進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0509201816061800
論文名稱(中文) 奈米碳球衍生物嵌入液晶高分子有序相之探討
論文名稱(英文) Study on the intercalation of fullerene derivate into ordered phases liquid crystalline polymer
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 王振安
研究生(英文) Chen-An Wang
學號 N56041349
學位類別 碩士
語文別 中文
論文頁數 64頁
口試委員 指導教授-阮至正
口試委員-徐邦昱
口試委員-張高碩
口試委員-周維揚
中文關鍵字 PBTTT  嵌入  高分子–富勒烯體接面太陽能電池 
英文關鍵字 PBTTT  intercalation  composite liquid crystals 
學科別分類
中文摘要 在高分子–富勒烯體接面太陽能電池(Polymer-fullerene bulk heterojunction solar cells)中,高分子與富勒烯之衍生物之相分佈結構影響了其太陽能電池之表現。本研究藉由討論導電高分子PBTTT-C14(PBTTT (Poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene])) 與富勒烯衍生物PCBM ([6,6]-Phenyl C71 butyric acid methyl ester, PC71BM)的嵌入關係,進而理解高分子–富勒烯相分佈結構。

溫度主導了PCBM之結晶與嵌入的競爭關係。在相對低溫持溫時,PCBM傾向嵌入於PBTTT-C14之有序相中。然而在相對高溫持溫時,PCBM則具備了自主結晶傾向。
此外,本研究發現,若使用特定溶劑部分破壞PBTTT-C14之有序結構,只有在結構修復之後,PCBM才會重新嵌入PBTTT-C14之有序相中。不論在相對高溫或者是低溫,PCBM與PBTTT-C14之側鏈都不存在自組裝行為。

最後,在建立PBTTT-C14有序相的過程中,本研究發現到前驅液晶相的影響可以促使PBTTT-C14有序相連續網狀分布。
英文摘要 The phase separation relationship between polymer and fullerene have been treated as a major influence that impact the operation of bulk heterojunction solar cells. In this research, we investigate the intercalation behavior between PBTTT-C14(PBTTT (Poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene])) and PCBM ([6,6]-Phenyl C71 butyric acid methyl ester, PC71BM) to unveil the phase separation relationship in this system.
Temperature dominate the competition between the intercalation of PCBM into PBTTT-C14 order phase and self-crystallization of PCBM. At lower temperature, PCBM tends to intercalate into the cavity among PBTTT-C14 side chain. However, at higher temperature PCBM tends to crystallization.
In the other hand, PCBM are not able to intercalate into PBTTT-C14 domain once the side chain regularity is reduced by partially soluble solvent on PBTTT-C14. No self-assembling relationship are found between PBTTT-C14 and PCBM either at high or low temperature.
Furthermore, a continuous and well-orientated PBTTT-C14 order phase domain can be developed through the liquid crystalline preordering while cooling.
論文目次 摘要 I
致謝 VII
目錄 VIII
圖目錄 X
第一章 緒論 1
1-1 前言與研究動機 1
第二章 文獻回顧 2
2-1 分子嵌入結晶 2
2-1-1 主客複合物(Host-guest composite)與其形成之驅動力 2
2-1-2 小分子與有機結晶分子具備的可逆嵌入與脫離反應 4
2-2 高分子-富勒烯體異質接面太陽能電池 7
2-2-2 PBTTT 作為電子的供體 9
2-2-3 PC71BM作為電子的受體 13
2-3 液晶高分子PBTTT與富勒烯衍生物PCBM之混摻系統 14
2-3-1 PBTTT-C14/PC71BM雙分子結晶之結構 14
2-3-2 PCBM之脫離與結晶 19
第三章 實驗材料與方法 21
3-1 實驗材料 21
3-2 實驗儀器 23
3-3 實驗步驟 26
3-4 實驗流程 27
第四章 結果與討論 28
4-1 PBTTT有序相之發展 28
4-1-1 濃度與混摻比例對PBTTT與PMMA之相分佈形貌之影響 28
4-1-2 相分布的穩定性 30
4-1-3 持溫溫度與相分佈對PBTTT-C14板晶成長的影響 32
4-2 PCBM結晶與嵌入PBTTT-C14結晶之競爭:溫度效應 38
4-2-1 PCBM嵌入PBTTT-C14有序相 38
4-2-2 PCBM結晶趨勢主導 43
4-3 PBTTT-C14有序相之破壞與PCBM嵌入 46
4-3-1 溶劑與PBTTT-C14之親和性對PBTTT-C14(100)方向之破壞 46
4-3-2 溶劑與PBTTT-C14之親和性對於PCBM塗佈表面形貌之影響 49
4-3-3 PBTTT-C14結晶之修復 52
4-3-4 PCBM嵌入修復後的PBTTT-C14有序相 56
第五章 結論 59
第六章 參考文獻 61
參考文獻 1. Schöllhorn, R. Materials and Models: Faces of Intercalation Chemistry. in 1–81 (1994). doi:10.1007/978-94-011-0890-4_1
2. Whittingham, M. S. (Michael S. &Jacobson, A. J. Intercalation chemistry. (Academic Press, 1982).
3. Nakano, K. et al. Organic Intercalation Material: Reversible Change in Interlayer Distances by Guest Release and Insertion in Sandwich-Type Inclusion Crystals of Cholic Acid. Chem. - A Eur. J. 11, 1725–1733 (2005).
4. Christophe Daniel, *, Nunzia Galdi, Tommaso Montefusco, and &Guerra, G. Syndiotactic Polystyrene Clathrates with Polar Guest Molecules. (2007). doi:10.1021/CM070476I
5. Daniel, C., Sannino, D. &Guerra, G. Syndiotactic Polystyrene Aerogels: Adsorption in Amorphous Pores and Absorption in Crystalline Nanocavities. Chem. Mater. 20, 577–582 (2008).
6. Paola Rizzo, Christophe Daniel, Anna De Girolamo Del Mauro, and &Guerra*, G. New Host Polymeric Framework and Related Polar Guest Cocrystals. (2007). doi:10.1021/CM071099C
7. Petraccone, V., Ruiz de Ballesteros, O., Tarallo, O., Rizzo, P. &Guerra, G. Nanoporous Polymer Crystals with Cavities and Channels. Chem. Mater. 20, 3663–3668 (2008).
8. Gaikwad, A. M. et al. Identifying orthogonal solvents for solution processed organic transistors. Org. Electron. 30, 18–29 (2016).
9. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. &Heeger, A. J. Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor- EREPORTS Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Source Sci. New Ser. 270, 1789–1791 (1995).
10. Dennler, G., Scharber, M. C. &Brabec, C. J. Polymer-Fullerene Bulk-Heterojunction Solar Cells. Adv. Mater. 21, 1323–1338 (2009).
11. Bagher, A. M. Introduction to Organic Solar Cells. Sustain. Energy 2, 85–90 (2014).
12. Deibel, C. &Dyakonov, V. Polymer–fullerene bulk heterojunction solar cells. Reports Prog. Phys. 73, 096401 (2010).
13. DeLongchamp, D. M. et al. Molecular Basis of Mesophase Ordering in a Thiophene-Based Copolymer. Macromolecules 41, 5709–5715 (2008).
14. Kline, R. J. et al. Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight. Macromolecules 38, 3312–3319 (2005).
15. Sarker, B. K., Liu, J., Zhai, L. &Khondaker, S. I. Fabrication of Organic Field Effect Transistor by Directly Grown Poly(3 Hexylthiophene) Crystalline Nanowires on Carbon Nanotube Aligned Array Electrode. ACS Appl. Mater. Interfaces 3, 1180–1185 (2011).
16. Salammal, S. T. et al. Impact of Thermal Annealing on the Semicrystalline Nanomorphology of Spin-Coated Thin Films of Regioregular Poly(3-alkylthiophene)s as Observed by High-Resolution Transmission Electron Microscopy and Grazing Incidence X-ray Diffraction. Macromolecules 45, 5575–5585 (2012).
17. Lee, M. J. et al. Anisotropy of Charge Transport in a Uniaxially Aligned and Chain-Extended, High-Mobility, Conjugated Polymer Semiconductor. Adv. Funct. Mater. 21, 932–940 (2011).
18. Rivnay, J. et al. Structural origin of gap states in semicrystalline polymers and the implications for charge transport. Phys. Rev. B 83, 121306 (2011).
19. McCulloch, I. et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5, 328–333 (2006).
20. Kline, R. J. et al. Critical role of side-chain attachment density on the order and device performance of polythiophenes. Macromolecules 40, 7960–7965 (2007).
21. Alberga, D. et al. Morphological and charge transport properties of amorphous and crystalline P3HT and PBTTT: insights from theory. Phys. Chem. Chem. Phys. 17, 18742–18750 (2015).
22. Yao, Y., Dong, H. &Hu, W. Ordering of conjugated polymer molecules: recent advances and perspectives. Polym. Chem. 4, 5197 (2013).
23. Venkateshvaran, D. et al. Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384–388 (2014).
24. Cates, N. C. et al. Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation. Nano Lett. 9, 4153–4157 (2009).
25. Wang, C., Dong, H., Hu, W., Liu, Y. &Zhu, D. Semiconducting π-Conjugated Systems in Field-Effect Transistors: A Material Odyssey of Organic Electronics. Chem. Rev. 112, 2208–2267 (2012).
26. Miller, N. C. et al. Molecular Packing and Solar Cell Performance in Blends of Polymers with a Bisadduct Fullerene. Nano Lett. 12, 1566–1570 (2012).
27. Qadir, K. W., Ahmad, Z. &Sulaiman, K. Thermal Annealing Effect on the Optical, Electrical and Morphological Properties of the PBTTT-C12:PC71BM Blend Films. J. Sol. Energy Eng. 137, 034503 (2015).
28. Mayer, A. C. et al. Bimolecular Crystals of Fullerenes in Conjugated Polymers and the Implications of Molecular Mixing for Solar Cells. Adv. Funct. Mater. 19, 1173–1179 (2009).
29. Miller, N. C. et al. Factors Governing Intercalation of Fullerenes and Other Small Molecules Between the Side Chains of Semiconducting Polymers Used in Solar Cells. Adv. Energy Mater. 2, 1208–1217 (2012).
30. Miller, N. C. et al. Use of X-ray diffraction, molecular simulations, and spectroscopy to determine the molecular packing in a polymer-fullerene bimolecular crystal. Adv. Mater. 24, 6071–6079 (2012).
31. Miller, N. C. Molecular Packing in Organic Solar Cells. (2012).
32. Botiz, I. &Stingelin, N. Influence of Molecular Conformations and Microstructure on the Optoelectronic Properties of Conjugated Polymers. Materials (Basel). 7, 2273–2300 (2014).

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-09-07起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw