進階搜尋


下載電子全文  
系統識別號 U0026-0509201618180700
論文名稱(中文) 奈米金顆粒修飾氧化鋅奈米線之光電特性與其生醫領域之應用
論文名稱(英文) The Electro-optical properties of ZnO Nanowires Modified with Au Nanoparticles and its Application in Biomedical Area
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 104
學期 2
出版年 105
研究生(中文) 林修毅
研究生(英文) Siou-Yi Lin
學號 Q18001200
學位類別 博士
語文別 英文
論文頁數 100頁
口試委員 指導教授-張守進
口試委員-許渭州
口試委員-薛丁仁
口試委員-許正良
口試委員-黃建榮
召集委員-陳英忠
口試委員-洪飛義
口試委員-楊勝州
口試委員-張品全
中文關鍵字 半導體生醫感測器  氧化鋅奈米線  奈米金顆粒 
英文關鍵字 semiconductor biosensors  ZnO nanowires  Au nanoparticles 
學科別分類
中文摘要 本論文中,我們以氣相傳輸沉積法(vapor phase transport deposition , VPTD)沉積氧化鋅奈米線,成功利用其研製可實際量測到血酒精(BAC)的氣體感測器、場發射元件及非酵素型葡萄糖感測元件,並且在利用奈米金顆粒修飾後,提升了場發射特性及葡萄糖感測響應。首先,氣體感測器方面,氧化鋅奈米線氣體感測器需量測到被加至小牛血清(newborn calf serum, NBCS)中的酒精,裡用蒸發條件我們可以得到此結果。利用實驗結果我們發現通過汽化溫度的變化我們可以得到不同的純NBCS與含酒精的NBCS的響應比例,利用這樣的比例我們可得知何種條件更適合血酒精感測器的量測。在此實驗中我們得到最高的比例-7.69,係由汽化溫度為80 °C時得到。考慮到血清中成分百分之90以上是水,我們也為氧化鋅奈米線血酒精感測器做濕度與純酒精的測試,實驗結果發現,以汽化的方式水的響應幾乎可以忽略。最後在汽化溫度80 °C及基板溫度400 °C的條件下,我們得到含有0%、10%、5%、1%、0.5%及0.1%酒精的NBCS其響應結果分別為4%、53.5%、51%,、31%、26%及21%。
在實驗的第二部分,我們開始將奈米金顆粒修飾在氧化鋅奈米線的表面。在掃描式電子顯微鏡(SEM)結果指出,奈米金顆粒的尺寸約在10奈米以下,而氧化鋅奈米線的直徑約為50奈米。首先,在場發射實驗的表現上,有奈米金修飾的氧化鋅奈米線得到較佳的場發射增強因子(effective field enhancement factor, β),2.9 × 104。加上紫外燈照射後,奈米金修飾的氧化鋅奈米線得到的場發射響應亦較佳,得到的β 更高達4.2× 104,遠高於純氧化鋅奈米線。
葡萄糖感測器方面,經過奈米金修飾後的氧化鋅奈米線對葡萄糖的感測靈敏度更為大幅提升。在循環伏安法(Cyclic voltammograms, CVs)的量測結果中,六的葡萄糖濃度條件,分別為0、5、10、15、20及25 mM,在CV圖中得到的氧化主峰電流,Au NPs/ZnO NWs/Au電極由濃度5 mM的41.2 μA 到25 mM的155.5 μA,遠大於純氧化鋅電極的23.6 μA 到82.2 μA在低壓環境下量測。且氧化主峰的隨葡糖注入增加的非常的線性。在計時電流(Chronoamperometry, CA)的量測結果,發現Au NPs/ZnO NWs/Au電極的電流響應比純氧化鋅奈米線的高很多,最後在體積莫爾濃度為18 mM 的葡萄糖溶液中得到140 μA 的響應電流,而氧化鋅奈米線在濃度為31.5 mM的濃度下只有約74μA 的響應電流。
英文摘要 In this study, ZnO nanowires (NWs) was synthesized using the vapor-phase deposition method and applied for blood alcohol content (BAC) sensors, field emission devices, and nonenzymatic glucose sensors.
A ZnO nanowire gas sensor was used to detect ethanol gas vaporized from newborn calf serum (NBCS) droplets containing ethanol. It was found that the ratio of the response of newborn calf serum (NBCS) without ethanol to that with ethanol varied strongly with the vaporization temperature (Tvap). The highest ratio, around 7.69, was obtained at a Tvap value of 80 °C. The effect of relative humidity during the sensing of NBCS vapor can be neglected because of the huge responses ratio (17.36). The responses measured at 400 °C were around 4%, 53.5%, 51%, 31%, 26%, and 21% for NBCS droplets containing 0%, 10%, 5%, 1%, 0.5%, and 0.1% ethanol, respectively.
Au nanoparticles are adsorbed onto the surface of vertical ZnO nanowires to fabricate a field emitter. The effective field enhancement factor (β) reaches 2.9 × 104. The nanoparticle size is below 10 nm and the diameter of ZnO nanowires is around 50 nm. Under ultraviolet light illumination, the nano-size emitter has a β value of 4.2 × 104, which is more than that of pure ZnO nanowires.
ZnO nanowires (NWs) synthesized on an Au electrode substrate with and witout Au nanoparticle (NP) modification are applied for glucose detection. A significant enhancement of glucose sensitivity is obtained with Au NP modification. The Au NPs/ZnO NWs/Au electrode has peak currents gradually increasing from 41.2 to 155.5 μA, and the ZnO NWs/Au electrode has peak currents increasing from 23.6 to 82.2 μA with glucose concentration (5, 10, 15, 20, and 25 mM) in cyclic voltammograms. Moreover, chronoamperometry results indicate that the response current of the Au NPs/ZnO NWs/Au electrode reached 140 μA in 18 mM glucose in 0.1 M NaOH whereas that of the ZnO NWs/Au electrode was only around 74 μA in 31.5 mM glucose.
論文目次 Abstract (Chniese) I
Abstract (English) IV
Figure Captions ii
Introduction 1
1-1. Background and Motivation 1
1-2. Background of Field Emission 2
1-3. Baground of Glucose Sensors 3
1-3-1. Review of Electrochemical Glucose Sensors 3
1-3-2. Review of Electrochemical Non-Enzymatic Glucose Sensors 5
1-4. Background of Semiconductor gas sensor devices 6
CHAPTER 2 Theory 9
2-1. Growth of nanowires by vapor phase transport 9
2-1-1. Vapor-Liquid-Solid (VLS) method 9
2-1-2. Oxide-assisted growth 10
2-1-3. Vapor-Solid (VS) mechanism 11
2-1-4. Self-catalyzed VLS process 12
2-2. Theory concerning gas sensor based on ZnO nanowires 13
2-3. Theory of Electrochemical Glucose Sensing 15
2-3-1. Energy Levels in Semiconductors and Liquids 15
2-3-2. Electrochemical Glucose Sensing Mechanism 20
2-3-3. Michaelis-Menten Kinetic Constants 22
2-4. Theory of Surface Plasmon Resonance of Au Nanoparticles 23
CHAPTER 3 Experimental Equipment and detail 37
3-1. Device fabricating instruments 37
3-1-1. RF Sputtering System 37
3-1-2. Thermal Chemical Vapor Deposition System 38
3-2. Analysis instruments 38
3-2-1. Field-Emission Scanning Electron Microscopy (FE-SEM) 38
3-2-2. Energy dispersive X-ray analysis (EDX) 39
3-2-3. Electrochemical measurement system 40
CHAPTER 4 Detection Method of Alcohol in Calf Serum with ZnO Nanowire Ethanol Sensor 44
4-1. Preparation of ZnO nanowire-based BAC sensors 45
4-2. The Results and discussion of first ZnO-NW-based blood alcohol sensors 46
CHAPTER 5 ZnO Nanowires Modified with Au Nanoparticles and its Applications 55
5-1. Application for High Performance Fied-Emission 55
5-1-1. Experiments of High Performance ZnO nanowires based Fied-Emitter Febrication 56
5-1-2. The Results and discussion High Performance ZnO nanowires based Fied-Emitters 57
5-2. Application for Nonenzymatic Amperometric Sensing of Glucose 62
5-2-1. Preparation of ZnO NW based Glucose sensors 63
5-2-2. The Results and discussion of ZnO NW based Glucose sensors 65
5-2-3. The Glucose Sensing performance of AuNPs / ZnO NW Biosenser Illuminated by light with various wavelength 68
CHAPTER 6 Conclusion 85
References.....................................................................................................................87
參考文獻 References
[Ch.1-1] F. S. Baker; J. Williams; A. R. Osborn. Nature 1972, 239, 96.
[Ch.1-2] Y. A. Zhang; T. Lin; T. H. Lin; X. T. Zhou; T. L. Guo. Mater. Technol. 2014, 29, 313.
[Ch.1-3] S. M. Chen; L. Li; X. Wang; W. Tian; X. B. Wang; D. M. Tang; Y. Bando; D. Golberg. Nanoscale 2012, 4, 2658.
[Ch.1-4] H. F. Hsu; L. Li; J. Y. Wang; W. H. Wu. J. Electrochem. Soc. 2014, 161, H35.
[Ch.1-5] F. Liu; L. Li; F. Y. Mo; J. Chen; S. Z. Deng; N. S. Xu. Cryst. Growth Des. 2010, 10, 5193.
[Ch.1-6] F. Chen; H. X. Ji; Q. Y. Zhang. J. Alloy. Compd. Soc. 2015, 646, 879.
[Ch.1-7] L. Wang; C. M. Li; Y. Yang; S. L. Chen; F. M. Gao; G. D. Wei; W. Y. Yang. ACS Appl. Mater. Interfaces 2015, 7, 526.
[Ch.1-8] S. H. Yang; M. W. Tsai; J. W. Lin; P. J. Chiang. Appl. Surf. Sci. 2015, 356, 48.
[Ch.1-9] C. X. Zhao; Y. F. Li; J. Chen; S. Z. Deng; N. S. Xu. Ultramicroscopy 2013, 132, 36.
[Ch.1-10] C. M. Peterson; D. L.Jones; A. Dupuis; R .Bernstein; M. O’Shea. Diabetes 1978, 27, 437.
[Ch.1-11] N. S. Oliver; C. Toumazou; A. E. G. Cass; D. G. Johnston. Diabetic Medicine 2008, 26, 197.
[Ch.1-12] H. He; X. Xu; H. Wu; Y. Jin. Adv. Mater. 2012, 24, 1736.
[Ch.1-13] K. Besteman; J. O. Lee; F. G. M. Wiertz; H. A. Heering; C. Dekker. Nano Lett. 2003, 3, 727.
[Ch.1-14] D. M. Kim; S. J. Cho; C. H. Cho; K. B. Kim; M. Y. Kim; Y. B. Shim. Biosens. Bioelectron. 2016, 79, 165.
[Ch.1-15] C. Fischer; A. Fraiwan; S. Choi. Biosens. Bioelectron. 2016, 79, 193.
[Ch.1-16] G. Liu; Y. Lin. Electrochemistry Communications 2006, 8, 251.
[Ch.1-17] S. Zhang, N. Wang, H. Yu, Y. Niu, C. Sun, Bioelectrochemistry 67 (2005) 15–22.
[Ch.1-18] Shao Su, Yao He, Shiping Song, Di Li, Lihua Wang, Chunhai Fan, Shuit-Tong Lee. Nanoscale 2010, 2, 1704.
[Ch.1-19] J. J. Liao; S. W. Lin; Y. Yang; K. Liu; W. C. Du, Sens. Actuator B-Chem. 2015, 208, 457.
[Ch.1-20] Y. Yang, H. Yang, M. Yang, Y. liu, G. Shen, R. Yu, Analytica Chimica Acta 2004, 525, 213.
[Ch.1-21] J. Zang, C.M. Li, X. Cui, J. Wang, X. Sun, H. Dong, C.Q. Sun, Electroanalysis
19 (2007) 1008–1014.
[Ch.1-22] J. Jung; S. Lim. Appl. Surf. Sci. 2013, 265, 24.
[Ch.1-23] R. Ahmad; N. Tripathy; J. H. Kim; Y. B. Hahn. Sens. Actuator B-Chem. 2012, 174, 195.
[Ch.1-24] H. Fatemi; A. A. Khodadadi; A. A. Firooz; Y. Mortazavi. Curr. Appl. Phys. 2012, 12, 1033.
[Ch.1-25] M. Parthasarathy; N. S. Ramgir; B. R. Sathe; I. S. Mulla; V. K. Pillai. J. Phys. Chem. 2007, 111, 13092.
[Ch.1-26] Y. Lei; X. Yan; J. Zhao; X. Liu; Y. Song; N. Luo; Y. Zhang. Colloid Surf. B-Biointerfaces 2011, 82. 168.
[Ch.1-27] J. Zang; C. M. Li; X. Cui; J. Wang; X. Sun; H. Dong; C. Q. Sun. Electroanalysis 2007, 19, 1008.
[Ch.1-28] R. Wilson; A.P.F. Turner; Biosens. Bioelectron. 1992, 7, 165.
[Ch.1-29] X. J. Bo; J. Bai; L. Yang; L. P. Guo. Sens. Actuator B-Chem. 2011, 157, 662.
[Ch.1-30] L.Y. Chen, T. Fujita, Y. Ding, M.W. Chen, “A three-dimensional gold-decorated nanoporous copper core–shell composite for electrocatalysis and nonenzymatic biosensing”, Adv. Funct. Mater. 2010, 20, 2279.
[Ch.1-31] H. Bai, M. Han, Y. Du, J. Bao, Z. Dai, Facile synthesis of porous tubular palladium nanostructures and their application in a nonenzymatic glucose sensor, Chem. Commun. 46 (2010) 1739–1741.
[Ch.1-32] Y. Bai, W. Yang, Y. Sun, C. Sun, Enzyme-free glucose sensor based on a threedimensional gold film electrode, Sens. Actuators B 134 (2008) 471–476.
[Ch.1-33] H. Zhu, X. Lu, M. Li, Y. Shao, Z. Zhu, Nonenzymatic glucose voltammetric sensor based on gold nanoparticles/carbon nanotubes/ionic liquid nanocomposite, Talanta 79 (2009) 1446–1453.
[Ch.1-34] Y.-G. Zhou, S. Yang, Q.-Y. Qian, X.-H. Xia, Gold nanoparticles integrated in a nanotube array for electrochemical detection of glucose, Electrochem. Commun. 11 (2009) 216–219.
[Ch.1-35] Y. Zhang, F. Xu, Y. Sun, C. Guo, K. Cui, Y. Shi, Z. Wen, Z. Li, Seed-mediated synthesis of Au nanocages and their electrocatalytic activity towards glucose oxidation, Chem. Eur. J. 16 (2010) 9248–9256.
[Ch.1-36] F. Xu, K. Cui, Y. Sun, C. Guo, Z. Liu, Y. Zhang, Y. Shi, Z. Li, Facile synthesis of urchin-like gold submicrostructures for nonenzymatic glucose sensing, Talanta 82 (2010) 1845–1852.
[Ch.1-37] L.-C. Jiang, W.-D. Zhang, A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode, Biosens. Bioelectron. 25 (2010) 1402–1407.
[Ch.1-38] C. Li, Y. Su, S. Zhang, X. Lv, H. Xia, Y. Wang, An improved sensitivity nonenzymatic glucose biosensor based on a CuxO modified electrode, Biosens. Bioelectron. 26 (2010) 903–907.
[Ch.1-39] J. Yang, W.-D. Zhang, S. Gunasekaran, An amperometric non-enzymatic glucose sensor by electrodepositing copper nanocubes onto vertically well-aligned multi-walled carbon nanotube arrays, Biosens. Bioelectron. 26 (2010) 279–284.
[Ch.1-40] J. Chen, W.D. Zhang, J.S. Ye, Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite, Electrochem. Commun. 10 (2008) 1268–1271.
[Ch.1-41] Y. Liu, H. Teng, H. Hou, T. You, Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode, Biosens. Bioelectron. 24 (2009) 3329–3334.
[Ch.1-42] S. Cherevko, C.-H. Chung, The porous CuO electrode fabricated by hydrogen bubble evolution and its application to highly sensitive non-enzymatic glucose detection, Talanta 80 (2010) 1371–1377.
[Ch.1-43] M. Shamsipur, M. Najafi, M.-R.M. Hosseini, Highly improved electrooxidation of glucose at a nickel(II) oxide/multi-walled carbon nanotube modified glassy carbon electrode, Bioelectrochemistry 77 (2010) 120–124.
[Ch.1-44] A. Umar, M. S. Chauhan, S. Chauhan, R. Kumar, P. Sharma, K. J. Tomar, R. Wahab, A. Al-Hajry and D. Singh, J. Biomed. Nanotechnol. 9, 1794 (2013).
[Ch.1-45] D. R. Kumar, D. Manoj and J. Santhanalakshmi, RSC Adv. 4, 8943 (2014).
[Ch.2-1] J. J. Wu and S. C. Liu, “Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition”, Adv. Mater., vol. 14, pp. 215+ (2002).
[Ch.2-2] Y. Li, G. W. Meng, L. D. Zhang, F. Phillipp, “Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties”, Appl. Phys. Lett., vol. 76, pp. 2011-2013 (2000).
[Ch.2-3] L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions”, Adv. Mater. (Weinheim, Ger.), vol. 15, pp. 464 (2003).
[Ch.2-4] C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, C. J. Huang, Y. K. Tseng and I. C. Chen, “Vertical single-crystal ZnO nanowires grown on ZnO:Ga/glass templates”, IEEE Tran. Nanotechnol., vol. 4, pp. 649-654 (2005)
[Ch.2-5] Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. P. Norton, F. Ren, P. H. Fleming, “Site-specific growth of Zno nanorods using catalysis-driven molecular-beam epitaxy”, Appl. Phys. Lett., vol. 81, pp. 3046-3049 (2002).
[Ch.2-6] W. I. Park, Y. H. Jun, S. W. Jung, G. C. Yi, “Excitonic emissions observed in ZnO single crystal nanorods”, Appl. Phys. Lett., vol. 82, pp. 964-966 (2003).
[Ch.2-6] S. Muthukumar, H. Sheng, J. Zhong, Z. Zhang, N. W. Emanaetoglu, Y. Lu, “Selective MOCVD growth of ZnO nanotips”, IEEE Trans. Nanotechnol., vol. 2, pp. 50-54 (2003).
[Ch.2-7] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport”, Adv. Mater., (Weinheim, Ger.) vol. 13, pp.113-116 (2000).
[Ch.2-9] J. Grabowska, K. K. Nanda, E. McGlynn, J. P. Mosnier, M. O. Henry, “Studying the growth conditions, the alignment and structure of ZnO nanorods”, Surface & Coatings Technology, vol. 200, pp.1093-1099 (2005).
[Ch.2-10] C. Geng, Y. Jiang, Y. Yao, X. Meng, J. A. Zapien, C. S. Lee, Y. Lifshitz, S. T. Lee, “Well-aligned ZnO nanowire arrays fabricated on silicon substrates”, Adv. Funct. Mater., vol.14, pp. 589-594 (2004).
[Ch.2-11] W. Lee, M. C. Jeong, J. M. Myoung, “Evolution of the morphology and optical properties of ZnO nanowires during catalyst-free growth by thermal evaporation”, Nanotechnology, vol. 15, pp. 1441-1445 (2004).
[Ch.2-12] T. J. Hsueh, S. J. Chang, Y. R. Lin, S. Y. Tsai, I. C. Chen, C. L. Hsu, “A novel method for the formation of ladder-like ZnO nanowires”, Cryst. Growth Des., vol. 6, pp.1282-1284 (2006).
[Ch.2-13] Y. K. Tseng, H. C. Hsu, W. F. Hsieh, K. S. Liu, I. C. Chen, “Two-step oxygen injection process for growing ZnO nanorods”, Journal of Materials Research, vol. 18, pp. 2837-2844 (2003).
[Ch.2-14] Y. Wu, P. Yang, “Direct Observation of Vapor-Liquid-Solid Nanowire Growth”, J. Am. Chem. Soc., vol. 123, pp.3165-3166 (2001).31
[Ch.2-15] W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, S. T. Lee,“Microstructures of gallium nitride nanowires synthesized by oxide-assisted method”, Chem. Phys. Lett., vol. 345, pp. 377-380, (2001).
[Ch.2-16] W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, S. T. Lee, “Oxide-assisted growth and optical characterization of gallium-arsenide nanowires”, Appl. Phys. Lett., vol. 78, pp. 3304-3306 (2001).
[Ch.2-17] S. T. Lee, N. Wang, and C. S. Lee, “Semiconductor nanowires: syntheisi, sturcture and properties”, Mate. Scie. and Engi., vol. A286, pp. 16-23 (2000).
[Ch.2-18] C. N. R. Rao, F. L. Deepak, G. Gundiah, A. Govindaraj, “Inorganic nanowires”, Progress in Sol. Stat. Chem., vol. 31, pp 5-147 (2003).
[Ch.2-19] N. Wang, Y. H. Tang, Y. F. Zheng, C. S. Lee, I. Bello, S. T. Lee, “Si nanowires grown from silicon oxide”, Chem. Phys. Lett., vol. 299, pp. 237-242, (1999).
[Ch.2-20] G. W. Sears, “A growth mechanism for mercury whiskers”, Acta Metallurgica, vol. 3, pp. 361-366 (1955).
[Ch.2-21] G. W. Sears, “A mechanism of whisker growth”, Acta Metallurgica, vol. 3, pp. 367-369 (1955).
[Ch.2-22] G. W. Sears, “Mercury whiskers”, Acta Metallurgica, vol. 1, pp. 457-459 (1953).
[Ch.2-23] J. F. Conley Jr, L. Stecker and Y. Ono, “Directed assembly of ZnO nanowires on a Si substrate without a metal catalyst using a patterned ZnO seed layer”, Nanotechnology, vol. 16, pp. 292–296 (2005).
[Ch.2-24] Zhang Y., Jia H. B., Luo X. H., Chen X. H., Yu D. P., Wang R. M., “Synthesis, Microstructure, and Growth Mechanism of Dendrite ZnO Nanowires”, J. Phys. Chem. B, vol. 107, pp. 8289-8293 (2003).
[Ch.2-25] W. P. Zheng, Z. R. Dai, Z. L. Wang, “Nanobelts of Semiconducting Oxides”, Science, vol. 291, pp. 1947-1949 (2001).
[Ch.2-26] H. J. Egelhaaf and D. Oelkrug, “Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO”, J. Crystal Growth, vol. 161, pp. 190-194, (1996).
[Ch.2-27] W.I. Park, Y. H. Jun, S. W. Jung, G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods”, Appl. Phys. Lett. vol. 80, pp. 4232-4234 (2002).
[Ch.2-28] P. Mitra, A. P. Chatterjee and H. S. Maiti, “ZnO thin film sensor”, Mater. Lett., vol. 35, pp. 33-38. (1998).
[Ch.2-29] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors”, Appl. Phys. Lett. vol. 84, pp. 3654-3656 (2004).
[Ch.2-30] M. Batzill and U. Diebold, “Surface studies of gas sensing metal oxides”, phys. Chem. Chem. Phys. vol. 9, pp. 2307-2318 (2007).
[Ch.2-31] J. Cerd`a Belmonte, J. Manzano, J. Arbiol, A. Cirera, J. Puigcorb´e, A. Vil`a, N. Sabat´e, I. Gr`acia, C. Can´e, J. R. Morante, “Micromachined twin gas sensor for CO and O2 quantification based on catalytically modified nano-SnO2”, Sens. Actuators B, vol. 114, pp. 881-892 (2006).
[Ch.2-32] P. P. Sahay, “Zinc oxide thin film gas sensor for detection of acetone”, J. Mater. Sci., vol. 40, pp. 4383-4385 (2005).
[Ch.2-33] Y. Wang, J. Chen and X. Wu, “Preparption and gas-sensing properites of perovskite-type SrFeO3 oxide”, Mater. Lett., vol. 49, pp. 361-364 (2001).
[Ch.2-34] A. Kolmakov, Y. Zhang, G. Chen, M. Moskovits, “Detection of CO and O2 using tin oxide nanowire sensor”, Adv. Mater., vol. 12, pp. 997-1000 (2003).
[Ch.2-35] T. J. Hsueh; C. L. Hsu; S. J. Chang; I. C. Chen, “Laterally grown ZnO nanowire ethanol gas sensors”, Sens. Actuator B-Chem. vol. 126, pp. 473-477 (2007).
[Ch.2-36] Kittel, C. Introduction to Solid State Physics, 7th ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1996; pp. 244-255.
[Ch.2-37] Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 12-30.
[Ch.2-38] Gerischer, H. Semiconductor electrode reactions. In Advances in Electrochemistry and Electrochemical Engineering: Electrochemistry, 1st ed.; Delahay, P., Tobias, C., Eds.; Interscience (Wiley): New York, NY, USA, 1961; Volume 1, pp. 139-232.
[Ch.2-39] Bard, A.J. Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J. Photochem. 1979, 10, 59-75.
[Ch.2-40] Memming, R. Processes at semiconductor electrodes. In Comprehensive Treatise of Electrochemistry, 1st ed.; Conway, B.E., Bockris, J.O’M., Yeager, E., Khan, S.U.M., White, R.E., Eds.; Plenum Press: New York, NY, USA, 1983; Volume 7, pp. 529-533.
[Ch.2-41] Gerischer, H. Principles of electrochemistry. In The CRC Handbook of Solid State Electrochemistry, 1st ed.; P. J. Gellings, Bouwmeester, H.J.M., Eds.; CRC Press, Inc.: Boca Raton, FL, USA, 1997, pp. 30-50.
[Ch.2-42] S. Al-Hilli; M. Willander, “The pH Response and Sensing Mechanism of n-Type ZnO/Electrolyte Interfaces”, Sensors, vol. 9, pp. 7445-7480 (2009)
[Ch.2-43] A. Heller; Ace. Chem. Res., vol. 23, pp. 128 (1990)
[Ch.2-44] Y. Degani; A. Heller, J. Phys., Chem, vol. 91, pp. 1285 (1987)
[Ch.2-45]I. Willner; V. Heleg-Shabtai; R. Blonder; E. Katz; G. Tao; A.F. Bückmann; A. Heller, J. Am. Chem. Soc., vol. 118, 10321 (1996).
[Ch.2-46]M. Zayats; E. Katz; I. Willner, J. Am. Chem. Soc., vol. 124, 2120 (2002).
[Ch.2-47] S. Park; H. Boo; T. D. Chung, Anal. Chim. Acta, vol. 556, pp. 46-57 (2006)
[Ch.2-48] P. K. Jain; M. A. El-Sayed, Nano Lett., 8, 4347 (2008).
[Ch.4-1] Y. H. Caplan, in R. Saferstein, The Determination of Alcohol in Blood and Breath: Chapter 12 in Forensic Science Handbook, Prentice Hall Inc., NJ 592 (1982).
[Ch.4-2] A. W. Jones and L. Andersson, J. Forensic. Sci. 41, 916 (1996).
[Ch.4-3] M. P. Hlastala, J. Appl. Physiol. 84, 401 (1998).
[Ch.4-4] R. J. Viken, R. J. Rose, S. L. Morzorati, J. C. Christian, and T. K. Li, Alcoholism (NY) 27, 795 (2003).
[Ch.4-5] C. M. Bell, S. J. Gutowski, S. Young, and D. J. Wells, Anal. Toxicol. 16, 166 (1992).
[Ch.4-6] A. Shenhav, Z. Brodie, Y. Beiderman, J. Garcia, V. Mico, and Z. Zalevsky, Opt Commun 289, 149 (2013).
[Ch.4-7] M. Gamella, S. Campuzano, J. Manso, G. G. de Rivera, F. Lopez-Colino, A. J. Reviejo, and J. M. Pingarron, Anal. Chim. Acta. 806, 1 (2014).
[Ch.4-8] H. T. Hsueh, T. J. Hsueh, S. J. Chang, F. Y. Hung, C. L. Hsu, W. Y. Weng, C. W. Liu, Y. H. Lee, and B. T. Dai, Electrochem. Solid-State. Lett. 13, K29 (2010).
[Ch.4-9] H. Huang, C. K. Lim, M. S. Tse, J. Guo, and O. K. Tan, Nanoscale 4, 1491 (2012).
[Ch.4-10] K. Kim, P. C. Debnath, D. H. Park, S. Kim, and S. Y. Lee, Appl. Phys. Lett. 96, 083103 (2010).
[Ch.4-11] T. J. Hsueh, C. L. Hsu, S. J. Chang, and I. C. Chen, Sens. Actuator B-Chem. 126, 473 (2007).
[Ch.4-12] C. Liu, Z. C. Li, and Z. J. Zhang, Appl. Phys. Lett. 99, 223104 (2011).
[Ch.4-13] J. H. Park, H. K. Park, J. Jeong, W. Kim, B. K. Min, and Y. R. Do, J. Electrochem. Soc. 158, K131 (2011).
[Ch.4-14] C. S. Guo, S. Yin, Q. Dong, and T. Sato, Nanoscale 4, 3394 (2012).
[Ch.4-15] F. Reti, M. Fleischer, J. Gerblinger, U. Lampe, E. B. Varhegy, I.V. Perczel, H. Meixner, and J. Giber, Sens. Actuators B 26, 103 (1995).
[Ch.4-16] W. P. Tai, and J. H. Oh, J. Mater. Sci-Mater. Electron. 13, 391 (2002).
[Ch.5-21] Q. Y. Yan, B. Peng, G. Su, B. E. Cohan, T. C. Major, and M. E. Meyerhoff, Anal. Chem. 83, 8341 (2011).
[Ch.5-22] J. Zhang, X. L. Zhu, H. F. Dong, X. J. Zhang, W. C. Wang and Z. D. Chen, Electrochim. Acta 105, 433 (2013).
[Ch.5-23] S. D. Sun, X. Z. Zhang, Y. X. Sun, S. C. Yang, X. P. Song and Z. M. Yang, ACS Appl. Mater. Interfaces 5, 4429 (2013).
[Ch.5-24] A. Umar, M. S. Chauhan, S. Chauhan, R. Kumar, P. Sharma, K. J. Tomar, R. Wahab, A. Al-Hajry and D. Singh, J. Biomed. Nanotechnol. 9, 1794 (2013).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-09-06起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-09-06起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw