進階搜尋


 
系統識別號 U0026-0509201409263600
論文名稱(中文) RC建築結構體建材用量與碳排放量影響因子之探討
論文名稱(英文) Factors Affecting the Material Usage and CO2 Emission for RC Building Structures
校院名稱 成功大學
系所名稱(中) 建築學系
系所名稱(英) Department of Architecture
學年度 102
學期 2
出版年 103
研究生(中文) 李雅琪
研究生(英文) Ya-Chi Lee
學號 N76004210
學位類別 碩士
語文別 中文
論文頁數 147頁
口試委員 指導教授-杜怡萱
口試委員-姚昭智
口試委員-施忠賢
中文關鍵字 鋼筋混凝土  建材用量  二氧化碳排放  結構設計 
英文關鍵字 Reinforced Concrete  Material Usage  CO2 Emission  Structural Design 
學科別分類
中文摘要 為了輔助建築設計者在設計初期階段預估設計決策對建材用量及碳排放量之影響,以便有效達到減碳目標,本研究針對RC中層建築物結構體,探討影響碳排量之設計因子,並推導碳排量簡易評估公式。
本研究根據一般辦公大樓平面,設定一原型案例以及欲探討之設計因子,包括地上樓層數、震區、跨距變化、混凝土抗壓強度、平面不規則性、靜載重、活載重及設計習慣。以原型為對照組,實驗組案例每次僅改變單一設計因子,利用ETABS結構分析軟體,依台灣現行法規進行所有案例之結構設計,並精算構件之建材用量與碳排放量,統計分析建材用量及碳排量與各設計因子之關係,再使用線性迴歸方法得到各設計因子之碳排影響係數。
結果顯示,當地上樓層數越多、震區係數與跨距變化越大時,單位樓地板面積建材用量及碳排量越高,且震區對低樓層位置之碳排量影響大於高樓層位置,雙向跨距變化之碳排量大於單向跨距變化。使用抗壓強度較高之混凝土時,混凝土單位碳排量提高,但建材用量減少,全面使用高強度混凝土案例與原型案例之總碳排量幾乎一致,無法看出影響趨勢,建議針對低樓層及高樓層部分使用不同強度混凝土進一步探討;本文不規則平面之建材用量及碳排量僅略大於規則平面,無法確定其影響因素為平面偏心或其他因素。靜載重、活載重越大,建材用量及碳排量越高。更改設計習慣發現,設計趨於經濟時,鋼筋用量減少程度大於混凝土用量,且在低樓層部分採取經濟設計原則,對降低碳排量較為有效。
藉由線性迴歸各影響因子係數,可得建築物單位樓地板面積碳排量簡易評估公式,本文公式適用於台灣地區15層以下且平面規則之RC抗彎矩剛構架,混凝土抗壓強度為280kgf/cm2,靜載重不超過550kgf/m2且活載重不超過600kgf/m2之情況。
最後本研究以9棟實際建築案例之結構體碳排量對公式評估值進行驗證,其結果為7棟低估,2棟高估,公式評估值平均低於實際值,顯示本文公式傾向設計較為經濟之情況,且誤差值與公式使用之設計因子關係離散,顯示誤差並非特定因子所造成,誤差來源尚有待後續研究探討。
英文摘要 This thesis discusses the factors affecting the CO2 emissions of building structures. A simple CO2 emission estimation formula is derived to help designers estimate CO2 emissions during the primary design stage.
This study first identifies some design factors that most strongly affect CO2 emissions, such as number of stories, seismic zone, span change, concrete strength, plane irregularity, dead load, live load, and structural design habits. Then, it uses a prototype case as a control model and builds 16 experimental models. These models are analyzed using the ETABS structure analysis software. Next, material usage and material CO2 emissions are carefully calculated. Finally, the degree of influence of each factor is discussed, and a simple CO2 emission estimation formula is derived.

INTRODUCTION
This study aims to help designers estimate material usage and CO2 emissions of building strucures during the primary design stage and thus reduce CO2 emissions effectively. It focuses on reinforced concrete (RC) mid-rise buildings and discusses the factors that affect the building’s CO2 emissions. It also derives a simple CO2 emission estimation formula.

MATERIALS AND METHODS
This study sets a prototype case based on a typical commercial building plane and selects the factors to be discussed. These factors include the number of stories, seismic zone, span change, concrete strength, plane irregularity, dead load, live load, and structural design habit. The prototype case is considered a control model, and only one factor is then changed in each experimental model to build 16 different models. The prototype is a 10-story RC commercial building with rectangular plane and regular span, located in Tainan. The story factor cases include 5 and 15-story situation. Seismic zone discuss case include Taipei and Taoyuan. Span change factor discuss one axial change and two axial change; concrete strength case use higher compressive strength (420kgf/cm2) than the prototype(280kgf/cm2). The study set T-shape and L-shape cases in plane irregularity factor. 3 experimental models (350, 450, 550kgf/m2) in dead load cases which are all higher than the proto type (300kg/m2)are discussed. Live load discuss 600 kgf/m2 case. Structural design habit discuss economical way and conservative way.
The ETABS structure analysis software is used to analyze all the models. Each structural analysis is conducted in accordance with Taiwanese standards. The material usage of structural members is carefully calculated after the analysis. Finally, the relationship between material usage and CO2 emissions is analyzed statistically. Linear regression methods are used to determine the CO2 influence coefficient of each design factor.

RESULTS AND DISCUSSION
The results show that when the number of stories, the seismic zone coefficient, span change, dead load and live load increase, the material usage and CO2 emission per floor area increases. Seismic zone has greater effect on the CO2 emissions for lower floors than for higher floors. A biaxial span change results in greater CO2 emissions than a uniaxial span change. When using concrete with higher compressive strength, the unit CO2 emission of concrete increases, but the material usage decreases. As a result, when high-strength concrete is used in every floor of the building, it has almost the same CO2 emissions as the prototype. Therefore, this study suggest to study the effect of using concrete with different strengths in the low and high parts of a building in the future research. The results of the plane shape cases show that the material usage and CO2 emission of an irregular plane are only slightly larger than the prototype. With regard to changes in design habits, it was found that in economical designs, the material decrease of steel was large than that of concrete. When economical design is applied, the low floors of a building are more effective in reducing CO2 emissions.

CONCLUSION
This study derived a simple CO2 emission estimation formula by using the linear regression to determine each design factors’ coefficient. This formula is applicable to RC buildings not higher than 15 stories, where the concrete strength is less than 280 kgf/cm2, dead load does not exceed 550 kgf/m2, and live load does not exceed 600 kgf/m2.
The CO2 emission data of nine real buildings was used to verify the proposed formula. Two cases showed overestimation and seven cases showed underestimation. This suggests that the proposed formula is suitable for economical designs. The verification did not clearly reveal the relationship between errors and design factors. The real cause of errors will be determined in a future study. The result of CO2 emission of each cases which compared to prototype is showed in Figure.1. The black dashed line is the CO2 emission of prototype, and it is the base of comparison.
論文目次 第一章 緒論............................................................................................................................1
1.1研究動機與目的..........................................................................................................1
1.1.1 研究動機..........................................................................................................1
1.1.2研究目的...........................................................................................................1
1.2文獻回顧......................................................................................................................2
1.3 研究方法與流程.........................................................................................................6
1.3.1 研究方法..........................................................................................................6
1.3.2 研究架構流程..................................................................................................7
1.4 適用範圍.....................................................................................................................8
1.5 章節概述.....................................................................................................................8

第二章 分析軟體介紹與原型案例設定................................................................................9
2.1 軟體簡介.....................................................................................................................9
2.1.1 ETABS簡介...................................................................................................9
2.1.2 DRAWRC簡介............................................................................................9
2.2 原型案例設定與結構分析方法...............................................................................10
2.2.1 ETABS模型設定與構件分析.....................................................................11
2.2.2 DRAWRC操作與繪製配筋圖....................................................................29
2.2.3 計算建材用量與碳排放量............................................................................30

第三章 變因與實驗組案例設定..........................................................................................37
3.1 設計變因簡介...........................................................................................................37
3.2 實驗組案例設定方法介紹.......................................................................................38
3.2.1 地上樓層數....................................................................................................38
3.2.2 震區................................................................................................................39
3.2.3 跨距變化........................................................................................................43
3.2.4 混凝土抗壓強度............................................................................................45
3.2.5 不規則平面形狀............................................................................................46
3.2.6 額外靜載重....................................................................................................50
3.2.7 活載重............................................................................................................50
3.2.8 設計習慣........................................................................................................51
3.3小結............................................................................................................................54

第四章 建材用量及碳排量計算結果..................................................................................55
4.1 原型案例計算結果與分析.......................................................................................55
4.2 實驗組案例計算結果與分析...................................................................................59
4.2.1 地上樓層數之影響........................................................................................59
4.2.2 震區之影響....................................................................................................64
4.2.3 變化跨距之影響............................................................................................68
4.2.4 混凝土抗壓強度之影響................................................................................72
4.2.5 不規則平面形狀之影響................................................................................75
4.2.6 額外靜載重之影響........................................................................................82
4.2.7 活載重之影響................................................................................................85
4.2.8 設計習慣之差異............................................................................................88
4.3 小結...........................................................................................................................91

第五章 碳排量簡易評估公式推導與驗證..........................................................................93
5.1 公式推導...................................................................................................................93
5.2 公式驗證...................................................................................................................95
5.2.1 公式評估值與實際案例之比較....................................................................96
5.2.2 分析案例與實際案例之比較........................................................................97
5.2.3 更新評估公式基準值....................................................................................103
5.3 小結.........................................................................................................................103
第六章 結論與建議............................................................................................................105
6.1 結論.........................................................................................................................105
6.2 建議.........................................................................................................................107

參考文獻.............................................109

附錄........................................................................................................................................111
附錄A 各案例構件斷面尺寸與平均配筋比...............................................................111
附錄B 各案例建材用量及碳排量詳細計算結果.......................................................131
參考文獻 1. 內政部建築研究所,「綠建築解說與評估手冊(2005年更新版)」,林憲德主編,內政部建築研究所出版,台北,2005。
2. 張又升,「建築物生命週期二氧化碳減量評估」,博士論文,國立成功大學建築系,台南,2002。
3. 林士豪,「辦公室建築低碳構造單元之研究 – 以不同結構體為例」,碩士論文,國立成功大學建築系,台南,2011。
4. 翁以欣,「台灣建材碳足跡資料庫盤查方法之研究」,碩士論文,國立成功大學建築系,台南,2013。
5. 王坦,「建築工程結構材料用量之統計與分析 – 以新竹地區RC住宅為例」,碩士論文,中華大學土木與工程資訊學系,新竹,2008。
6. 邱佳淳,「新建建築工程大宗材料用量分析之研究」,碩士論文,國立中央大學營建管理研究所,桃園,2012。
7. 內政部營建署,「混凝土結構設計規範」,2011。
8. 內政部營建署,「建築物耐震設計規範及解說」,2011。
9. 內政部營建署,「建築物耐風設計規範及解說」,2011。
10. American Society of Civil Engineers, Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7-05)
11. 內政部建研所委託研究報告,「建築物設計階段碳揭露標示法之研究(2) ─建築物軀體、空調、水電工程碳排放量評估之研究」,2013
12. 日本建築協會,「建物のLCA指針」,日本建築學會出版,東京,2006。
13. 賴晟偉,「住宅大樓生命週期二氧化碳排放量研究 – 鋼筋混凝土構造與鋼構造之個案比較」,碩士論文,國立台北科技大學建築與都市設計研究所,台北,2010。
14. 林煒傑,「平面不規則建築結構之地震反應特性分析」,碩士論文,淡江大學土木工程學系,台北,2010。
15. 陳智,「建築結構設計精華」,詹氏書局,1995。
16. 李錫霖、張照俊,「輕質隔間牆對RC建築物主結構體鋼筋用量影響之研究」,中華建築學刊,第三卷,第二期,第15至26頁,2007。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-09-11起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-09-11起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw