進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0509201413182600
論文名稱(中文) 錳-鑭系混金屬之合成及磁性研究
論文名稱(英文) Syntheses and magnetic studies of manganese-lanthanide complexes
校院名稱 成功大學
系所名稱(中) 化學系
系所名稱(英) Department of Chemistry
學年度 102
學期 2
出版年 103
研究生(中文) 林宏軒
研究生(英文) Hung-Hsuan Lin
學號 L36001288
學位類別 碩士
語文別 英文
論文頁數 138頁
口試委員 指導教授-蔡惠蓮
口試委員-廖儒修
口試委員-楊振宜
中文關鍵字 錳-鑭系混金屬  磁異向能  單分子磁鐵 
英文關鍵字 manganese-lanthanide complexes  magnetic anisotropy  Single Molecule Magnets 
學科別分類
中文摘要 本文分三部分,第一部分利用Mn(NO3)2∙4H2O 和 Dy(NO3)3∙6H2O和配位基(Hnppd)反應得到一維鍊狀聚合物 {[MnIIDy-III(nppd)2(NO3)3(MeOH)]•2MeOH∙2H2O}∞ (1•Dy),利用單晶X-ray繞射確認其結構。從直流磁化率(direct current susceptibility, dc)測量,顯示化合物1•Dy分子內金屬間存有順鐵磁(ferromagnetic)作用力。從交流磁化率(alternating current susceptibility, ac)的虛數訊號,顯示化合物1•Dy具有磁緩現象。第二部分利用H2saph、Mn(OAc)2∙4H2O以及Ln(OAc)3反應,得到一系列四核混金屬錯化合物[MnIII2LnIII2(saph)2(OAc)6(OMe)2] (Ln = Tb (2•Tb), Dy (3•Dy), Ho (4•Ho)),,皆利用單晶X-ray繞射確認其結構。施加不同外加磁場下化合物2•Tb~4•Ho的交流磁化率,探討抑制量子穿隧效應(quantum tunneling of magnetization, QTM)的現象。第三部分利用 Hpyp、Mn(OAc)2∙4H2O以及Ln(OAc)3反應,得到一系列四核混金屬錯化合物 [MnII2LnIII2(pyp)2(OAc)6(OMe)2(MeOH)2] (Ln = Gd (5•Gd), Tb (6•Tb), Dy (7•Dy), Ho (8•Ho), Er (9•Er)),利用單晶X-ray繞射確認其結構。從直流磁化率測量,顯示化合物5•Gd−9•Er分子內金屬間存有反鐵磁(antiferromagnetic)作用力。
英文摘要 This thesis consists of three parts. The first part, the 1-D chain complex {[MnIIDyIII(nppd)2(NO3)3(MeOH)]•2MeOH∙2H2O}∞ (1•Dy) was synthesized from the reaction of Mn(NO3)2∙4H2O and Dy(NO3)3∙6H2O with Hnppd ligand. The struc-ture of complex 1•Dy was determined by single crystal X-ray crystallography. Di-recting current (dc) magnetic susceptibility of the complex 1•Dy indicates the exhibition of intramolecular ferromagnetic interactions between the metal ions. The complex exhibits frequency-dependent out-of-phase signals in alternating current (ac) magnetic susceptibility measurement, indicating the slow magnetic relaxation behaviors. The second part, the isostructural series of tetranuclear complexes [MnIII2LnIII2(saph)2(OAc)6(OMe)2] (Ln = Tb (2•Tb), Dy (3•Dy), Ho (4•Ho)), were synthesized from the reactions of H2saph with lanthanide acetate salts and Mn(OAc)2∙4H2O. The structures of these complexes were determined by single crystal X-ray crystallography. The various magnetic properties of complexes 2•Tb−4•Ho were studied, and the elimination of QTM was measured by the ac magnetic susceptibility under different applied fields. The third part, the isostructural series of tetranuclear complexes [MnII2LnIII2(pyp)2(OAc)6(OMe)2(MeOH)2] (Ln = Gd (5•Gd), Tb (6•Tb), Dy (7•Dy), Ho (8•Ho), Er (9•Er)), were synthesized from the reactions of Hpyp with lanthanide acetate salts and Mn(OAc)2∙4H2O. The structures of these complexes were determined by single crystal X-ray crystallography. Directing current (dc) magnetic susceptibilities of the complexes 5•Gd−9•Er indicate the exhibition of intramolecular antiferromagnetic interactions between the metal ions.
論文目次 Contents
Abstract in Chinese 中文摘要 I
Abstract II
誌謝 III
Chapter 1
Synthesis, Structure and Magnetic Properties of a 3d-4f MnIIDyIII Complex: {[MnIIDyIII(nppd)2(NO3)3(MeOH)]•2MeOH∙2H2O}∞ 1
I. Introduction 2
II. Experimental 6
II. 1. Synthesis 6
II. 2. X-ray crystallography 7
II. 3. Physical measurements 9
III. Results and discussion 9
III. 1. Synthesis 9
III. 2. Description of structures 11
III. 3. Magnetic properties 19
IV. Conclusion 27
V. References 28

Chapter 2
Syntheses, Structures and Magnetic Properties of 3d-4f MnIII2LnIII2 Complexes: [MnIII2LnIII2(saph)2(OAc)6(OMe)2] (Ln = Tb, Dy, and Ho) 32
I. Introduction 33
II. Experimental 39
II. 1. Synthesis 39
II. 2. X-ray crystallography 41
II. 3. Physical measurements 44
III. Results and discussion 44
III. 1. Synthesis 44
III. 2. Description of structures 46
III. 3. Magnetic properties 54
IV. Conclusion 71
V. References 72

Chapter 3
Syntheses, Structures and Magnetic Properties of 3d-4f MnII2LnIII2 Complexes: [MnII2LnIII2(pyp)2(OAc)6(OMe)2(MeOH)2] (Ln = Gd, Tb, Dy, Ho, and Er) 79
I. Introduction 80
II. Experimental 84
II. 1. Synthesis 84
II. 2. X-ray crystallography 87
II. 3. Physical measurements 91
III. Results and discussion 92
III. 1. Synthesis 92
III. 2. Description of structures 93
III. 3. Magnetic properties 102
IV. Conclusion 123
V. References 124
Appendix 129

List of Tables
Chapter 1
Table 1.1. The Mn-Ln Coordination Polymers 4
Table 1.2. Crystallographic Data for 1•Dy 8
Table 1.3. Selected Bond Lengths[Å] and Angles[°] for Complex 1•Dy 12
Table 1.4. Bond Valence Sum Caculations of Metal Atoms for Complex 1•Dy 17
Table 1.5 Bond Valence Sum Calculations of Oxygen Atom in Complex 1•Dya. 17
Table 1.6. Other Cases Use the Bartolomé et al Method to Calculate the Energy Barrier. 23

Chapter 2
Table 2.1. The Mn2Ln2 Clusters in Literatures. 35
Table 2.2. Crystallographic Data for 2•Tb−4•Ho 42
Table 2.3. Selected Bond Lengths[Å] and Angles[°] for Complexes 2•Tb−4•Ho 49
Table 2.4. The Bond Valence Sum Calculations of Metal Atoms in Complexes 2•Tb−4•Ho. 53

Chapter 3
Table 3.1. The Mn2Ln2 Clusters with Defect-dicubane Core Structure in Literatures. 82
Table 3.2. Crystallographic Data for 5•Gd−9•Er 88
Table 3.3. Selected Bond Lengths [Å] and Angles [°] for Complexes 5•Gd−9•Er 97
Table 3.4. The Bond Valence Sum Calculations of Metal Atoms in Complexes 5•Gd−9•Er. 101

List of Figures
Chapter 1
Figure 1.1. Simulated and measured XRPD patterns of complex 1•Dy. 10
Figure 1.2. A heterometallic dinuclear unit of 1•Dy. 13
Figure 1.3. A view of showing the coordination environments around Mn(1) and Dy(1) and edge-sharing of the two contiguous polyhedrons. 13
Figure 1.4. View of the double-layered 1-D chain along the a axis. 14
Figure 1.5. View of the double-layered 1-D chain along the b axis. 14
Figure 1.6. (a) Distorted octahedral geometry around MnII ion. (b) Distorted monocapped square antiprismatic geometry around DyIII ion. 15
Figure 1.7. Intramolecular hydrogen bonding interactions (dashed lines) in
complex 1•Dy. 18
Figure 1.8. Plot of χMT vs. T for complex 1•Dy. 21
Figure 1.9. Plots of the reduced magnetization (M/Nβ) vs. H/T for complex
1•Dy at 0-70 kOe and at 2.0-4.0 K. 21
Figure 1.10. (a) Plots of χM'T and (b) χM” vs. temperature for a microcrystalline sample of complex 1•Dy under a zero dc field in a 3.5 Oe ac field oscillating at the indicated frequency. 25
Figure 1.11. Plots of χM” vs. frequency for 1•Dy under 0-10 kOe at 1.8 K 26
Figure 1.12. Plot of ln(χ"/χ') vs 1/T for 1•Dy at different frequencies of the 3.5 G oscillating ac field. The solid lines are the best-fit curves. 26

Chapter 2
Figure 2.1. Simulated and measured XRPD patterns of complexes 2•Tb−4•Ho. 45
Figure 2.2. (a) Molecular structure of 2•Tb; hydrogen atoms and solvent
molecules were omitted for clarity. (b) A view of showing the edge-sharing of the four contiguous polyhedra. 48
Figure 2.3. Distorted square pyramidal geometry around Mn(1). 50
Figure 2.4. A hula-hoop-like geometry around Ln(1) (Ln = Tb, Dy and Ho). 50
Figure 2.5. Lanthanide contraction for complexes 2•Tb−4•Ho. 52
Figure 2.6. Cation–π interactions between MnIII ions and benzenes in complexes 2•Tb−4•Ho to form a 1D polymeric chain. 52
Figure 2.7. Plots of χM T vs. T for complexes 2•Tb−4•Ho. 56
Figure 2.8. Plots of χM-1 vs. T (solid lines are linear fit to Curie-Weiss law in the temperature range of 50-300 K) for complexes 2•Tb−4•Ho. 56
Figure 2.9. Plots of the reduced magnetization (M/Nβ) vs. H/T for complex 2•Tb
at 0−70 kOe and at 2.0−4.0 K. 58
Figure 2.10. Plots of the reduced magnetization (M/Nβ) vs. H/T for complex
3•Dy at 0−70 kOe and at 2.0−4.0 K. 58
Figure 2.11. Plots of the reduced magnetization (M/Nβ) vs. H/T for complex
4•Ho at 0−70 kOe and at 2.0−4.0 K. 59
Figure 2.12. (a) Plots of χM'T and (b) χM' vs. temperature for a microcrystalline sample of complex 2•Tb under a zero dc field in a 3.5 Oe ac field oscillating at the indicated frequency. 63
Figure 2.13. Plots of χM” vs. frequency for 2•Tb under 0-10 kOe at 1.8 K 64
Figure 2.14. (a) Plots of χM'T and (b) χM' vs. temperature for a microcrystalline sample of complex 2•Tb under a applied 3000 Oe dc field in a 3.5
Oe ac field oscillating at the indicated frequency. 65
Figure 2.15. Plot of ln(χ"/χ') vs 1/T for 2•Tb at different frequencies of the 3.5 G oscillating ac field. The solid lines are the best-fit curves. 66
Figure 2.16. (a) Plots of χM'T and (b) χM' vs. temperature for a microcrystalline sample of complex 3•Dy under a zero dc field in a 3.5 Oe ac field oscillating at the indicated frequency. 67
Figure 2.17. Plots of χM' vs. frequency for 3•Tb under 0-10 kOe at 1.8 K 68
Figure 2.18. Plot of ln(χ"/χ') vs 1/T for 3•Dy at different frequencies of the 3.5 G oscillating ac field. The solid lines are the best-fit curves. 68
Figure 2.19. (a) Plots of χM'T and (b) χM' vs. temperature for a microcrystalline sample of complex 4•Ho under a zero dc field in a 3.5 Oe ac field oscillating at the indicated frequency. 69
Figure 2.20. Plots of χM' vs. frequency for 4•Ho under 0-10 kOe at 1.8 K 70
Figure 2.21. Plot of ln(χ"/χ') vs 1/T for 4•Ho at different frequencies of the 3.5 G oscillating ac field. The solid lines are the best-fit curves. 70

Chapter 3
Figure 3.1. Simulated and measured XRPD patterns of complexes 5•Gd−9•Er. 92
Figure 3.2. (a) Molecular structure of 5•Gd; hydrogen atoms and solvent
molecules were omitted for clarity. (b) A defect dicubane [MnII2Gd2] central core of [MnII2GdIII2(pyp)2(OAc)6(OMe)2(MeOH)2] 96
Figure 3.3. The view of the coordination environments around Mn(1) and Ln(1)
in complexes 5•Gd−9•Er 98
Figure 3.4. Lanthanide contraction for complexes 5•Gd−9•Er. 100
Figure 3.5. The intramolecular hydrogen bonding interactions (dashed lines) in complexes 5•Gd−9•Er 101
Figure 3.6. Plots of χM T vs. T for complexes 5•Gd−9•Er. The solid line is the
best fitting to the experimental data, see text for fitting parameters. 105
Figure 3.7. Plots of χM-1 vs. T (solid lines are linear fit to Curie-Weiss law in the temperature range of 50-300 K) for complexes 5•Gd−9•Er 105
Figure 3.8. Diagram shows the definition of atom number and magnetic
exchange parameters for the complex 5•Gd. 106
Figure 3.9. Plots of the reduced magnetization (M/Nβ) vs. H/T for complex
5•Gd at 0−70 kOe and at 2.0−4.0 K. 108
Figure 3.10. Plots of the reduced magnetization (M/Nβ) vs. H/T for complex
6•Tb at 0−70 kOe and at 2.0−4.0 K. 108
Figure 3.11. Plots of the reduced magnetization (M/Nβ) vs. H/T for complex
7•Dy at 0−70 kOe and at 2.0−4.0 K 109
Figure 3.12. Plots of the reduced magnetization (M/Nβ) vs. H/T for complex
8•Ho at 0−70 kOe and at 2.0−4.0 K 109
Figure 3.13. Plots of the reduced magnetization (M/Nβ) vs. H/T for complex
9•Er at 0−70 kOe and at 2.0−4.0 K 110
Figure 3.14. (a) Plots of χM'T and (b) χM' vs. temperature for a microcrystalline sample of complex 5•Gd under a zero dc field in a 3.5 Oe ac field oscillating at the indicated frequency 113
Figure 3.15. Plots of χM' vs. frequency for 5•Gd under 0-10 kOe at 1.8 K 114
Figure 3.16. (a) Plots of χM'T and (b) χM' vs. temperature for a microcrystalline sample of complex 6•Tb under a zero dc field in a 3.5 Oe ac field oscillating at the indicated frequency 115
Figure 3.17. Plots of χM' vs. frequency for 6•Tb under 0-10 kOe at 1.8 K 116
Figure 3.18. (a) Plots of χM'T and (b) χM' vs. temperature for a microcrystalline sample of complex 7•Dy under a zero dc field in a 3.5 Oe ac field oscillating at the indicated frequency. 117
Figure 3.19. Plots of χM' vs. frequency for 7•Dy under 0-10 kOe at 1.8 K 118
Figure 3.20. (a) Plots of χM'T and (b) χM' vs. temperature for a microcrystalline sample of complex 8•Ho under a zero dc field in a 3.5 Oe ac field oscillating at the indicated frequency. 119
Figure 3.21. Plots of χM' vs. frequency for 8•Ho under 0-10 kOe at 1.8 K 120
Figure 3.22. (a) Plots of χM'T and (b) χM' vs. temperature for a microcrystalline sample of complex 9•Er under a zero dc field in a 3.5 Oe ac field oscillating at the indicated frequency. 121
Figure 3.23. Plots of χM' vs. frequency for 9•Er under 0-10 kOe at 1.8 K. 122

Appendix
Figure A1. The IR spectrum of 1•Dy. 130
Figure A2. The IR spectrum of 2•Tb. 131
Figure A3. The IR spectrum of 3•Dy. 132
Figure A4. The IR spectrum of 4•Ho. 133
Figure A5. The IR spectrum of 5•Gd. 134
Figure A6. The IR spectrum of 6•Tb. 135
Figure A7. The IR spectrum of 7•Dy. 136
Figure A8. The IR spectrum of 8•Ho. 137
Figure A9. The IR spectrum of 9•Er. 138
參考文獻 Chapter 1
(1) Leuenberger, M. N.; Loss, D., Nature 2001, 410, 789.
(2) Hill, S.; Edwards, R. S.; Aliaga-Alcalde, N.; Christou, G., Science 2003, 302, 1015.
(3) Sessoli, R.; Tsai, H. L.; Schake, A. R.; Wang, S. Y.; Vincent, J. B.; Folting, K.; Gatteschi, D.; Christou, G.; Hendrickson, D. N., J. Am. Chem. Soc. 1993, 115, 1804.
(4) Christou, G.; Gatteschi, D.; Hendrickson, D. N.; Sessoli, R., Mrs Bull 2000, 25, 66.
(5) Chen, Y.; She, S.; Zheng, L.; Hu, B.; Chen, W.; Xu, B.; Chen, Z.; Zhou, F.; Li, Y., Polyhedron, 2011, 30, 3010.
(6) Peng, G.; Ma, L.; Liang, L.; Ma, Y. Z.; Yang, C. F.; Deng H., CrystEngComm, 2013, 15, 922.
(7) Zhang, C.; Zhang, D.; Ma, H.; Chen, Y.; Liu, B., J. Mol. Struct. 2013, 53.
(8) Chen, M. S.; Deng, Y. F.; Nie, X.; Zhang, C. H., Synth. React. Inorg. Metal-Org nano-Met. Chem., 2014, 44, 868.
(9) Yang, T. H.; Silva, A. R.; Shi, F. N., Dalton Trans., 2013, 42, 13997.
(10) Fang, M.; Shi, P. F.; Zhao, B.; Jiang, D.X.; Cheng, P.; Shi, W., Dalton Trans., 2012, 41, 6820.
(11) Sun, Y.; Wang, S.; Li, K.; Gao, E. J.; Xiong, G., Inorg. Chem. Commun., 2013, 28, 1.
(12) Dang, D. B.; An, B.; Bai, Y.; Zheng, G. S.; Niu, J. Y., Chem. Commun., 2013, 49, 2243.
(13) Liang, L.; Peng, G.; Ma, L.; Sun, L.; Deng, H.; Li, H.; Li, W. S., Cryst. Growth Des., 2012, 12, 1151.
(14) Zhang, J. J.; Hu, S. M.; Zheng, L.M.; Wu, X. T.; Fu, Z. Y.; Dai, J. C.; Du, W. X.; Zhang, H. H.; Sun, R. Q., Chem. Eur. J. 2002, 8, 5742.
(15) Zaleski, C. M.; Depperman, E. C.; Kampf, J. W.; Kirk, M. L.; Pecoraro, V. L., An-gew. Chem., Int. Ed. 2004, 43, 3912.
(16) Winpenny, R. E. P., Chem. Soc. Rev., 1998, 27, 447.
(17) Andrews, P. C.; Deacon, G. B.; Frank, R.; Fraser, B. H.; Junk, P. C.; MacLellan, J. G.; Massi, M.; Moubaraki, B.; Murray, K. S.; Silberstein, M., Eur. J. Inorg. Chem., 2009, 6, 744.
(18) Alexandropoulos, D. I.; Nguyen, T. N.; Cunha-Silva, L.; Zafiropoulos, T. F.; Escuer, A.; Christou, G.; Stamatatos, T. C., Inorg. Chem., 2013, 52, 1179.
(19) Cristovao, B.; Klak, J.; Pelka, R.; Miroslaw, B.; Hnatejko, Z., Polyhedron, 2014, 68, 180.
(20) Wang, H.; Ke, H.; Lin, S. Y.; Guo, Y.; Zhao, L.; Tang, J.; Li, Y.-H. Dalton Trans. 2013, 42, 5298.
(21) Mondal, K. C.; Sundt, A.; Lan, Y.; Kostakis, G. E.; Waldmann, O.; Ungur, L.; Chibotaru, L. F.; Anson, C. E.; Powell, A. K., Angew. Chem. Int. Ed .2012, 51, 7550.
(22) Nemec, I.; Machata, M.; Herchel, R.; Boča, R.; Trávníček, Z. Dalton Trans. 2012, 41, 14603.
(23) Mondal, K. C.; Kostakis, G. E.; Lan, Y.; Wernsdorfer, W.; Anson, C. E.; Powell, A. K., Inorg. Chem. 2011, 50, 11604.
(24) Ke, H.; Zhao, L.; Guo, Y.; Tang, J., Inorg. Chem. 2012, 51, 2699.
(25) Lin, S. Y.; Zhao, L.; Ke, H. S.; Guo, Y. N.; Tang, J. K.; Guo, Y.; Dou, J. M. Dalton Trans. 2012, 41, 3248.
(26) Yang, C. I.; Wernsdorfer, W.; Tsai, Y. J.; Chung, G.; Kuo, T. S.; Lee, G. H.; Shieh, M.; Tsai, H. L., Inorg. Chem. 2008, 47, 1925.
(27) Langley, S. K.; Chilton, N. F.; Massi, M.; Moubaraki, B.; Berry, K. J.; Murray, K. S., Dalton Trans. 2010, 39, 7236.
(28) Andrews, P. C.; Deacon, G. B.; Frank, R.; Fraser, B. H.; Junk, P. C.; MacLellan, J. G.; Massi, M.; Moubaraki, B.; Murray, K. S.; Silberstein, M., Eur. J. Inorg. Chem., 2009, 744.
(29) Sheldrick, G. M.; SHELXL-97, University of Gottingen, Gottingen. Germany, 1997.
(30) Boudreaux, E. A.; Mulay, L. N., In Theory and Application of Molecular Para-magnetism, J. Wiely & Sons. New York, 1976.
(31) Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A., J. Appl. Crys-tallogr. 2008, 41, 466.
(32) Brown, I. D.; Altermatt, D., Acta Crystallogr., Sect. B 1985, 41, 244.
(33) Brown, I. D., Solid State Chem. 1989, 82, 122.
(34) Thorp, H. H., Inorg. Chem. 1992, 31, 1585.
(35) Benelli, C.; Gatteschi, D., Chem. Rev. 2002, 102, 2369.
(36) Bartolome, J.; Filoti, G.; Kuncser, V.; Schinteie, G.; Mereacre, V.; Anson, C. E.; Powell, A. K.; Prodius, D.; Turta, C., Phys. Rev. B 2009, 80, 14430.
(37) Liu, R.; Zhang, C.; Li, L.; Liao, D.; Sutter, J. P., Dalton Trans. 2012, 41, 12139.
(38) Lin, S. Y.; Xu, G. F.; Zhao, L.; Guo, Y. N.; Guo, Y.; Tang, J. K., Dalton Trans. 2011, 40, 8213.
(39) Zhang, L.; Zhang, P.; Zhao, L.; Lin, S. Y.; Xue, S.; Tang, J.; Liu, Z., Eur. J. Inorg. Chem., 2013, 1351.
(40) Lin, S. Y.; Zhao, L.; Guo, Y. N.; Zhang, P.; Guo, Y.; Tang, J., Inorg. Chem. 2012, 51, 10522.
(41) Miao, Y. L.; Liu, J. L.; Li, J. Y.; Leng, J. D.; Ou, Y. C.; Tong, M. L., Dalton Trans. 2011, 40, 10229.
(42) Mazarakioti, E. C.; Poole, K. M.; Cunha-Silva, L.; Christou, G.; Stamatatos, T. C., Dalton Transactions 2014, DOI: 10.1039/c4dt00976b.
(43) Chesman, A. S. R.; Turner, D. R.; Moubaraki, B.; Murray, K. S.; Deacon, G. B.; Batten, S. R., Dalton Trans., 2012, 41, 3751.
(44) Osa, S.; Kido, T.; Matsumoto, N.; Re, N.; Pochaba, A.; Mrozinski, J., J. Am. Chem. Soc. 2004, 126, 420.

Chapter 2
(1) Osa, S.; Kido, T.; Matsumoto, N.; Re, N.; Pochaba, A.; Mrozinski, J. J. Am. Chem. Soc. 2004, 126, 420
(2) Zaleski, M; Depperman, E. C.; Kampf, J. W.; Kirk, M.-L.;Pecoraro, V. L. Angew. Chem., Int. Ed. 2004, 43, 3912
(3) Chandrasekhar, V.; Pandian, B. M.; Azhakar, R.; Vittal, J. J.; Clerac, R., Inorg. Chem., 2007, 46, 5140
(4) Chandrasekhar, V.; Pandian, B. M.; Vittal, J. J.; Clerac, R., Inorg. Chem., 2009, 48, 1148
(5) Zou, L. F.; Zhao, L.; Guo, Y. N.; Yu, G. M.; Guo, Y.; Tang, J. K.; Li, Y. H., Chem. Commun., 2011, 47, 8659.
(6) Costes, J. P.; Dahan, F.; Wernsdorfer, W., Inorg. Chem., 2006, 45, 5
(7) Aronica, C.; Pilet, G.; Chastanet, G.; Wernsdorfer, W.; Jacquot, J. F.; Luneau, D., Angew. Chem.,Int. Ed., 2006, 45, 4659
(8) Mori, F.; Nyui, T.; Ishida, T.; Nogami, T.; Choi, K. Y.; Nojiri, H., J. Am. Chem. Soc., 2006, 128, 1440
(9) Baskar, V.; Gopal, K.; Helliwell, M.; Tuna, F.; Wernsdorfer, W.; Winpenny, R. E. P., Dalton Trans., 2010, 39, 4747
(10) Feltham, H. L. C.; Clerac, R.; Powell, A. K.; Brooker, S., Inorg. Chem., 2011, 50, 4232
(11) Kajiwara, T.; Nakano, M.; Takahashi, K.; Takaishi, S.; Yamashita, M., Chem. Eur. J., 2011, 17, 196
(12) Langley, S. K.; Ungur, L.; Chilton, N. F.; Moubaraki, B.; Chibotaru, L. F.; Murray, K. S., Chem. Eur. J., 2011, 17, 9209.
(13) Chandrasekhar, V.; Pandian, B. M.; Boomishankar, R.; Steiner, A.; Viftal, J. J.; Houri, A.; Clerac, R., Inorg. Chem., 2008, 47, 4918.
(14) Papatriantafyllopoulou, C.; Estrader, M.; Efthymiou, C. G.; Dermitzaki, D.; Gkotsis, K.; Terzis, A.; Diaz, C.; Perlepes, S. P., Polyhedron, 2009, 28, 1652.
(15) C. G. Efthymiou, T. C. Stamatatos, C. Papatriantafyllopoulou, A. J. Tasiopoulos, W. Wernsdorfer, S. P. Perlepes and G. Christou, Inorg. Chem., 2010, 49, 9737.
(16) Colacio, E.; Ruiz, J.; Mota, A. J.; Palacios, M. A.; Cremades, E.; Ruiz, E.; White, F. J.; Brechin, E. K., Inorg. Chem., 2012, 51, 5857.
(17) Ferbinteanu, M.; Kajiwara, T.; Choi, K. Y.; Nojiri, H.; Nakamoto, A.; Kojima, N.; Cimpoesu, F.; Fujimura Y.,; Takaishi, S.; Yamashita, M., J. Am. Chem. Soc., 2006, 128, 9008.
(18) Zeng, Y. F.; Xu, G. C.; Hu, X.; Chen, Z.; Bu, X. H.; Gao, S.; Sanudo, E. C., Inorg. Chem., 2010, 49, 9734.
(19) Mishra, A.; Wernsdorfer, W.; Abboud, K. A.; Christou, G., J. Am. Chem. Soc., 2004, 126, 15648.
(20) Zaleski, C. M.; Depperman, E. C.; Kampf, J. W.; Kirk, M. L.; Pecoraro, V. L., An-gew. Chem., Int. Ed., 2004, 43, 3912.
(21) Mishra, A.; Wernsdorfer, W.; Parsons, S.; Christou, G.; Brechin, E. K., Chem. Commun., 2005, 2086.
(22) Mereacre, V. M.; Ako, A. M.; Clerac, R.; Wernsdorfer, W.; Filoti, G.; Bartolome, J.; Anson, C. E.; Powell, A. K., J. Am. Chem. Soc., 2007, 129, 9248.
(23) Mereacre, V.; Ako, A. M.; Clerac, R.; Wernsdorfer, W.; Hewitt, I. J.; Anson, C. E.; Powell, A. K., Chem. Eur. J., 2008, 14, 3577.
(24) Powell, A. K.; Li, M. Y.; Lan, Y. H.; Ako, A. M.; Wernsdorfer, W.; Anson, C. E.; Buth, G.; Wang, Z. M.; Gao, S., Inorg. Chem., 2010, 49, 11587.
(25) Benelli, C.; Murrie, M.; Parsons, S.; Winpenny, R. E. P., J. Chem. Soc.,Dalton Trans. 1999, 4125.
(26) Mishra, A.; Wernsdorfer, W.; Parsons, S.; Christou, G.; Brechin, E. K., Chem. Commun. 2005, 2086.
(27) Murugesu, M.; Mishra, A.; Wernsdorfer, W.; Abboud, K. A.; Christou, G., Polyhedron 2006, 25, 613.
(28) Bi, Y. F.; Li, Y. L.; Liao, W. P.; Zhang, H. J.; Li, D. Q., Inorg. Chem. 2008, 47, 973.
(29) Akhtar, M. N.; Lan, Y. H.; Mereacre, V.; Clerac, R.; Anson, C. E.; Powell, A. K., Polyhedron 2009, 28, 1698.
(30) Mereacre, V.; Lan, Y. H.; Clerac, R.; Ako, A. M.; Hewitt, I. J.; Wernsdorfer, W.; Buth, G.; Anson, C. E.; Rowell, A. K., Inorg. Chem. 2010, 49, 5293.
(31) Papatriantafyllopoulou, C.; Abboud, K. A.; Christou, G., Inorg. Chem. 2011, 50, 8959.
(32) Chesman, A. S. R.; Turner, D. R.; Berry, K. J.; Chilton, N. F.; Moubaraki, B.; Murray, K. S.; Deacon, G. B.; Batten, S. R., Dalton Trans. 2012, 41, 11402.
(33) Shiga, T.; Hoshino, N.; Nakano, M.; Nojiri, H.; Oshio, H., Inorg. Chem. Acta. 2008, 361, 4113.
(34) Saha, A.; Thompson, M.; Abboud, K. A.; Wernsdorfer, W.; Christou, G., Inorg. Chem. 2011, 50, 10476.
(35) Ke, H. S.; Zhao, L.; Guo, Y.; Tang, J. K., Dalton Trans. 2012, 41, 2314.
(36) Liu, J. Y.; Ma, C. B.; Chen, H.; Hu, M. Q.; Wen, H. M.; Cui, H. H.; Song, X. W.; Chen, C. N., Dalton Trans. 2013, 42, 2423.
(37) Liu, C. M.; Zhang, D. Q.; Zhu, D. B., Dalton Trans. 2010, 39, 11325.
(38) Alexandropoulos, D. I.; Nguyen, T. N.; Cunha-Silva, L.; Zafiropoulos, T. F.; Escu-er, A.; Christou, G.; Stamatatos, T. C., Inorg. Chem. 2013, 52, 1179.
(39) Khan, A.; Lan, Y. H.; Kostakis, G. E.; Anson, C. E.; Powell, A. K., Dalton Trans. 2012, 41, 8333.
(40) Mereacre, V.; Akhtar, M. N.; Lan, Y. H.; Ako, A. M.; Clerac, R.; Anson, C. E.; Powell, A. K., Dalton Trans. 2010, 39, 4918.
(41) Li, M. Y.; Lan, Y. H.; Ako, A. M.; Wernsdorfer, W.; Anson, C. E.; Buth, G.; Powell, A. K.; Wang, Z. M.; Gao, S., Inorg. Chem. 2010, 49, 11587.
(42) Li, M. Y.; Ako, A. M.; Lan, Y. H.; Wernsdorfer, W.; Buth, G.; Anson, C. E.; Powell, A. K.; Wang, Z. M.; Gao, S., Dalton Trans. 2010, 39, 3375.
(43) Karotsis, G.; Kennedy, S.; Teat, S. J.; Beavers, C. M.; Fowler, D. A.; Morales, J. J.; Evangelisti, M.; Dalgarno, S. J.; Brechin, E. K., J. Am. Chem. Soc. 2010, 132, 12983.
(44) Mereacre, V.; Ako, A. M.; Clerac, R.; Wernsdorfer, W.; Hewitt, I. J.; Anson, C. E.; Powell, A. K., Chem. Eur. J. 2008, 14, 3577.
(45) Holynska, M.; Premuzic, D.; Jeon, I. R.; Wernsdorfer, W.; Clerac, R.; Dehnen, S., Chem. Eur. J. 2011, 17, 9605.
(46) Rigaux, G.; Inglis, R.; Morrison, S.; Prescimone, A.; Cadiou, C.; Evangelisti, M.; Brechin, E. K., Dalton Trans. 2011, 40, 4797.
(47) Langley, S. K.; Moubaraki, B.; Murray, K. S., Dalton Trans. 2010, 39, 5066.
(48) Mereacre, V.; Prodius, D.; Ako, A. M.; Kaur, N.; Lipkowski, J.; Simmons, C.; Dalal, N.; Geru, I.; Anson, C. E.; Powell, A. K.; Turta, C., Polyhedron. 2008, 27, 2459.
(49) Mereacre, V.; Lan, Y. H.; Clerac, R.; Ako, A. M.; Wernsdorfer, W.; Buth, G.; Anson, C. E.; Powell, A. K., Inorg. Chem. 2011, 50, 12001.
(50) Mereacre, V. M.; Ako, A. M.; Clerac, R.; Wernsdorfer, W.; Filoti, G.; Bartolome, J.; Anson, C. E.; Powell, A. K., J. Am. Chem. Soc. 2007, 129, 9248.
(51) Stamatatos, T. C.; Teat, S. J.; Wernsdorfer, W.; Christou, G., Angew. Chem., Int. Ed. 2009, 48, 521.
(52) Liu, J. L.; Guo, F. S.; Meng, Z. S.; Zheng, Y. Z.; Leng, J. D.; Tong, M. L.; Ungur, L.; Chibotaru, L. F.; Heroux, K. J.; Hendrickson, D. N., Chem. Sci. 2011, 2, 1268.
(53) Ako, A. M.; Mereacre, V.; Clerac, R.; Wernsdorfer, W.; Hewitt, I. J.; Anson, C. E.; Powell, A. K., Chem. Commun. 2009, 544.
(54) Papatriantafyllopoulou, C.; Wernsdorfer, W.; Abboud, K. A.; Christou, G., Inorg. Chem. 2011, 50, 421.
(55) Chandrasekhar, V.; Bag, P.; Speldrich, M.; Leusen, J.; Kögerler, P. Inorg. Chem. 2013, 52, 5035.
(56) Tan, X.; Y.; Che, X.; Zheng, J. M., Inorg. Chem. Commun. 2013, 37, 17.
(57) Mereacre, V.; Lan, Y.; Clerac, R.; Ako, A. M.; Hewitt, I. J.; Wernsdorfer, W.; Buth, G.; Anson, C. E.; Powell, A. K. Inorg. Chem. 2010, 49, 5293.
(58) Chesman, A. S. R.; Turner, D. R.; Berry, K. J.; Chilton, N. F.; Moubaraki, B.; Murray, K. S.; Deacon, G. B.; Batten, S. R., Dalton Trans., 2012, 41, 11402.
(59) Guedes, G. P.; Soriano, S.; Mercante, L. A.; Speziali, N. L.; Novak, M. A.; Andruh, M.; Vaz, M. G. F. Inorg. Chem. 2013, 52, 8309.
(60) Mukherjee, S., Daniels, M. R., Bagai, R., Abboud, K. A., Christou, G. and Lam-propoulos, C. Polyhedron 2010, 29, 54.
(61) Murugesu, M., Mishra, A., Wernsdorfer, W., Abboud, K. A., and Christou, G. Pol-yhedron 2006, 25, 613.
(62) Akhtar, M. N.; Lan, Y. V.; Clérac, R.; Anson, C. E.; Powell, A. K., Polyhedron 2009, 28, 1698.
(63) Gavrilenko, K. S.; Punln, S. V.; Cador, O.; Golhen, S.; Ouahab, L.; Pavlishchuk, V. V., Inorg. Chem. 2005, 44, 5903.
(64) Sheldrick, G. M.; SHELXL-97, University of Gottingen, Gottingen. Germany, 1997.
(65) Boudreaux, E. A.; Mulay, L. N., In Theory and Application of Molecular Para-magnetism, J. Wiely & Sons. New York, 1976.
(66) Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A., J. Appl. Crys-tallogr. 2008, 41, 466.
(67) Brown, I. D.; Altermatt, D., Acta Crystallogr., Sect. B 1985, 41, 244.
(68) Brown, I. D., Solid State Chem. 1989, 82, 122.
(69) Thorp, H. H., Inorg. Chem. 1992, 31, 1585.
(70) Janiak, C., J. Chem. Soc., Dalton Trans., 2000, 3885
(71) Benelli, C.; Gatteschi, D., Chem. Rev. 2002, 102, 2369.
(72) Chesman, A. S. R.; Turner, D. R.; Moubaraki, B.; Murray, K. S.; Deacon, G. B.; Batten, S. R., Dalton Trans., 2012, 41, 3751.
(73) Tang, J. K.; Hewitt, I.; Madhu, N. T.; Chastanet, G.; Wernsdorfer, W.; Anson, C. E.; Benelli, C.; Sessoli, R.; Powell, A. K., Angew. Chem., Int. Ed. 2006, 45, 1729.
(74) Zheng, Y. Z.; Lan, Y.; Anson, C. E.; Powell, A. K., Inorg. Chem. 2008, 47, 10813.
(75) Osa, S.; Kido, T.; Matsumoto, N.; Re, N.; Pochaba, A.; Mrozinski, J., J. Am. Chem. Soc. 2004, 126, 420.
(76) Bartolome, J.; Filoti, G.; Kuncser, V.; Schinteie, G.; Mereacre, V.; Anson, C. E.; Powell, A. K.; Prodius, D.; Turta, C., Phys. Rev. B 2009, 80, 14430.
(77) Gatteschi, D.; Sessoli, R.; Villain, J., Molecular Nanomagnets. Oxford University Press; Oxford, U.K., 2006.

Chapter 3
(1) Osa, S.; Kido, T.; Matsumoto, N.; Re, N.; Pochaba, A.; Mrozinski, J. J. Am. Chem. Soc. 2004, 126, 420.
(2) Zaleski, M; Depperman, E. C.; Kampf, J. W.; Kirk, M.-L.; Pecoraro, V. L. Angew. Chem., Int. Ed. 2004, 43, 3912.
(3) Benelli, C.; Murrie, M.; Parsons, S.; Winpenny, R. E. P., J. Chem. Soc., Dalton Trans. 1999, 4125.
(4) Mishra, A.; Wernsdorfer, W.; Parsons, S.; Christou, G.; Brechin, E. K., Chem. Commun. 2005, 2086.
(5) Murugesu, M.; Mishra, A.; Wernsdorfer, W.; Abboud, K. A.; Christou, G., Polyhedron 2006, 25, 613.
(6) Bi, Y. F.; Li, Y. L.; Liao, W. P.; Zhang, H. J.; Li, D. Q., Inorg. Chem. 2008, 47, 9733.
(7) Akhtar, M. N.; Lan, Y. H.; Mereacre, V.; Clerac, R.; Anson, C. E.; Powell, A. K., Polyhedron 2009, 28, 1698.
(8) Mereacre, V.; Lan, Y. H.; Clerac, R.; Ako, A. M.; Hewitt, I. J.; Wernsdorfer, W.; Buth, G.; Anson, C. E.; Rowell, A. K., Inorg. Chem. 2010, 49, 5293.
(9) Papatriantafyllopoulou, C.; Abboud, K. A.; Christou, G., Inorg. Chem. 2011, 50, 8959.
(10) Chesman, A. S. R.; Turner, D. R.; Berry, K. J.; Chilton, N. F.; Moubaraki, B.; Murray, K. S.; Deacon, G. B.; Batten, S. R., Dalton Trans. 2012, 41, 11402.
(11) Guedes, G. P.; Soriano, S.; Mercante, L. A.; Speziali, N. L.; Novak, M. A.; Andruh, M.; Vaz, M. G. F. Inorg. Chem. 2013, 52, 8309.
(12) Feuersenger, J.; Prodius, D.; Mereacre, V.; Clerac, R.; Anson, C. E.; Powell, A. K., Inorg. Chem. Commun., 2011, 14, 1851
(13) Bi, Y. F.; Wang, X. T.; Wang, B. W.; Liao, W. P.; Wang, X. F.; Zhang, H. J.; Gao, S.; Li, D. Q., Dalton Trans., 2009, 2250.
(14) Liu, J. Y.; Ma, C. B.; Chen, H.; Hu, M. Q.; Wen, H. M.; Cui, H. H.; Chen, C. N., Dalton Trans., 2013, 42, 3787.
(15) Shiga, T.; Hoshino, N.; Nakano, M.; Nojiri, H.; Oshio, H., Inorg. Chim. Acta 2008, 361, 4113.
(16) Saha, A.; Thompson, M.; Abboud, K. A.; Wernsdorfer, W.; Christou, G., Inorg. Chem. 2011, 50, 10476.
(17) Ke, H. S.; Zhao, L.; Guo, Y.; Tang, J. K., Dalton Trans. 2012, 41, 2314.
(18) Liu, J. Y.; Ma, C. B.; Chen, H.; Hu, M. Q.; Wen, H. M.; Cui, H. H.; Song, X. W.; Chen, C. N., Dalton Trans. 2013, 42, 2423.
(19) Liu, C. M.; Zhang, D. Q.; Zhu, D. B., Dalton Trans. 2010, 39, 11325.
(20) Alexandropoulos, D. I.; Nguyen, T. N.; Cunha-Silva, L.; Zafiropoulos, T. F.; Escu-er, A.; Christou, G.; Stamatatos, T. C., Inorg. Chem. 2013, 52, 1179.
(21) Khan, A.; Lan, Y. H.; Kostakis, G. E.; Anson, C. E.; Powell, A. K., Dalton Trans. 2012, 41, 8333.
(22) Mereacre, V.; Akhtar, M. N.; Lan, Y. H.; Ako, A. M.; Clerac, R.; Anson, C. E.; Powell, A. K., Dalton Trans. 2010, 39, 4918.
(23) Li, M. Y.; Lan, Y. H.; Ako, A. M.; Wernsdorfer, W.; Anson, C. E.; Buth, G.; Powell, A. K.; Wang, Z. M.; Gao, S., Inorg. Chem. 2010, 49, 11587.
(24) Li, M. Y.; Ako, A. M.; Lan, Y. H.; Wernsdorfer, W.; Buth, G.; Anson, C. E.; Powell, A. K.; Wang, Z. M.; Gao, S., Dalton Trans. 2010, 39, 3375.
(25) Karotsis, G.; Kennedy, S.; Teat, S. J.; Beavers, C. M.; Fowler, D. A.; Morales, J. J.; Evangelisti, M.; Dalgarno, S. J.; Brechin, E. K., J. Am. Chem. Soc. 2010, 132, 12983.
(26) Majeed, Z.; Mondal, K. C.; Kostakis, G. E.; Lan, Y. H.; Anson, C. E.; Powell, A. K., Dalton Trans., 2010, 39, 4740.
(27) Mereacre, V.; Ako, A. M.; Clerac, R.; Wernsdorfer, W.; Hewitt, I. J.; Anson, C. E.; Powell, A. K., Chem.-Eur. J. 2008, 14, 3577.
(28) Hallier, K.; Holynska, M.; Rouzieres, M.; Clerac, R.; Dehnen, S., Inorg. Chem., 2012, 51, 3929.
(29) Shiga, T.; Onuki, T.; Matsumoto, T.; Nojiri, H.; Newton, G. N.; Hoshino, N.; Oshio, H., Chem. Commun., 2009, 3568.
(30) Holynska, M.; Premuzic, D.; Jeon, I. R.; Wernsdorfer, W.; Clerac, R.; Dehnen, S., Chem.-Eur. J. 2011, 17, 9605.
(31) Rigaux, G.; Inglis, R.; Morrison, S.; Prescimone, A.; Cadiou, C.; Evangelisti, M.; Brechin, E. K., Dalton Trans. 2011, 40, 4797.
(32) Zheng, Y.; Kong, X. J.; Long, L. S.; Huang, R. B.; Zheng, L. S., Dalton Trans., 2011, 40, 4035.
(33) Zaleski, C. M.; Kampf, J. W.; Mallah, T.; Kirk, M. L.; Pecoraro, V. L., Inorg. Chem., 2007, 46, 1954.
(34) Zaleski, C. M.; Depperman, E. C.; Kampf, J. W.; Kirk, M. L.; Pecoraro, V. L., An-gew. Chem., Int. Ed., 2004, 43, 3912
(35) Langley, S. K.; Moubaraki, B.; Murray, K. S., Dalton Trans. 2010, 39, 5066.
(36) Mereacre, V.; Prodius, D.; Ako, A. M.; Kaur, N.; Lipkowski, J.; Simmons, C.; Dalal, N.; Geru, I.; Anson, C. E.; Powell, A. K.; Turta, C., Polyhedron. 2008, 27, 2459.
(37) Mereacre, V.; Lan, Y. H.; Clerac, R.; Ako, A. M.; Wernsdorfer, W.; Buth, G.; Anson, C. E.; Powell, A. K., Inorg. Chem. 2011, 50, 12001.
(38) Mereacre, V. M.; Ako, A. M.; Clerac, R.; Wernsdorfer, W.; Filoti, G.; Bartolome, J.; Anson, C. E.; Powell, A. K., J. Am. Chem. Soc. 2007, 129, 9248.
(39) Mereacre, V.; Prodius, D.; Ako, A. M.; Kaur, N.; Lipkowski, J.; Simmons, C.; Dalal, N.; Geru, I.; Anson, C. E.; Powell, A. K.; Turta, C., Polyhedron, 2008, 27, 2459.
(40) Stamatatos, T. C.; Teat, S. J.; Wernsdorfer, W.; Christou, G., Angew. Chem., Int. Ed. 2009, 48, 521.
(41) Liu, J. L.; Guo, F. S.; Meng, Z. S.; Zheng, Y. Z.; Leng, J. D.; Tong, M. L.; Ungur, L.; Chibotaru, L. F.; Heroux, K. J.; Hendrickson, D. N., Chem. Sci. 2011, 2, 1268.
(42) Ako, A. M.; Mereacre, V.; Clerac, R.; Wernsdorfer, W.; Hewitt, I. J.; Anson, C. E.; Powell, A. K., Chem. Commun. 2009, 544.
(43) Papatriantafyllopoulou, C.; Wernsdorfer, W.; Abboud, K. A.; Christou, G., Inorg. Chem. 2011, 50, 421.
(44) Mukherjee, S., Daniels, M. R., Bagai, R., Abboud, K. A., Christou, G. and Lam-propoulos, C. Polyhedron 2010, 29, 54.
(45) Brown, I. D.; Altermatt, D., Acta Crystallogr., Sect. B 1985, 41, 244.
(46) Brown, I. D., Solid State Chem. 1989, 82, 122.
(47) Thorp, H. H., Inorg. Chem. 1992, 31, 1585.
(48) Benelli, C.; Gatteschi, D., Chem. Rev. 2002, 102, 2369.
(49) Abtab, S. M. T.; Maity, M.; Bhattacharya, K.; Sanudo, E. C.; Chaudhury, M., Inorg. Chem. 2012, 51, 10211.
(50) Costes, J. P.; Auchel, M.; Dahan, F.; Peyrou, V.; Shova, S.; Wernsdorfer, W., Inorg. Chem. 2006, 45, 1924.
(51) Boudreaux, E. A.; Mulay, L. N., In Theory and Application of Molecular Para-magnetism, J. Wiely & Sons. New York, 1976.
(52) Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A., J. Appl. Crys-tallogr. 2008, 41, 466.
(53) Chesman, A. S. R.; Turner, D. R.; Moubaraki, B.; Murray, K. S.; Deacon, G. B.; Batten, S. R., Dalton Trans., 2012, 41, 3751.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2029-09-12起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2029-09-12起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw