進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0509201611310400
論文名稱(中文) 纖維母細胞生長因子九對於固醇類生合成、睪丸發育與癌症形成中之細胞與分子機制研究
論文名稱(英文) The cellular and molecular mechanisms of FGF9 induced steroidogenesis, testis development and tumorigenesis.
校院名稱 成功大學
系所名稱(中) 基礎醫學研究所
系所名稱(英) Institute of Basic Medical Sciences
學年度 104
學期 2
出版年 105
研究生(中文) 賴孟劭
研究生(英文) Meng-Shao Lai
學號 S58991413
學位類別 博士
語文別 英文
論文頁數 89頁
口試委員 指導教授-黃步敏
召集委員-蔡少正
口試委員-陳昌熙
口試委員-楊尚訓
口試委員-莊佩錦
口試委員-陳永佳
中文關鍵字 纖維母細胞生長因子九  睪丸  萊氏細胞  固醇類生成  訊息傳遞  發育  細胞週期 
英文關鍵字 Fibroblast growth factor 9  testis  Leydig cell  steroidogenesis  signaling pathway  development  cell cycle 
學科別分類
中文摘要 纖維母細胞生長因子可以透過調節細胞增生、遷移、分化與存活來幫助組織的發育與修復。在先前的研究當中就指出纖維母細胞生長因子九的缺失會使雄性胚胎產生性別倒轉的現象,並且纖維母細胞生長因子九也被發現會促進萊氏細胞的固醇類生合成。這些研究顯示了纖維母細胞生長因子九對於雄性個體的重要性。然而,在許多的癌症(像是肺癌、胃癌以及大腸癌)也發現了纖維母細胞生長因子九的大量表現。因此,研究纖維母細胞生長因子九在正常細胞與癌症細胞當中的差異對於雄性來說相當的重要。而在本篇當中,我們證實纖維母細胞生長因子九可以促使細胞的固醇類生成並且活化蛋白激酶B (Akt)、c-Jun氨基末端激酶 (JNK)、絲分裂原活化蛋白激酶 (p38)與細胞外調節蛋白激(ERK)。我們進一步去觀察睪丸發育過程當中,纖維母細胞生長因子九與纖維母細胞生長因子受器的表現情形。我們發現,在生長與成熟的過程當中,睪丸會持續表現纖維母細胞生長因子九與其受器。在小鼠妊娠第17-18天以及出生後35-65天的期間,纖維母細胞生長因子九會大量的表現在曲細精管之間的區域。關於纖維母細胞生長因子受器的表現,纖維母細胞生長因子受器1與受器4會在睪丸的各處表現。而纖維母細胞生長因子受器2與3在各處也都會表現之外,纖維母細胞生長因子受器2會在小鼠妊娠第16-18天時增加在曲細精管當中的表現,而纖維母細胞生長因子受器3會在小鼠妊娠第17-18天增加在曲細精管間的表現。在出生後35-65天,纖維母細胞生長因子受器2會在精細胞與萊氏細胞中大量表現,而纖維母細胞生長因子受器3則廣泛的表現在睪丸當中。根據纖維母細胞生長因子九與纖維母細胞生長因子受器2與3表現位置的相似性,我們推測纖維母細胞生長因子九會參與在睪丸的發育當中來調控睪丸的生長發育。而在睪丸發育的過程當中,前驅細胞的生長與成熟對於精細胞與固醇類的生成有著相當大的影響。然而,過量的纖維母細胞生長因子九表現卻會造成癌症。在本篇研究當中,我們發現纖維母細胞生長因子九會促進萊氏前驅細胞(TM3)與萊氏腫瘤細胞(MA-10)的生長複製。在訊息路徑當中我們發現,纖維母細胞生長因子九會個別活化前驅細胞中的Akt, JNK, p38, ERK與磷脂質脂解酶 (PLC)γ-1以及腫瘤細胞中的ERK。而在細胞週期方面,纖維母細胞生長因子九可以增加兩種細胞當中週期蛋白 D1, 週期蛋白 A, 週期蛋白依賴型激酶1 與週期蛋白依賴型激酶2的表現量。而在調控細胞週期的分子當中,我們發現纖維母細胞生長因子九可以增加視網膜母細胞瘤蛋白 (Rb)的磷酸化程度。我們也發現纖維母細胞生長因子九會個別增加腫瘤細胞中的纖維母細胞生長因子受器1-4與前驅細胞中的纖維母細胞生長因子受器1,3,4。除次之外, 在癌細胞當中,纖維母細胞生長因子九與不同抑制劑的共同處理會導致腫瘤細胞的磷酸化AKT的上升與磷酸化ERK的下降;纖維母細胞生長因子九與不同抑制劑的共同處理也會在正常細胞當中促進磷酸化AKT的上升。這個結果顯示MAPK的抑制可能會導致AKT的活化。總而言之,纖維母細胞生長因子九所刺激的Akt, JNK, p38與ERK活化、固醇類生合成的增加,還有與纖維母細胞生長因子受器2,3的共同表現顯示了纖維母細胞生長因子九的重要性,除此之外,纖維母細胞生長因子九可以各別活化前驅細胞中的Akt, JNK, p38, ERK與PLCγ-1以及腫瘤細胞當中的ERK,並且調節週期蛋白與週期蛋白依賴型激酶來促使細胞增生。總結以上結果,纖維母細胞生長因子九對於男性性腺的發育與固醇類生合成相當的必要,然而,纖維母細胞生長因子九的過度表現卻會促使萊氏腫瘤細胞的增生與癌症的進程。
英文摘要 Fibroblast growth factors can modulate the signal of cell proliferation, migration, differentiation and survival to regulate the tissue development and repair. In previous studies, the deficient of FGF9 caused male-to-female sex reversal in XY mouse embryo and FGF9 could promote steroidogenesis in primary Leydig cell. These evidences indicate the crucial role of FGF9 in male individual. However, over-expression of FGF9 was demonstrated to participate in different cancers, such as lung, gastric, prostate and colon cancer. According to these observations, it is important to investigate the detail role of FGF9 in male. In the present study, FGF9 could promote steroidogenesis and activate Akt, JNK, p38 and ERK signals in mouse Leydig cells at the same time. We further investigated the expressional profiles of FGF9 and FGF receptors in testes during development to verify the role of FGF9 in male gonad. FGF9 and FGFRs continuously expressed in the mouse testis from birth to adult. At 17-18 days post coitum (dpc) and postnatal day (pnd) 35-65, FGF9 was highly expressed in the interstitial region. Compared with the evenly and widely expressional patterns of FGFR1 and FGFR4, FGFR2 expression increased in seminiferous tubules at 16-18 dpc and FGFR3 expression increased in interstitial region at 17-18 dpc. In postnatal stage, FGFR2 extensively expressed with higher expression at spermatids and Leydig cells on 35-65 pnd and FGFR3 widely expressed in the whole testis. FGF9 is correlated with the temporal expression profiles of FGFR2 and FGFR3 and possibly associated with testis development. In gonad development, proliferation and differentiation of progenitor cells are important for spermatogenesis and steroidogenesis. However, over-expression of FGF9 participated in cancer initiation and progression. It is important to clarify the function of FGF9 in normal and tumor cells. In the present study, we observed that FGF9 could promote cell proliferation in progenitor (TM3) and tumor (MA-10) Leydig cell lines. Regarding the mechanism investigations, FGF9 activated Akt, ERK, JNK, p38 and PLCγ-1 pathways in TM3 cells and ERK pathway in MA-10 cells, respectively. Regarding cell cycle study, FGF9 increased cyclin D1, cyclin A, cyclin dependent kinase (CDK) 1 and CDK2 protein expressions in TM3 and MA-10 cells. In addition, FGF9 promoted the phosphorylation of retinoblastoma protein (Rb) in both cells. We also demonstrated that FGF9 stimulated FGFR1-4 expression in MA-10 cells and FGFR1, 2 and 4 in TM3 cells, respectively. In addition, p38, JNK or ERK inhibitors could promote Akt phosphorylation but reduce ERK phosphorylation with FGF9 treatment in MA-10 cells, and p38, JNK or ERK inhibitors also increased Akt phosphorylation with FGF9 treatment in TM3 cells. In summary, FGF9 activated Akt, JNK, p38 and ERK to promote steroidogenesis and in Leydig cells, and had expressional correlation with FGFR2 and FGFR3 during testes development. Furthermore, FGF9 activated Akt, ERK, JNK, p38 and PLCγ-1 signals in TM3 Leydig progenitor cells and ERK signal in MA-10 Leydig tumor cells to induce cell proliferation, respectively. FGF9 also promoted cell cycle progression with cyclin/CDK up-regulation in Leydig progenitor and tumor cells. By using serve combined immunodeficiency (SCID) mice, FGF9 significantly promoted MA-10 cell proliferation in vivo. In conclusion, FGF9 plays essential role in steroidogenesis and development in male gonads. However, abnormal expression of FGF9 could cause tumor Leydig cell proliferation inducing tumorigenesis.
論文目次 Table of contents
Abstract in Chinese I
Abstract III
Acknowledgement V
Table of contents VI
List of Tables IX
List of Figures X
Abbreviations XII
Chapter 1: Introduction 1
1.1. FGF and FGFR 1
1.2. Phospholipase C gamma pathways 2
1.3. Mitogen activated protein kinases signaling pathways 2
1.4. Phosphatidylinositide 3-kinases/Akt signaling pathways 3
1.5. Fibroblast growth factor 9 4
1.6. Hormone production 4
1.7. Testes development 5
1.8. Leydig progenitor cells 6
1.9. Leydig tumor cells 6
1.10. Cyclin/CDK regulation pathways 7
1.11. Objectives 7
Chapter 2: Materials and Methods 10
2.1. Chemicals 10
2.2. Animals 11
2.3. Isolation of mouse primary Leydig cells 11
2.4. Cell culture 12
2.5. Radioimmunoassay 12
2.6. Immunoblotting 12
2.7. Immunohistochemistry 13
2.8. MTT assay 14
2.9. Flow cytometry 15
2.10. Allograft tumor analysis 15
2.11. Ethics statement. 15
2.12. Statistical analysis 16
Chapter 3: Results 17
3.1 FGF9 increased testosterone production on mouse Leydig cells. 17
3.2. FGF9 increased the phosphorylation level of Akt, JNK, p38 and ERK1/2 in primary Leydig cells. 17
3.3. FGF9 increased the phosphorylation level of Akt, JNK and ERK1/2 in MA-10 Leydig tumor cells. 18
3.4. Effects of selective inhibitors on FGF9 induced Akt, JNK, p38 and ERK1/2 activation in mouse Leydig cells. 18
3.5. FGF9 and its receptors were expressed in mouse testes. 19
3.6. FGF9 was expressed in embryonic and postnatal mouse testis. 19
3.7. FGFR1, 2, 3 and 4 were expressed in embryonic and postnatal mouse testis. 20
3.8. FGF9 increased the proliferation rate in mouse Leydig cell lines. 21
3.9. FGF9 activated PI3K signaling pathway in mouse Leydig cells. 22
3.10. FGF9 activated MAPK and PLCγ signaling pathways in mouse Leydig cells. 23
3.11. FGF9 regulated cell cycle distribution in Leydig cell lines. 23
3.12. FGF9 induced cell cycle protein expression in mouse Leydig cell lines. 24
3.13. FGF9 effect on p53 and Rb in mouse Leydig cell lines. 25
3.14. FGF9 regulated the expression of p21 and p27 in mouse Leydig cell lines. 25
3.15. FGF9 induced FGFR1-4 expression in mouse Leydig cells. 26
3.16. Inhibitor effect of FGF9-induced Akt, ERK1/2, JNK and p38 activation in mouse Leydig cell lines. 26
3.17. FGF9 promoted tumor growth in an allograft model of testicular cancer. 27
Chapter 4: Discussion 29
Chapter 5: Conclusion 38
Chapter 6: References 39
Chapter 7: Tables 50
Chapter 8: Figures 52
Chapter 9: Publications 89
參考文獻 1 Cotton, L. M., O'Bryan, M. K. & Hinton, B. T. Cellular signaling by fibroblast growth factors (FGFs) and their receptors (FGFRs) in male reproduction. Endocr Rev 29, 193-216, (2008).
2 Johnson, D. E. & Williams, L. T. Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res 60, 1-41, (1993).
3 Wesche, J., Haglund, K. & Haugsten, E. M. Fibroblast growth factors and their receptors in cancer. Biochem J 437, 199-213, (2011).
4 Ornitz, D. M. & Itoh, N. Fibroblast growth factors. Genome Biol 2, REVIEWS3005, (2001).
5 Padrissa-Altes, S., Bachofner, M., Bogorad, R. L. et al. Control of hepatocyte proliferation and survival by Fgf receptors is essential for liver regeneration in mice. Gut 64, 1444-1453, (2015).
6 Lu, H., Shi, X., Wu, G. et al. FGF13 regulates proliferation and differentiation of skeletal muscle by down-regulating Spry1. Cell Prolif 48, 550-560, (2015).
7 Chen, Y. J., Zhang, J. X., Shen, L. et al. Schwann cells induce Proliferation and Migration of Oligodendrocyte Precursor Cells Through Secretion of PDGF-AA and FGF-2. J Mol Neurosci 56, 999-1008, (2015).
8 Seeger, M. A. & Paller, A. S. The Roles of Growth Factors in Keratinocyte Migration. Adv Wound Care (New Rochelle) 4, 213-224, (2015).
9 Olsen, S. K., Garbi, M., Zampieri, N. et al. Fibroblast growth factor (FGF) homologous factors share structural but not functional homology with FGFs. J Biol Chem 278, 34226-34236, (2003).
10 Itoh, N. & Ornitz, D. M. Functional evolutionary history of the mouse Fgf gene family. Dev Dyn 237, 18-27, (2008).
11 Powers, C. J., McLeskey, S. W. & Wellstein, A. Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 7, 165-197, (2000).
12 Sleeman, M., Fraser, J., McDonald, M. et al. Identification of a new fibroblast growth factor receptor, FGFR5. Gene 271, 171-182, (2001).
13 Lin, X., Buff, E. M., Perrimon, N. et al. Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development 126, 3715-3723, (1999).
14 Schlessinger, J., Plotnikov, A. N., Ibrahimi, O. A. et al. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell 6, 743-750, (2000).
15 Ornitz, D. M., Xu, J., Colvin, J. S. et al. Receptor specificity of the fibroblast growth factor family. J Biol Chem 271, 15292-15297, (1996).
16 Mohammadi, M., Dikic, I., Sorokin, A. et al. Identification of six novel autophosphorylation sites on fibroblast growth factor receptor 1 and elucidation of their importance in receptor activation and signal transduction. Mol Cell Biol 16, 977-989, (1996).
17 Mohammadi, M., Honegger, A., Rotin, D. et al. A tyrosine-phosphorylated carboxy-terminal peptide of the fibroblast growth factor receptor (Flg) is a binding site for the SH2 domain of phospholipase C-gamma 1. Mol Cell Biol 11, 5068-5078, (1991).
18 Ong, S. H., Guy, G. R., Hadari, Y. R. et al. FRS2 proteins recruit intracellular signaling pathways by binding to diverse targets on fibroblast growth factor and nerve growth factor receptors. Mol Cell Biol 20, 979-989, (2000).
19 Ornitz, D. M. & Itoh, N. The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip Rev Dev Biol 4, 215-266, (2015).
20 Katan, M. Families of phosphoinositide-specific phospholipase C: structure and function. Biochim Biophys Acta 1436, 5-17, (1998).
21 Maffucci, T. & Falasca, M. Phosphoinositide 3-kinase-dependent regulation of phospholipase Cgamma. Biochem Soc Trans 35, 229-230, (2007).
22 Yang, Y. R., Choi, J. H., Chang, J. S. et al. Diverse cellular and physiological roles of phospholipase C-gamma1. Adv Biol Regul 52, 138-151, (2012).
23 Munshi, A. & Ramesh, R. Mitogen-activated protein kinases and their role in radiation response. Genes Cancer 4, 401-408, (2013).
24 Kyriakis, J. M. & Avruch, J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev 92, 689-737, (2012).
25 Cargnello, M. & Roux, P. P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75, 50-83, (2011).
26 Sabio, G. & Davis, R. J. TNF and MAP kinase signalling pathways. Semin Immunol 26, 237-245, (2014).
27 Sun, J. & Nan, G. The Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway as a Discovery Target in Stroke. J Mol Neurosci 59, 90-98, (2016).
28 Roberts, P. J. & Der, C. J. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26, 3291-3310, (2007).
29 Ip, Y. & Davis, R. Signal transduction by the c-Jun N-terminal kinase (JNK)--from inflammation to development. Curr Opin Cell Biol 10, 205-219, (1998).
30 Bas, D. B., Abdelmoaty, S., Sandor, K. et al. Spinal release of tumour necrosis factor activates c-Jun N-terminal kinase and mediates inflammation-induced hypersensitivity. Eur J Pain 19, 260-270, (2015).
31 Kotlyarov, A., Neininger, A., Schubert, C. et al. MAPKAP kinase 2 is essential for LPS-induced TNF-alpha biosynthesis. Nat Cell Biol 1, 94-97, (1999).
32 Edelmayer, R. M., Brederson, J. D., Jarvis, M. F. et al. Biochemical and pharmacological assessment of MAP-kinase signaling along pain pathways in experimental rodent models: a potential tool for the discovery of novel antinociceptive therapeutics. Biochem Pharmacol 87, 390-398, (2014).
33 Kant, S., Swat, W., Zhang, S. et al. TNF-stimulated MAP kinase activation mediated by a Rho family GTPase signaling pathway. Genes Dev 25, 2069-2078, (2011).
34 Wu, C. Y., Hsieh, H. L., Jou, M. J. et al. Involvement of p42/p44 MAPK, p38 MAPK, JNK and nuclear factor-kappa B in interleukin-1beta-induced matrix metalloproteinase-9 expression in rat brain astrocytes. J Neurochem 90, 1477-1488, (2004).
35 Yang, Y., Kim, S. C., Yu, T. et al. Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses. Mediators Inflamm 2014, 352371, (2014).
36 Zhan, M. & Han, Z. C. Phosphatidylinositide 3-kinase/AKT in radiation responses. Histol Histopathol 19, 915-923, (2004).
37 Kalkman, H. O. The role of the phosphatidylinositide 3-kinase-protein kinase B pathway in schizophrenia. Pharmacol Ther 110, 117-134, (2006).
38 Brazil, D. P. & Hemmings, B. A. Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26, 657-664, (2001).
39 Brazil, D. P., Yang, Z. Z. & Hemmings, B. A. Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 29, 233-242, (2004).
40 Miyamoto, M., Naruo, K., Seko, C. et al. Molecular cloning of a novel cytokine cDNA encoding the ninth member of the fibroblast growth factor family, which has a unique secretion property. Mol Cell Biol 13, 4251-4259, (1993).
41 Joannes, A., Brayer, S., Besnard, V. et al. FGF9 and FGF18 in idiopathic pulmonary fibrosis promote survival and migration and inhibit myofibroblast differentiation of human lung fibroblasts in vitro. Am J Physiol Lung Cell Mol Physiol 310, (2016).
42 Pirvola, U., Zhang, X. Q., Mantela, J. et al. Fgf9 signaling regulates inner ear morphogenesis through epithelial-mesenchymal interactions. Dev Biol 273, 350-360, (2004).
43 Colvin, J. S., Green, R. P., Schmahl, J. et al. Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell 104, 875-889, (2001).
44 Reuss, B., Hertel, M., Werner, S. et al. Fibroblast growth factors-5 and -9 distinctly regulate expression and function of the gap junction protein connexin43 in cultured astroglial cells from different brain regions. Glia 30, 231-241, (2000).
45 Kanda, T., Iwasaki, T., Nakamura, S. et al. Self-secretion of fibroblast growth factor-9 supports basal forebrain cholinergic neurons in an autocrine/paracrine manner. Brain Res 876, 22-30, (2000).
46 Lovicu, F. J. & Overbeek, P. A. Overlapping effects of different members of the FGF family on lens fiber differentiation in transgenic mice. Development 125, 3365-3377, (1998).
47 Cohen, R. I. & Chandross, K. J. Fibroblast growth factor-9 modulates the expression of myelin related proteins and multiple fibroblast growth factor receptors in developing oligodendrocytes. J Neurosci Res 61, 273-287, (2000).
48 Garces, A., Nishimune, H., Philippe, J. M. et al. FGF9: a motoneuron survival factor expressed by medial thoracic and sacral motoneurons. J Neurosci Res 60, 1-9, (2000).
49 Ghayee, H. K. & Auchus, R. J. Basic concepts and recent developments in human steroid hormone biosynthesis. Rev Endocr Metab Disord 8, 289-300, (2007).
50 Stocco, D. M., Wang, X., Jo, Y. et al. Multiple signaling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought. Mol Endocrinol 19, 2647-2659, (2005).
51 Huang, B. M., Lai, H. Y. & Liu, M. Y. Concentration dependency in lead-inhibited steroidogenesis in MA-10 mouse Leydig tumor cells. J Toxicol Environ Health A 65, 557-567, (2002).
52 So, E. C., Chang, Y. T., Hsing, C. H. et al. The effect of midazolam on mouse Leydig cell steroidogenesis and apoptosis. Toxicol Lett 192, 169-178, (2010).
53 Lin, Y. M., Tsai, C. C., Chung, C. L. et al. Fibroblast growth factor 9 stimulates steroidogenesis in postnatal Leydig cells. Int J Androl 33, 545-553, (2010).
54 McLaren, A. Primordial germ cells in the mouse. Dev Biol 262, 1-15, (2003).
55 Saitou, M., Barton, S. C. & Surani, M. A. A molecular programme for the specification of germ cell fate in mice. Nature 418, 293-300, (2002).
56 Kim, Y., Kobayashi, A., Sekido, R. et al. Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination. PLoS Biol 4, e187, (2006).
57 Schmahl, J. & Capel, B. Cell proliferation is necessary for the determination of male fate in the gonad. Dev Biol 258, 264-276, (2003).
58 Vidal, V. P., Chaboissier, M. C., de Rooij, D. G. et al. Sox9 induces testis development in XX transgenic mice. Nat Genet 28, 216-217, (2001).
59 Hiramatsu, R., Harikae, K., Tsunekawa, N. et al. FGF signaling directs a center-to-pole expansion of tubulogenesis in mouse testis differentiation. Development 137, 303-312, (2010).
60 Bowles, J., Feng, C. W., Spiller, C. et al. FGF9 suppresses meiosis and promotes male germ cell fate in mice. Dev Cell 19, 440-449, (2010).
61 DiNapoli, L., Batchvarov, J. & Capel, B. FGF9 promotes survival of germ cells in the fetal testis. Development 133, 1519-1527, (2006).
62 Willerton, L., Smith, R. A., Russell, D. et al. Effects of FGF9 on embryonic Sertoli cell proliferation and testicular cord formation in the mouse. Int J Dev Biol 48, 637-643, (2004).
63 Sajjad, Y. Development of the genital ducts and external genitalia in the early human embryo. J Obstet Gynaecol Res 36, 929-937, (2010).
64 Chen, H., Ge, R. S. & Zirkin, B. R. Leydig cells: From stem cells to aging. Mol Cell Endocrinol 306, 9-16, (2009).
65 Kim, I., Young, R. H. & Scully, R. E. Leydig cell tumors of the testis. A clinicopathological analysis of 40 cases and review of the literature. Am J Surg Pathol 9, 177-192, (1985).
66 Liu, S. & Cheng, C. Alternative RNA splicing and cancer. Wiley Interdiscip Rev RNA 4, 547-566, (2013).
67 Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646-674, (2011).
68 Deshpande, A., Sicinski, P. & Hinds, P. W. Cyclins and cdks in development and cancer: a perspective. Oncogene 24, 2909-2915, (2005).
69 Malumbres, M. & Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9, 153-166, (2009).
70 Sanchez-Martinez, C., Gelbert, L. M., Lallena, M. J. et al. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs. Bioorg Med Chem Lett 25, 3420-3435, (2015).
71 Liao, Y., Feng, Y., Shen, J. et al. The roles and therapeutic potential of cyclin-dependent kinases (CDKs) in sarcoma. Cancer Metastasis Rev 35, 151-163, (2016).
72 X, L., WT, Y. & PS, Z. Msi1 promotes tumor growth and cell proliferation by targeting cell cycle checkpoint proteins p21, p27 and p53 in cervical carcinomas. Oncotarget 5, 10870-10885, (2014).
73 Song, X., Li, L., Shi, Q. et al. Polychlorinated Biphenyl Quinone Metabolite Promotes p53-Dependent DNA Damage Checkpoint Activation, S-Phase Cycle Arrest and Extrinsic Apoptosis in Human Liver Hepatocellular Carcinoma HepG2 Cells. Chem Res Toxicol 28, 2160-2169, (2015).
74 Payne, A. H. & Hales, D. B. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev 25, 947-970, (2004).
75 Lai, M. S., Cheng, Y. S., Chen, P. R. et al. Fibroblast growth factor 9 activates akt and MAPK pathways to stimulate steroidogenesis in mouse leydig cells. PLoS One 9, e90243, (2014).
76 Wu, X., Wan, S. & Lee, M. M. Key factors in the regulation of fetal and postnatal Leydig cell development. J Cell Physiol 213, 429-433, (2007).
77 Lai, M. S., Wang, C. Y., Yang, S. H. et al. The expression profiles of fibroblast growth factor 9 and its receptors in developing mice testes. Organogenesis 12, 61-77, (2016).
78 Chen, T. M., Shih, Y. H., Tseng, J. T. et al. Overexpression of FGF9 in colon cancer cells is mediated by hypoxia-induced translational activation. Nucleic Acids Res 42, 2932-2944, (2014).
79 Arai, D., Hegab, A. E., Soejima, K. et al. Characterization of the cell of origin and propagation potential of the fibroblast growth factor 9-induced mouse model of lung adenocarcinoma. J Pathol 235, 593-605, (2015).
80 Huang, Y., Jin, C., Hamana, T. et al. Overexpression of FGF9 in prostate epithelial cells augments reactive stroma formation and promotes prostate cancer progression. Int J Biol Sci 11, 948-960, (2015).
81 Sun, C., Fukui, H., Hara, K. et al. FGF9 from cancer-associated fibroblasts is a possible mediator of invasion and anti-apoptosis of gastric cancer cells. BMC Cancer 15, 333, (2015).
82 Huang, Y. L., Leu, S. F., Liu, B. C. et al. In vivo stimulatory effect of Cordyceps sinensis mycelium and its fractions on reproductive functions in male mouse. Life Sci 75, 1051-1062, (2004).
83 Ascoli, M. Characterization of Several Clonal Lines of Cultured Leydig Tumor-Cells - Gonadotropin Receptors and Steroidogenic Responses. Endocrinology 108, 88-95, (1981).
84 Manna, P. R. & Stocco, D. M. The role of specific mitogen-activated protein kinase signaling cascades in the regulation of steroidogenesis. J Signal Transduct 2011, 1-13, (2011).
85 Ortega, I., Villanueva, J. A., Wong, D. H. et al. Resveratrol reduces steroidogenesis in rat ovarian theca-interstitial cells: the role of inhibition of Akt/PKB signaling pathway. Endocrinology 153, 4019-4029, (2012).
86 Dieckman, L. M., Freudenthal, B. D. & Washington, M. T. PCNA structure and function: insights from structures of PCNA complexes and post-translationally modified PCNA. Subcell Biochem 62, 281-299, (2012).
87 Eswarakumar, V. P., Lax, I. & Schlessinger, J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16, 139-149, (2005).
88 Manning, B. D. & Cantley, L. C. AKT/PKB signaling: navigating downstream. Cell 129, 1261-1274, (2007).
89 Lei, Y. Y., Wang, W. J., Mei, J. H. et al. Mitogen-activated protein kinase signal transduction in solid tumors. Asian Pac J Cancer Prev 15, 8539-8548, (2014).
90 Kaplon, J., van Dam, L. & Peeper, D. Two-way communication between the metabolic and cell cycle machineries: the molecular basis. Cell Cycle 14, 2022-2032, (2015).
91 Li, W., Sanki, A., Karim, R. Z. et al. The role of cell cycle regulatory proteins in the pathogenesis of melanoma. Pathology 38, 287-301, (2006).
92 Nam, E. J. & Kim, Y. T. Alteration of cell-cycle regulation in epithelial ovarian cancer. Int J Gynecol Cancer 18, 1169-1182, (2008).
93 Meek, D. W. Regulation of the p53 response and its relationship to cancer. Biochem J 469, 325-346, (2015).
94 Nemajerova, A., Talos, F., Moll, U. M. et al. Rb function is required for E1A-induced S-phase checkpoint activation. Cell Death Differ 15, 1440-1449, (2008).
95 Fukuda, S., Orisaka, M., Tajima, K. et al. Luteinizing hormone-induced Akt phosphorylation and androgen production are modulated by MAP Kinase in bovine theca cells. J Ovarian Res 2, 17, (2009).
96 Mori Sequeiros Garcia, M., Gorostizaga, A., Brion, L. et al. cAMP-activated Nr4a1 expression requires ERK activity and is modulated by MAPK phosphatase-1 in MA-10 Leydig cells. Mol Cell Endocrinol 408, 45-52, (2015).
97 Kumar, A., Rani, L. & Dhole, B. Role of oxygen in the regulation of Leydig tumor derived MA-10 cell steroid production: the effect of cobalt chloride. Syst Biol Reprod Med 60, 112-118, (2014).
98 Lan, H. C., Lin, I. W., Yang, Z. J. et al. Low-dose Bisphenol A Activates Cyp11a1 Gene Expression and Corticosterone Secretion in Adrenal Gland via the JNK Signaling Pathway. Toxicol Sci 148, 26-34, (2015).
99 Li, F. & Curry, T. E., Jr. Regulation and function of tissue inhibitor of metalloproteinase (TIMP) 1 and TIMP3 in periovulatory rat granulosa cells. Endocrinology 150, 3903-3912, (2009).
100 Peng, J., Xin, H., Han, P. et al. Expression and regulative function of tissue inhibitor of metalloproteinase 3 in the goat ovary and its role in cultured granulosa cells. Mol Cell Endocrinol 412, 104-115, (2015).
101 Pan, B. S., Wang, Y. K., Lai, M. S. et al. Cordycepin induced MA-10 mouse Leydig tumor cell apoptosis by regulating p38 MAPKs and PI3K/AKT signaling pathways. Sci Rep 5, 13372, (2015).
102 So, E. C., Lin, Y. X., Tseng, C. H. et al. Midazolam induces apoptosis in MA-10 mouse Leydig tumor cells through caspase activation and the involvement of MAPK signaling pathway. Onco Targets Ther 7, 211-221, (2014).
103 Li, H., Huang, K., Gao, L. et al. TES inhibits colorectal cancer progression through activation of p38. Oncotarget, [Epub ahead of print], (2016).
104 Liu, T., Wu, L., Wang, D. et al. Role of reactive oxygen species mediated MAPK and NF-kB activation in Polygonatum cyrtonema lectin induced apoptosis and autophagy in human lung adenocarcinoma A549 cells. J Biochem, [Epub ahead of print], (2016).
105 Moon, D. O., Kim, M. O., Choi, Y. H. et al. Bcl-2 overexpression attenuates SP600125-induced apoptosis in human leukemia U937 cells. Cancer Lett 264, 316-325, (2008).
106 Pan, S. T., Qin, Y., Zhou, Z. W. et al. Plumbagin induces G2/M arrest, apoptosis, and autophagy via p38 MAPK- and PI3K/Akt/mTOR-mediated pathways in human tongue squamous cell carcinoma cells. Drug Des Devel Ther 9, 1601-1626, (2015).
107 Menon, M. B., Kotlyarov, A. & Gaestel, M. SB202190-induced cell type-specific vacuole formation and defective autophagy do not depend on p38 MAP kinase inhibition. PLoS One 6, e23054, (2011).
108 Barrios, F., Filipponi, D., Pellegrini, M. et al. Opposing effects of retinoic acid and FGF9 on Nanos2 expression and meiotic entry of mouse germ cells. J Cell Sci 123, 871-880, (2010).
109 Schmahl, J., Kim, Y., Colvin, J. S. et al. Fgf9 induces proliferation and nuclear localization of FGFR2 in Sertoli precursors during male sex determination. Development 131, 3627-3636, (2004).
110 Ostrer, H., Huang, H. Y., Masch, R. J. et al. A cellular study of human testis development. Sex Dev 1, 286-292, (2007).
111 Hu, M. C., Hsu, N. C., El Hadj, N. B. et al. Steroid deficiency syndromes in mice with targeted disruption of Cyp11a1. Mol Endocrinol 16, 1943-1950, (2002).
112 O'Shaughnessy, P. J. & Fowler, P. A. Endocrinology of the mammalian fetal testis. Reproduction 141, 37-46, (2011).
113 Laslett, A. L., McFarlane, J. R. & Risbridger, G. P. Developmental response by Leydig cells to acidic and basic fibroblast growth factor. J Steroid Biochem Mol Biol 60, 171-179, (1997).
114 Shima, Y., Miyabayashi, K., Haraguchi, S. et al. Contribution of Leydig and Sertoli cells to testosterone production in mouse fetal testes. Mol Endocrinol 27, 63-73, (2013).
115 Haider, S. G. Cell biology of Leydig cells in the testis. Int Rev Cytol 233, 181-241, (2004).
116 Gonzalez-Herrera, I. G., Prado-Lourenco, L., Pileur, F. et al. Testosterone regulates FGF-2 expression during testis maturation by an IRES-dependent translational mechanism. FASEB J 20, 476-478, (2006).
117 Mather, J. Establishment and characterization of two distinct mouse testicular epithelial cell lines. Biol Reprod 23, 243-252, (1980).
118 Wang, Y., Bilandzic, M., Ooi, G. T. et al. Endogenous inhibins regulate steroidogenesis in mouse TM3 Leydig cells by altering SMAD2 signalling. Mol Cell Endocrinol 436, 68-77, (2016).
119 Chung, J. Y., Kim, J. Y., Kim, Y. J. et al. Cellular defense mechanisms against benzo[a]pyrene in testicular Leydig cells: implications of p53, aryl-hydrocarbon receptor, and cytochrome P450 1A1 status. Endocrinology 148, 6134-6144, (2007).
120 Tong, X., Han, X., Yu, B. et al. Role of gap junction intercellular communication in testicular leydig cell apoptosis induced by oxaliplatin via the mitochondrial pathway. Oncol Rep 33, (2015).
121 Antoine, M., Wirz, W., Tag, C. G. et al. Expression and function of fibroblast growth factor (FGF) 9 in hepatic stellate cells and its role in toxic liver injury. Biochem Biophys Res Commun 361, 335-341, (2007).
122 Li, Z. G., Mathew, P., Yang, J. et al. Androgen receptor–negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms. J Clin Invest 118, 2697-2710, (2008).
123 Yu, B., Qian, T., Wang, Y. et al. miR-182 inhibits Schwann cell proliferation and migration by targeting FGF9 and NTM, respectively at an early stage following sciatic nerve injury. Nucleic Acids Res 40, 10356-10365, (2012).
124 Yin, Y. J., Wang, F. & Ornitz, D. M. Mesothelial- and epithelial-derived FGF9 have distinct functions in the regulation of lung development. Development 138, 3169-3177, (2011).
125 Yin, Y. J., Betsuyaku, T., Garbow, J. R. et al. Rapid Induction of Lung Adenocarcinoma by Fibroblast Growth Factor 9 Signaling through FGF Receptor 3. Cancer Res 73, 5730-5741, (2013).
126 Deng, M., Tang, H. L., Lu, X. H. et al. miR-26a suppresses tumor growth and metastasis by targeting FGF9 in gastric cancer. PLoS One 8, e72662, (2013).
127 Yang, H., Fang, F., Chang, R. et al. MicroRNA-140-5p suppresses tumor growth and metastasis by targeting transforming growth factor beta receptor 1 and fibroblast growth factor 9 in hepatocellular carcinoma. Hepatology 58, 205-217, (2013).
128 Fan, Q. W., Cheng, C., Knight, Z. A. et al. EGFR signals to mTOR through PKC and independently of Akt in glioma. Sci Signal 2, ra4, (2009).
129 Populo, H., Lopes, J. M. & Soares, P. The mTOR signalling pathway in human cancer. Int J Mol Sci 13, 1886-1918, (2012).
130 Moschetta, M., Reale, A., Marasco, C. et al. Therapeutic targeting of the mTOR-signalling pathway in cancer: benefits and limitations. Br J Pharmacol 171, 3801-3813, (2014).
131 Ji, J., Jia, S., Jia, Y. et al. WISP-2 in human gastric cancer and its potential metastatic suppressor role in gastric cancer cells mediated by JNK and PLC-gamma pathways. Br J Cancer 113, 921-933, (2015).
132 Li, X., Liang, Q., Liu, W. et al. Ras association domain family member 10 suppresses gastric cancer growth by cooperating with GSTP1 to regulate JNK/c-Jun/AP-1 pathway. Oncogene 35, 2453-2464, (2016).
133 Li, Y. R., Jia, Y. H., Che, Q. et al. AMF/PGI-mediated tumorigenesis through MAPK-ERK signaling in endometrial carcinoma. Oncotarget 6, 26373-26387, (2015).
134 Wei, L., Li, Y. & Suo, Z. TSPAN8 promotes gastric cancer growth and metastasis via ERK MAPK pathway. Int J Clin Exp Med 8, 8599-8607, (2015).
135 Zhang, Y. Q., Wei, X. L., Liang, Y. K. et al. Over-Expressed Twist Associates with Markers of Epithelial Mesenchymal Transition and Predicts Poor Prognosis in Breast Cancers via ERK and Akt Activation. PLoS One 10, e0135851, (2015).
136 Qin, S., Zhou, W., Liu, S. et al. Icariin stimulates the proliferation of rat bone mesenchymal stem cells via ERK and p38 MAPK signaling. Int J Clin Exp Med 8, 7125-7133, (2015).
137 Wang, Y. G., Xu, L., Wang, T. et al. Givinostat inhibition of hepatic stellate cell proliferation and protein acetylation. World J Gastroenterol 21, 8326-8339, (2015).
138 Lattanzio, R., Piantelli, M. & Falasca, M. Role of phospholipase C in cell invasion and metastasis. Adv Biol Regul 53, 309-318, (2013).
139 Maddocks, O. D., Berkers, C. R., Mason, S. M. et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493, 542-546, (2013).
140 Cheng, M. G., Olivier, P., Diehl, J. A. et al. The p21(Cip1) and p27(Kip1) CDK 'inhibitors' are essential activators of cyclin D-dependent kinases in murine fibroblasts. Embo Journal 18, 1571-1583, (1999).
141 LaBaer, J., Garrett, M. D., Stevenson, L. F. et al. New functional activities for the p21 family of CDK inhibitors. Genes Dev 11, 847-862, (1997).
142 Alt, J. R., Gladden, A. B. & Diehl, J. A. p21(Cip1) Promotes cyclin D1 nuclear accumulation via direct inhibition of nuclear export. J Biol Chem 277, 8517-8523, (2002).
143 Zhang, H., Hannon, G. J. & Beach, D. P21-Containing Cyclin Kinases Exist in Both Active and Inactive States. Genes Dev 8, 1750-1758, (1994).
144 Mendoza, M. C., Er, E. E. & Blenis, J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 36, 320-328, (2011).
145 Aksamitiene, E., Kiyatkin, A. & Kholodenko, B. N. Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance. Biochem Soc Trans 40, 139-146, (2012).
146 Hong, C. C., Kume, T. & Peterson, R. T. Role of crosstalk between phosphatidylinositol 3-kinase and extracellular signal-regulated kinase/mitogen-activated protein kinase pathways in artery-vein specification. Circ Res 103, 573-579, (2008).
147 Chang, S. F., Li, H. C., Huang, Y. P. et al. SB203580 increases G-CSF production via a stem-loop destabilizing element in the 3' untranslated region in macrophages independently of its effect on p38 MAPK activity. J Biomed Sci 23, 3, (2016).
148 Gama Sosa, M. A., De Gasperi, R., Hof, P. R. et al. Fibroblast growth factor rescues brain endothelial cells lacking presenilin 1 from apoptotic cell death following serum starvation. Sci Rep 6, 30267, (2016).
149 Beales, I. L. & Ogunwobi, O. Glycine-extended gastrin inhibits apoptosis in colon cancer cells via separate activation of Akt and JNK pathways. Mol Cell Endocrinol 247, 140-149, (2006).
150 Testa, J. R. & Tsichlis, P. N. AKT signaling in normal and malignant cells. Oncogene 24, 7391-7393, (2005).
151 Fresno Vara, J. A., Casado, E., de Castro, J. et al. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 30, 193-204, (2004).

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw