進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0509201321520100
論文名稱(中文) 非破壞檢測技術應用於淺層地工構造物之調查
論文名稱(英文) Application of Nondestructive Testing Techniques on Investigating Shallow Earth Structures
校院名稱 成功大學
系所名稱(中) 土木工程學系碩博士班
系所名稱(英) Department of Civil Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 賴新龍
研究生(英文) Sing-Long Lai
學號 n68931063
學位類別 博士
語文別 中文
論文頁數 185頁
口試委員 指導教授-李德河
召集委員-蔡光榮
口試委員-陳昭旭
口試委員-邵佩君
口試委員-田永銘
口試委員-廖志中
口試委員-王金鐘
口試委員-古志生
口試委員-吳建宏
中文關鍵字 非破壞檢測  透地雷達  地電阻  地下基礎探測  小東門  水庫  裂縫  滲透線  堤防  掏空  目視檢測  河堤安全評估模式 
英文關鍵字 Nondestructive testing  Ground penetrating radar  Resistivity image profiling  Underground foundation detection  Small Eastern Gate  Reservoir  Crack  Seepage line  Embankment  Visual inspection  Embankment Safety Assessment Mode 
學科別分類
中文摘要 非破壞性檢測技術屬於地球物理探測的一種,主要優點在於具有經濟、快速且能提供傳統地下鑽探所無法提供之物體連續性特徵等性能,故被廣泛應用於大地工程上的各項探測上。本研究運用非破壞性檢測技術,從傳統單一的儀器應用於舊基礎結構之調查應用研究,以透地雷達進行地下舊基礎遺構、殘蹟結構型式之調查。到水庫壩體震後的快速安全檢測,運用透地雷達法、地電阻法,檢測壩體裂縫損傷情況,在短時間之內獲得裂隙深度與壩體內滲流水位面深度之緊急性檢測運用。並可以更寬廣的運用於河堤掏空安全模式之建立,建立混凝土堤防外觀與內部掏空程度上之相關性,以目視調查法進行堤防外徵因子的蒐集,採用多元線性迴歸分析,經由模式預測的掏空等級與透地雷達圖徵所定義的掏空等級相比較以驗證模式之準確度。故可使用更簡單、便利、安全且快速的預測方式來獲得混凝土面板下堤防的掏空情形。
為使非破壞性檢測技術有效地應用在大地工程調查工作,本研究乃嘗試建置檢測的資料研判標準及分析流程,並以台南市境內的台灣府城垣小東門段殘蹟、虎頭埤水庫及曾文溪沿岸河堤為討論案例。並獲得下列成果:
(1)提出新式透地雷達探測波速求法:一般為求得明確的探測物體深度,可由透地雷達量測時,所記錄的雙程走時時間乘上已知波速求得。在本研究中現地波速探測方式採用以下兩種方式:一為利用埋設已知位置之物體推求雷達波速;另一則為本研究中新發展的透地雷達波速探測方式,將一附錐頭已知直徑1.3cm之實心鋼棒垂直打入地表下,經使用透地雷達探測其錐頭,可量測到已知深度錐頭之雙程走時,並由此換算波速。
(2)建立透地雷達於土層中探測地下遺構之資料處理與判讀準則,以簡單的反射強度色階來對應地下遺構基礎之埋藏狀況。由反射訊號強弱、相位、形狀等圖徵來研判地下遺構、結構內部缺陷分佈或構造形式。並由此來界定小東門甕城基礎內外直徑的範圍。
(3)在水庫壩體裂縫緊急性探測部分,基於材質介電性質的不同,透地雷達可用來檢測水庫壩體的內部缺陷,藉由透地雷達來探測路堤裂縫。地層未受擾動或開挖前,其圖像會是連續且平整的反射訊號。反之,若地層曾受到擾動或開挖則影像會出現凌亂且不連續的反射訊號。由原始訊號圖顯示在裂縫處可看出層狀土壤中斷的痕跡,雖可辨識但不明顯,但在經過希伯特轉換強化處理後,可使訊號集中、對比增強,裂縫中斷處由路面向下連續延伸更加顯而易見,足見解析訊號後更利於人工辨識土層中斷處。以此可判釋出土堤整體裂縫的深度及走向。
(4)震後壩體滲流線判釋:震後水庫壩體滲流線緊急性探測,由現地2011年鑽孔處已知地下水位深建制壩體地下滲流線之判釋準則,得知水庫壩體地下水位電阻率介於40-50 Ohm-m之間。並據此RIP測線可判釋出土堤震後裂縫處滲流線之走向及深度。
(5)河堤安全評估模式的建立:建立目視調查堤防外徵因子資料及透地雷達探測河堤掏空程度,分析方式採用多元線性迴歸分析,由此建制河堤外徵資料與掏空程度兩者的線性關係,以便能從外徵資料評估河堤掏空程度。
英文摘要 Nondestructive testing technologies are associated with a type of geophysical exploration. The main advantages are that the use of such technologies is economic and fast, and it can provide characteristics for continuity of objects that traditional underground boring cannot provide. Therefore, they are widely used for detection in geotechnical engineering. For the application of nondestructive testing techniques, as compared to the traditional single instrument used in such applications for investigation of old foundation structures, we use ground penetrating radar to implement the investigation of an old foundation for an ancient structure consisting of basically remnants. For efficient safe detection of dams after an earthquake, ground penetrating radar and resistivity image profiling can be used to detect the damage resulting in cracks in dams, and can within a short time also determine the depth of cracks and provide emergency detection for the depth of the seepage line in dams. It can be widely used in an Embankment Safety Assessment Mode in order to establish the correlation of the appearance and internal cavity grade of concrete dikes and to collect the factors of dike using a visual investigation method, using multiple linear regression analysis, cavity grade via mode predictions and compared with cavity grade defined by ground penetrating radar figure levy to verify the accuracy of mode. We can use an easier, more convenient, safer and quicker prediction method to assess the cavity grade situation in a dike located under concrete slab.
To enable NDT technologies to be effectively applied in geotechnical investigations, this research attempts to set a data judging standard for detection and analysis processes, and the Small East Gate section of Taiwan Fucheng, the Hutoupi Reservoir and Tsengwen coastal embankments are the objects of this research to be discussed. The results are as follows:
(1)This study applies two methods to estimate the wave velocity of the medium, which are described as follows: The known buried depth object: For field detection or the simulation test, the wave velocity of the medium could be estimated by the actual buried depth of the object and the travel time of the radar signal. A probing steel bar: We also placed a solid steel bar with a diameter of 1.3 cm vertically into the ground and utilized GPR to conduct the detection. The two-way travel time to the bottom of the solid steel bar is shown in the GPR detection results. Accordingly, the estimated velocity of the strata around the bottom of the solid steel bar could be obtained.
(2)Because GPR imaging is based on the difference in dielectric properties of a radar wave passing substances, and the interface between different materials will generate different reflection intensities, which can be indicated by setting different colors in the GPR system in which the various color levels in the image can correspond to the reflection intensities of the formation and remains under consideration. Based on this principle, this study suggests that the color levels in the radar image correspond to the conditions of the buried underground remains or cultural relics by comparing the radar image obtained in the detection with the results of the archeological trial excavation. According to these results, the outer diameter and the inner diameter of the outer wall of the Small Eastern Gate may be determined.
(3)Based on the difference in dielectric properties for materials, ground penetrating radar can be used to detect internal defects in a dam. The GPR detection results are usually interpreted using an image, and the image is produced based on reflected electric signals; hence, if the strata are original and not disturbed, no artificial disturbance or excavation has occurred, and the GPR images will be layered, continuous and smooth. Once the strata have been disturbed, the layered signal in the image will break off. Because an interpreter performs the GPR image analysis using his own vision, the GPR image analysis is very subjective. If the interpreter’s experience is insufficient, the GPR results will often be misinterpreted. Therefore, this study used a digital signal processing method, the Hilbert Transformation, to improve the accuracy of the GPR image interpretation.
(4)The management authority drilled boreholes at the study site in 2011 to detect the groundwater water table. The survey line was near the observational wells in order to validate the correctness of using RIP to detect the water table. Hence, the RIP response of the water table in the verification wells could serve as a reference during the detection of the water table at the study site. Therefore, according to the RIP survey results, the inverted resistivity around the water table is about 40-50 Ohm-m.
(5)Establishment of the statistical model for cavity detection: Since the outlook of the concrete faces is related to the cavity behind the concrete faces, the degree of cavity erosion of the dyke could be assessed using a linear equation. Because removing the concrete face of the dyke to check for a cavity is forbidden, the degree of cavity erosion was evaluated using a GPR image. In addition, the outlook factors must be easy to obtain and must also be sensitive to the cavity. The statistical model to correlate the degree of cavity erosion in the dyke to the outlook parameters must be of a simple form. Therefore, a multiple linear regression analysis method was used to create a simple multivariate linear equation.
論文目次 目錄

摘要 I
第ㄧ章 緒論 1
1-1 研究動機與目的 1
1-2 研究流程 3
1-3 研究論文大綱 6
第二章 文獻回顧 8
2-1 非破壞檢測定義 8
2-2 透地雷達相關研究 10
2-3 地電阻影像法相關研究 24
2-4 國內外堤岸損壞型式案例綜整 34
2-5 掏空安全評估模式相關研究 38
2-6 文獻回顧小結 55
第三章 非破壞檢測之原理與儀器介紹 57
3-1 透地雷達原理與儀器介紹 57
3-2 地電阻原理與儀器介紹 73
3-3 多元迴歸分析 92
第四章 地下舊基礎遺構探測 95
4-1 研究範圍 95
4-2 台灣府城城垣小東門段殘蹟外觀調查 102
4-3 透地雷達資料處理與解析 108
4-4 台灣府城城牆小東門段剖面建置 109
4-5 地下舊基礎遺構判釋準則之建置 115
4-6 地下舊基礎遺構探測分析 118
第五章 水庫壩體緊急性檢測 126
5-1 研究範圍 128
5-2 壩體滲流線判釋之建置 130
5-3 震後壩體檢測結果分析 131
第六章 堤防安全評估模式之建立 142
6-1 研究範圍 143
6-2 河堤掏空程度分級的建置 148
6-3 河堤目視調查因子之建立 155
6-4 堤防安全評估模式之建立 159

第七章 結論與建議 170

參考文獻 174
參考文獻 參考文獻
(1)三好 逸二,「阪神地震災損調查報告」,日本社團法人土木學會,東京,pp. 11–15(1995)。
(2)石萬壽,「府城城垣歷滄桑撫今憶昔」,e 時代,第31 期,第18-24頁(2008)。
(3)石萬壽,臺灣府城防務的研究,友寧出版有限公司,臺南,第18-24頁(1985)。
(4)江俊松,「圓管壓力容器之非破壞性檢測」,博士論文,國立清華大學動力機械工程研究所,新竹(2002)。
(5)成功大學規劃與設計學院,『國定古蹟「原日軍台灣步兵第二聯隊營舍」調查研究暨修復計劃報告書』,台南,(2007)。
(6)行政院公共工程委員會,「震後港灣及河海堤快速診斷手冊之建立與震後港灣及河海堤快速補強手段」,行政院公共工程委員會研究報告,No.106,台北(2000)。
(7)祁明松,「地質雷達在隧道內的探測」,地球科學-中國地質大學學報,第18卷,第3期,第352-357頁(1993)。
(8)李德河,吳建宏,許朝景,黃稚棨,田永銘,「熱蘭遮城底部砂丘大地工程特性之研究」, 建築學報,第67期,第41-56頁 (2009).
(9)李德河,賴新龍,吳建宏,李佳原,蔡百祥,李璧玲,「台灣府城城垣小東門甕城規模之研究」,建築學報,第78期,第123-141頁(2011)
(10)李巧盈,「台灣南部震源機制及應力分析」,碩士論文,國立台灣大學地質科學研究所,台北(2012)。
(11)李耿賢,「海堤安全性之探討」,碩士論文,國立中興大學土木工程研究所,台中(2004)。
(12)何傳坤、陳浩維,「透地雷達應用於臺灣中部考古學」,中國民族學通訊,第33期,第25-31頁(1995)。
(13)吳政中,「土木非破壞檢測之現況與發展」,營建工程非破壞檢測論文集,台北,第1-7頁(1997)。
(14)吳宏哲,「土木非破壞檢測之現況與發展」,碩士論文,國立成功大學土木工程研究所,台南(2011)。
(15)林昆達,「小波理論與類神經網路在橋梁非破壞檢測之應用」,碩士論文,國立中原大學土木工程研究所,桃園(2002)。
(16)林品均,「利用目視調查法探討混凝土堤防外觀與淘空程度相關性之研究」,碩士論文,國立成功大學土木工程研究所,台南(2012)。
(17)梁昇,「穿地雷達回波的原理及其應用於地下水水位之偵測」,農林學報,第39卷 第02期,第201-219頁(1990)。
(18)段偉宗,「併合二維、三維地電阻影像法及透地雷達法應用於管線及估計電石渣總量上之研究」,國立中央大學碩士論文,桃園(2000)。
(19)財團法人中興顧問社,「水利建造物生命週期制度之建立」,經濟部水利署研究報告,台北(2006)。
(20)黃純夫,「非破壞檢測儀器設備概述」,科儀產品新知(1~3),第48-52頁(1983)。
(21)許朝景,「透地雷達於大地環境調查之應用研究」,碩士論文,國立成功大學土木研究所,臺南(2000)。
(22)黃楷淳,「透地雷達與熱影像技術於地表下物體探測之應用研究」,碩士論文,國立成功大學土木研究所,臺南(2004)。
(23)陳力齊,「應用地電阻量測方法於環境監測與實驗室入滲試驗技術之研究」,碩士論文,嘉南藥理科技大學環境工程與科學研究所,台南(2007)。
(24)陳宜傑,「應用地電阻法於土石流地滑之研究」,碩士論文,國立中央大學應用地質研究所,桃園(2004)。
(25)曾國恩,「臺灣府城城垣南段殘蹟調查研究及修復計畫」,曾國恩建築師事務所,臺南(1986)。
(26)郭嘉穎,「混凝土河堤現況檢測評估方法之研究」,碩士論文,國立成功大學土木研究所(2005)。
(27)黃武達,〈台南市區改正計畫圖,1911 年〉《日治時期台灣都市發展地圖集》,南天書局,國史館台灣文獻館出版,台北(2006)。
(28)許朝景,「非破壞檢測於古蹟調查之應用研究」,博士論文,成功大學土木研究所,臺南(2011)。
(29)黃武達,〈台南市全圖,1915 年〉《日治時期台灣都市發展地圖集》,南一書局,國史館台灣文獻館出版,台北(2006)。
(30)黃義清,「混凝土覆面河堤淘空潛勢評估方法之研究」,碩士論文,成功大學土木研究所,臺南(2007)。
(31)張一光,「紅外線測溫與原理」,台電工程月刊,第462期,第57-63頁(1987)。
(32)張君仰,「透地雷達於古蹟探測之應用」,碩士論文,國立成功大學土木研究所,臺南(2003)。
(33)聯聖工程顧問股份有限公司,「曾文溪堤防檢查計畫成果報告書」,第六河川局,高雄(2010)。
(34)張吉佐,「地震對土石壩之影響」,地工技術雜誌,第9期,第104-115頁(1985)。
(35)董彥閔,「地電阻影像法於古蹟遺址探測與大地環境應用之研究」,碩士論文,國立成功大學土木研究所,臺南(2012)。
(36)達台企業有限公司,「EarthImager 2D & 3D Resistivity Software地電阻資料二維&三為處理軟體操作摘要」,台北(2010)。
(37)經濟部,「水利建造物檢查及安全評估技術規範--蓄水與引水篇」,第5章、第6章(2008)。
(38)經濟部,「河堤淘空檢測方法之研究」,第1章、第2章(2011)。
(39)楊証傑,「ERT在地工調查應用之問題評析與空間解析度探討」碩士論文,國立交通大學土木研究所(2004)。
(40)蕭承龍、董倫道,「透地雷達探測術於卑南遺址之應用」,國立臺灣史前文化博物館籌備處通訊,第5卷,第1-24頁,臺東(1995)。
(41)梅興泰,「RIP二維分析之初探」,碩士論文,國立台灣大學土木研究所,台北(2001)。
(42)劉大魁,「GPR與熱影像技術於大地工程之應用研究」,碩士論文,國立成功大學土木研究所,台南(2002)。
(43)鄭富書、蔡道賜、施心玫、林德松,「隧道工程非破壞檢測」,營建工程非破壞檢測論文集,台北,第73-108頁(1997)。
(44)劉興昌,「活動斷層電性研究-以湖口、新城及山腳斷層為例」,博士論文,國立中央大學地球物理研究所,桃園(2009)。
(45)劉世楨,「海堤檢維修方式探討」,碩士論文,國立海洋大學河海工程研究所,台北(2001)。
(46)賴新龍、李德河、陳信宏、林宏明、吳建宏、陳丙奇、楊瑞源,「堤防淘空潛勢評估方法之研究」,第十三屆大地工程研討會論文集,宜蘭,論文編號J-07第1-10頁(2009)。
(47)謝國興,黃世祝,王志明,范勝雄,〈台灣府城街道全圖,1875 年〉《續修台南市志卷一土地志地理篇》,台南市政府,第10–45頁(1999)。
(48)羅經書,「透地雷達應用於管線與地層調查之研究」,碩士論文,國立成功大學土木研究所,台南(1998)。
(49)經濟部水利署,「鹽水溪排水改善工程(第三工區)設計預算書」,台灣省第六河川局,高雄(1999)。
(50)ASTM, “E1316 − 13c” Standard Terminology for Nondestructive Examinations (1989).
(51)Basile, V., Carrozzo, M.T., Negri, S., Nuzzo, L., Quarta, T. and Villani, A.V., “A ground-penetrating radar survey for archaeological investigations in an urban area ,Lecce, Italy,” Journal of Applied Geophysics, Vol.44, pp.15-32(2000).
(52)Bagaloni, V.N., Perdomo, S., and Ainchil, J., “Geoelectric and Magnetic Surveys at La Libertad Archaeological site (San Cayetano County, Buenos Aires Province, Argentina): A Transdisciplinary Approach,” Quaternary International, pp. 13-24(2011).
(53)Burger, H.R., “Exploration Geophysics of the Shallow Subsurface,” Prentice Hall, New Jersey, USA, pp. 12-200(1992).
(54)Cai, J., McMechan, G.A., Fisher, M.A.. “Application of ground-penetrating radar to investigation of near-surface fault properties in the San Francisco Bay region,” Bulletin of the Seismological Society of America, Vol. 86 (5), pp. 1,459-1,470(1996).
(55)Candansayar, M.E., “Two-Dimensional Individual and Joint Inversion of Three- and Four-Electrode Array DC Resistivity Data,” Geophysical Engineering, Vol. 5, pp. 290-300(2008).
(56)Carrozzo, T., Leucci, G., Negri, S., Nuzzo, L., GPR survey to understand the stratigraphy of the Roman ships archaeological site (Pisa, Italy). Archaeological Prospection, Vol. 10 (1), pp. 57-72(2003).
(57)Cezar, G.S., Rocha, P.L.F., Buarque, A. and Costa, A., “Two Brazilian archaeological sites investigated by GPR: Serrano and Morro Grande,” Journal of Applied Geophysics, Vol. 47, pp. 227–240(2001).
(58)Chang, W., Lai, J., Yen, C., “Evolution of scour depth at circular bridge piers.” Journal of Hydraulic Engineering, Vol.30 (9), pp. 905-913(2004).
(59)Cook, J.C., “Preface”, Journal of Applied Geophysics, Vol.33. pp. 1-3(1995).
(60)Danilo, R., Marco, S. and Marco, T., “Ground penetrating radar investigations for the restoration of historic buildings: the case study of the Collemaggio Basilica, L’Aquila, Italy,” Journal of Cultural Heritage, Vol.5, pp.91-99(2004).
(61)Dahlin, T., and Zhou, B., “A Numerical Comparison of 2D Resistivity Imaging with 10 Electrode Arrays,” Geophysical Prospecting, Vol. 52, pp. 379-398(2004).
(62)Davis, J.L. and Annan, A.P., “Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy,” Geophysical Prospecting, Vol. 37, pp.531–551(1989).
(63)DeGroot-Hedlin, D., and Constable, S., “Occam's Inversion to Generate Smooth, Two-Dimensional Models from Magnetotelluric Data,” Geophysics, Vol. 55, No. 12, pp. 1613-1624(1990).
(64)Edwards, L.S., “A Modified Pseudosection for Resistivity and IP,” Geophysics, Vol. 42, No. 5, pp. 1020-1036(1977).
(65)Ferguson, R.J., Brierley, G.J., “Levee morphology and sedimentology along the lower Tuross River, south-eastern Australia,” Sedimentology, Vol. 46 (4), pp.627-648(1999).
(66)Fernandes, J.P., Andrade, M.J., “A database for dam safety management, ” Dams Safety Manage Downstream Valleys, pp.79-88(1997).
(67)Liu, Philip LF, Advances in Coastal & Ocean Engineering, Vol. 5, World Scientific, Singapore, pp.95-155(1997).
(68)Gad, E.Q., Mahfooz, H., Mohamed, A.A., Keisuke, U., “Imaging subsurface cavities using geoelectric tomography and ground-penetrating radar,” Journal of Cave and Karst Studies, Vol. 67 (3), pp.174-181(2005).
(69)Gracia, V.P., García, F., Pujades, L.G., Drigo, R.G. and Capua, D.D., “GPR survey to study the restoration of a Roman monument,” Journal of Cultural Heritage, Vol.9, pp.89-96(2008).
(70)GSSI, SIR-10 user’s Guide, GSSI(1992).
(71)ICNDT, http://www.icndt.org/Home/WhatisNDT.aspx (2013).
(72)Jeon, J., etc. “Development of dam safety management system,” Advances in Engineering Software Vol.40, pp.554-563(2009).
(73)Kearey, P., and Brooks, M., Hill, I., “An Introduction to Geophysical Exploration-Chapter 8 Electrical Surveying,” Third Edition, Wiley Blackwell, Malden, USA(2002).
(74)King, F.W., ed.. Hilbert Transform. Cambridge University, New York: Cambridge University, pp.1-142(2009).
(75)Kong, F.N., Kristiansen, J. and By, T.L., “A Radar investingation of pyramids,” Geological Survey of Finland, Special Paper 16, pp.345–349(1992).
(76)Kuo S. R. etc. “A Study of Maintenance Management System for,” Proceedings of the 32nd Ocean Engineering Conference in Taiwan,Republic of China(2010).
(77)Lee, D. H., etc. “The basic properties of mudstone slopes in southwestern Taiwan, ” Journal of GeoEngineering, Vol. 2, No. 3, pp. 81-95(2007).
(78)Lee H. H., Hsu H. W., “First-Stage Damage Inspection and Safety Evaluation on the Wharf Structures, ” Proceedings of the 23rd Ocean Engineering Conference in Taiwan, Republic of China(2001).
(79)Leucci, G., and Negri, S., “Use of ground penetrating radar to map subsurface archaeological features in an urban area,” Journal of Archaeological Science, Vol.33, pp.502-512(2006).
(80)Leopold, M., Gannaway, E., Volkel, J., Haas, F., Becht, M., Heckmann, T., Westphal, M., and Zimmer, G., “Geophysical Prospection of a Bronze Foundry on the Southern Slope of Acropolis at Athens, Greece,” Archaeological Prospection, Vol. 18, pp. 27-41(2011).
(81)Lines, L.R., and Treitel, S., “Tutorial a Review of Least-Squares Inversion and its Application to Geophysical Problems,” Geophysical prospecting, Vol. 32, pp. 159-186(1984).
(82)Liu S. J., Hsiao S. S., “An Approach of Inspection and Evaluation Model for the Safety of the Seawall,” Proceedings of the 23rd Ocean Engineering Conference in Taiwan,Republic of China(2001).
(83)Loke, M.H., “Electrical Imaging Surveys for Environmental and Engineering Studies,” pp. 1-60(1997-2001). (Website: http://www.terrajp.co.jp/lokenote.pdf)
(84)Loke, M.H., and Barker, R. D., “Rapid Least-Squares Inversion of Apparent Resistivity Ppseudosection by a Quasi-Newton Method,” Geophysical Prospecting, Vol.44, pp.499-524(1996).
(85)Loke, M.H., and Dahlin, T., “A Comparison of the Gauss-Newton and Quasi-Newton Methods in Resistivity Imaging Inversion,” Geophysics, Vol. 49, pp. 149-162(2002).
(86)Loke, M.H. and Barker, R.D., “Least-squares Deconvolution of Apparent Resistivity Pseudosections,” Geophysics, Vol.60, pp. 1682-1690(1995).
(87)Milsom, J., “Field Geophysics,” Third Edition, West Sussex, England, pp. 198-199(2005).
(88)Muller B.C., Mayer D., “The evolution of reclamation’s risk based dam safety program management and decision making,” United States society on dams; technologies to enhance dam safety and the environment; pp. 693-702(2005).
(89)Panek, T., Margielewski, W., Tabonk, P., Urban, J., Hradecky, J., and Szura, C., “Gravitationally Induced Caves and Other Discontinuities Detected by 2D Electrical Resistivity Tomography: Case Studies from the Polish Flysch Carpathians,” Geomorphology, pp. 165-180(2010).
(90)Rashed, M., Kawamura, D., Nemoto, H., Miyata, T., Nakagawa, K.. Ground penetrating radar investigations across the Uemachi fault, Osaka, Japan. Journal of Applied Geophysics, Vol. 53 (2-3), pp. 63-75(2003).
(91)Rosella, C., Antonella, D.D., Giorgio, D.N., Gianni, L., Luigia, N., Stefano, S., “Integrated methods for analysis of deterioration of cultural heritage: the Crypt of “Cattedrale di Otranto,” Journal of Cultural Heritage, Vol. 6, pp.29-38(2005).
(92)Saarenketo, T., Scullion, T., “Road evaluation with ground penetrating radar, ” Journal of Applied Geophysics, Vol. 43 (2-4), pp.119-138(2000).
(93)Seje, C., Sam, J., Anders, W., “Radar techniques for indicating internal erosion in embankment dams,” Journal of applied geophysics, Vol. 33 (1-3), pp.143-156(1995).
(94)Seno, T., “A model for the motion of the Philippine Sea plate consistent with NUVEL-1,” Journal of Geophysical Research, Vol.98, No. B10, pp. 17,941-17,948(1993).
(95)Sheriff, R.E., and Geldart, L.P., “Exploration seismology: History, theory, and data acquisition,” Vol. 1, Cambridge University Press, Cambridge, UK(1982).
(96)Szalai, S., and Szarka, L., “On the Classification of Surface Geoelectric Aarrays,” Geophysical Prospecting, Vol. 56, pp. 159-175(2008).
(97)Tsokas, G.N., et al. “Non-destructive Electrical Resistivity Tomography for Indoor Investigation: the Case of Kapnikarea Church in Athens,” Archaeological Prospection, Vol. 15, pp. 47-61(2008).
(98)Walden, A.T., and Hosken, J.W., “An investigation of the spectral properties of primary reflection coefficients,” Geophysical Prospecting, Vol. 33, pp.400-435(1985).
(99)Walid, A., Michel, B., Roger, G., Michel, D., “Analysis of the karst aquifer structure of the Lamalou area (H´erault, France) with ground penetrating radar,” Journal of Applied Geophysics, Vol. 51 (2-4), pp. 97-106(2002).
(100)Walter, A.B., Robert, E.K., “Radar structure of earthquake-induced, coastal landslides in Anchorage, Alaska,” Environmental Geosciences, Vol.7 (1), pp. 38-45(2000).
(101)Wu, J. H., etc. “Integrity assessment of rock mass behind the shotcreted slope using thermography,” Engineering Geology Vol. 80, pp.164- 173(2005).
(102)USACE., Understanding Condition Indexes Current Status and Future Opportunities, Engineer Research and Development Center(2001).
(103)Xu, X.X., Wu, J., Shen, J.Y., He, Z.C., “Case study: application of GPR to detection of hidden dangers to underwater hydraulic structures,” Journal of Hydraulic Engineering, Vol. 132 (1), pp. 12-20(2006).
(104)Yu, S.B., Chen, H.Y., and Kuo, L.C., “Velocity field of GPS stations in the Taiwan area: Tectonophysics,” Vol. 274, pp.41-59(1997).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-09-14起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw