. Friedmann, and C.-T. Liang, New J. Phys. 13, 113005 (2011).
[16] W. Zhang and L. J. Li, New J. Phys. 12, 103037 (2010).
[17] X. F. Wang and T. Chakraborty, Phys. Rev. B 81, 081402(R) (2010).
[18] K. W.-K. Shung, Phys. Rev. B 34, 979 (1986).
[19] J.-C. Charlier, J.-P. Michenaud, and X. Gonze, Phys. Rev. B 46, 4531 (1992).
[20] H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959).
[21] J. H. Ho, C. L. Lu, C. C. Hwang, C. P. Chang, and M. F. Lin, Phys. Rev. B 74, 085406 (2006).
[22] J. H. Ho, C. P. Chang, and M. F. Lin, Phys. Lett. A 352, 446 (2006).

Chapter 5.
[1] C. L. Lu, C. P. Chang, Y. C. Huang, J. M. Lu, C. C. Hwang, and M. F. Lin, J. Phys.: Condens. Matter 18, 5849 (2006).
[2] S. Latil and L. Henrard, Phys. Rev. Lett. 97, 036803 (2006).
[3] K. F. Mak, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 104, 176404 (2010).
[4] F. Zhang, B. Sahu, H. Min, and A. H. MacDonald, Phys. Rev. B 82, 035409 (2010).
[5] W. Bao, L. Jing, J. Velasco Jr, Y. Lee, G. Liu, D. Tran, B. Standley, M. Aykol, S. B. Cronin, D. Smirnov, M. Koshino, E. McCann, M. Bockrath, and C. N. Lau, Nat. Phys. 7, 948 (2011).
[6] E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. Lopes dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Castro Neto, Phys. Rev. Lett. 99, 216802 (2007).
[7] S. Bala Kumar and J. Guo, Appl. Phys. Lett. 98, 222101 (2011).
[8] K. Tang, R. Qin, J. Zhou, H. Qu, J. Zheng, R. Fei, H. Li, Q. Zheng, Z. Gao, and J. Lu, J. Phys. Chem. C 115, 9458 (2011).
[9] W. Zhang, C. T. Lin, K. K. Liu, T. Tite, C. Y. Su, C. H. Chang, Y. H. Lee, C. W. Chu, K. H. Wei, J. L. Kuo, and L. J. Li, ACS Nano 5, 7517 (2011).
[10] C. H. Lui, Z. Li, K. F. Mak, E. Cappelluti, and T. F. Heinz, Nature Phys. 7, 944 (2011).
[11] T. Khodkov, F. Withers, D. C. Hudson, M. F. Craciun, and S. Russo, Appl. Phys. Lett. 100, 013114 (2012).
[12] J.-C. Charlier, X. Gonze, and J.-P. Michenaud, Carbon 32, 289 (1994).
[13] J.-C. Charlier, and J.-P. Michenaud, Phys. Rev. B 46, 4531 (1992).
[14] Y. H. Ho, Y. H. Chiu, D. H. Lin, C. P. Chang, and M. F. Lin, ACS Nano 4, 1465 (2010).
[15] X. F. Wang, and T. Chakraborty, Phys. Rev. B 75, 041404 (2007).
[16] G. Borghi, M. Polini, R. Asgari, and A. H. MacDonald, Phys. Rev. B 80, 241402 (2009).
[17] J. K. Lee, S. C. Lee, J. P. Ahn, S. C. Kim, J. I. B. Wilson, and P. John, J. Chem. Phys. 129, 234709 (2008).
[18] Z. Liu, K. Suenaga, P. J. F. Harris, and S. Iijima, Phys. Rev. Lett. 102, 015501 (2009).
[19] I. Lobato and B. Partoens, Phys. Rev. B 83, 165429 (2011).
[20] Y. F. Hsu and G. Y. Guo, Phys. Rev. B 82, 165404 (2010).
[21] Y. Xu, X. Li, and J. Dong, Nanotech. 21, 065711 (2010).
[22] Y. H. Ho, J. Y. Wu, R. B. Chen, Y. H. Chiu, and M. F. Lin, Appl. Phys. Lett. 97, 101905 (2010).
[23] P. R. Wallace, Phys. Rev. 71, 622 (1947).
[24] J. H. Ho, C. L. Lu, C. C. Hwang, C. P. Chang, and M. F. Lin, Phys. Rev. B 74, 085406 (2006).
[25] H. Ehrenreich, and M. H. Cohen, Phys. Rev. 115, 786 (1959).
[26] J. H. Ho, C. P. Chang, and M. F. Lin, Phys. Lett. A 352, 446 (2006).
[27] K. F. Mak, C. H. Lui, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 102, 256405 (2009).
[28] J. P. Reed, B. Uchoa, Y. I. Joe, Y. Gan, D. Casa, E. Fradkin, and P. Abbamonte, Science 330, 805 (2010).
[29] R. Hambach, C. Giorgetti, N. Hiraoka, Y. Q. Cai, F. Sottile, A. G. Marinopoulos, F. Bechstedt, and L. Reining, Phys. Rev. Lett. 101, 266406 (2008).
[30] S. Y. Shin, C. G. Hwang, S. J. Sung, H. S. Kim, and J. W. Chung, Phys. Rev. B 83, 161403 (2011).
[31] V. B. Jovanovic, I. Radovic, D. Borka, and Z. L. Miskovic, Phys. Rev. B 84, 155416 (2011).
[32] T. Eberlein, U. Bangert, R. R. Nair, R. Jones, M. Gass, A. L. Bleloch, K. S. Novoselov, A. Geim, and P. R. Briddon, Phys. Rev. B 77, 233406 (2008).
[33] M. Koshino, Phys. Rev. B 81, 125304 (2010).
[34] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
[35] J. W. Gonzalez, H. Santos, M. Pacheco, L. Chico, and L. Brey, Phys. Rev. B 81, 195406 (2010).

Appendix.
[1] G. F. Giuliani and J. J. Quinn, Phys. Rev. B 26, 4421 (1982).
[2] C. W. Chiu, F. L. Shyu, C. P. Chang, D. S. Chuu, and M. F. Lin, J. Phys. Soc. Jpn. 73, 2936 (2004).
[3] C. W. Chiu, Y. H. Chiu, F. L. Shyu, C. P. Chang, D. S. Chuu, and M. F. Lin, Phys. Lett. A 346, 347 (2005).
[4] C. W. Chiu, F. L. Shyu, C. P. Chang, D. S. Chuu, and M. F. Lin, Phys. Rev. B 73, 235407 (2006).
[5] C. W. Chiu, Y. H. Ho, S. C. Chen, C. H. Lee, C. S. Lue, and M. F. Lin, Physica E 34, 658 (2006).
[6] T. S. Li and M. F. Lin, Phys. Rev. B 76, 073409 (2007).
[7] C. W. Chiu and M. F. Lin, Nanotechnology 18, 435401 (2007).
[8] C. W. Chiu, S. H. Lee, and M. F. Lin, J. Nanosci. Nanotechnol. 10, 2401 (2010).
[9] K. W.-K. Shung, Phys. Rev. B 34, 979 (1986).
[10] B. Wunsch, T. Stauber, F. Sols, and F. Guinea, New J. Phys. 8, 318 (2006).
[11] E. H. Hwang and S. Das Sarma, Phys. Rev. B 75, 205418 (2007).
[12] J. H. Ho, C. L. Lu, C. C. Hwang, C. P. Chang, and M. F. Lin, Phys. Rev. B 74, 085406 (2006).
[13] J. H. Ho, C. P. Chang, and M. F. Lin, Phys. Lett. A 352, 446 (2006).
[14] K. W. -K. Shung, Phys. Rev. B 34, 1264 (1986).
[15] J. H. Ho, C. P. Chang, R. B. Chen, and M. F. Lin, Phys. Lett. A 357, 401 (2006).
[16] J. H. Ho, C. W. Chiu, C. L. Lu, and M. F. Lin, Physica E 32, 573 (2006).
[17] E. H. Hwang, B. Y. K. Hu, and S. Das Sarma, Phys. Rev. B 76, 115434 (2007).
[18] C. H. Park, F. Giustino, C. D. Spataru, M. L. Cohen, and S. G. Louie, Appl. Phys. Lett. 100, 032106 (2012).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-12-07起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-12-07起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw