進階搜尋


下載電子全文  
系統識別號 U0026-0509201021422100
論文名稱(中文) 具金奈米柱之三維微米元件
論文名稱(英文) Three-Dimensional Polymer Microdevices with Gold Nanorods
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 98
學期 2
出版年 99
研究生(中文) 連啟翔
研究生(英文) Chi-Hsiang Lien
學號 N9697434
學位類別 碩士
語文別 英文
論文頁數 40頁
口試委員 指導教授-陳顯禎
口試委員-邱爾德
口試委員-董成淵
口試委員-羅裕龍
口試委員-張世慧
中文關鍵字 雙光子聚合反應  金奈米柱  表面電漿子 
英文關鍵字 Two-photon polymerization  Gold nanorods  Plasmonic. 
學科別分類
中文摘要 本論文主要利用雙光子激發(two-photon excited,TPE)產生光化學(photochemistry)之技術製作具金奈米柱(gold nanorods,AuNRs)三維微米結構與元件,藉由飛秒(femtosecond,fs)雷射的雙光子吸收而激發光起始劑孟加拉玫瑰素(Rose Bengal,RB)與共同起始劑三乙醇胺(TEA)進行電子轉移因而誘發高分子反應單體如TMPTA或Acrylamide進行連鎖雙光子聚合反應(two-photon polymerization,TPP)。然而,本文將AuNRs事先均勻融入聚合反應的溶液中,於聚合反應的發生同時將金奈米柱固化於結構中,進而製作一個3D微米結構使其具有表面電漿子(surface plasmons,SPs)之特性,並且本文中模擬SPs激發條件與AuNRs於近紅外光的一些光電特性。
TPE光化學技術製作時AuNRs會吸收飛秒雷射瞬間能量,造成SPs振動而伴隨大量熱能產生,瞬間高溫將超過金的熔點,使其AuNRs產生光熱形變(photothermal reshaping)成為圓球狀,而造成此AuNRs失去原本於近紅外光的光電特性。經理論模擬與參考文獻,聚合反應所使用的具有100 fs脈衝寬度之飛秒雷射能量必須低於0.5 mW,因此本論文進行不同波長下雙光子吸收(two-photon absorption,TPA)情形之討論。實驗結果可知針對本文所使用的光起始劑RB而言,TPA最大值在雷射波長為715 nm,因此使用此激發波長來降低TPP反應時所使用的雷射能量瓦特數,使其低於AuNR造成光熱變形的飛秒雷射能量閥值。完成之三維微奈米電漿子結構由掃描式電子顯微鏡(scanning electron microscope,SEM)進行確認。最後,將具AuNRs之三維微米結構經低能量的TPE得到雙光子致光(two-photon luminescence,TPL) 影像,同時也可在三維結構裡設計圖樣利用高於AuNR光熱變形之閥值能量,進行光熱變形使其紅外線SPs特性消失,再藉由低能量掃描得到特定圖樣之TPL影像。
英文摘要 In this thesis, a three-dimensional (3D) polyacrylamide microstructure containing gold nanorods (AuNRs) was fabricated successfully by utilizing femtosecond laser-based two-photon polymerization (TPP) with a Rose Bengal (RB) photoinitiator, and can provide a great diversity of optical properties. To maintain AuNRs in the 3D polymer microstructures, the fabrication laser power can be significantly reduced to 1.0 mW by tuning the laser wavelength for the two-photon absorption of RB to improve TPP efficiency, but not for the longitudinal plasmon resonance of AuNRs to photothermally damage AuNRs.
After the TPP processing, a higher laser power, greater than the threshold of the AuNR damage at the wavelength for the longitudinal plasmon resonance, is adopted to reshape the AuNRs into gold nanospheres. Then, the existence of the AuNRs in designated positions of the fabricated 3D microstructures can be achieved. The doped AuNRs with two-photon luminescence also act as contrast agent for internal diagnosis of 3D polymer microstructures.
論文目次 Chapter 1 Introduction.................................1
1.1 Introduction...................................1
1.2 Motivation.....................................3
1.3 Outline........................................4
Chapter 2 Optical Properties of Gold Nanorods and Preparation............................................5
2.1 Surface plasmon of gold nanorods...............5
2.2 Gold nanorods preparation.....................11
Chapter 3 Multiphoton Fabrication System and Experimental Setup.................................................13
3.1 Optical setup.................................13
3.2 3D freeform modeling and transformation.......15
3.3 Sample preparation............................16
Chapter 4 Fabrication of 3D Polymer Microstructures with Gold Nanorods.........................................20
4.1 Wavelength choice in femtosecond laser microfabrication......................................20
4.2 Gold nanorods selectivity by femtosecond laser reshaping.............................................23
4.3 3D microfabriaction...........................28
Chapter 5 Conclusions and Future Works................33
References............................................35
參考文獻 1. C. R. Lambert, I. E. Kochevar, and R. W. Redmond, “Differential reactivity of upper triplet states produces wavelength-dependent two-photon photosensitization using Rose Bengal,” J. Phys. Chem. B 103, 3737-3741 (1999).
2. J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release,” Macromolecules 33, 1514-1523 (2000).
3. P. J. Campagnola, D. M. Delguidice, G. A. Epling, K. D. Hoffacker, A. R. Howell, J. D. Pitts, and S. L. Goodman, “3-dimensional submicron polymerization of acrylamide by multiphoton excitation of xanthene dyes,” Macromolecules 33, 1511-1513 (2000).
4. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697-698 (2001).
5. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249-251 (2001).
6. T. Tanaka, H. B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett. 80, 312-314 (2002).
7. M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, “Femtosecond two-photon stereo-lithography,” Appl. Phys. A: Mater. Sci. Process. 73, 561-566 (2001).
8. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
9. T. Watanabe, M. Akiyama, K. Totani, S. M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S. R. Marder, and J. W. Perry, “Photoresponsive hydrogel microstructure fabricated by two-photon initiated Polymerization,” Adv. Funct. Mater. 12, 611-614 (2002).
10. Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3D microstructures,” Adv. Mater. 20, 914-919 (2008).
11. A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, and H. Misawa, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26, 277-279 (2001).
12. P. W. Wu, W. C. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater. 12, 1438-1441 (2000).
13. Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5, 1144-1148 (2009).
14. N. Takeshima, Y. Narita, T. Nagata, and S. Tanaka, “Fabrication of photonic crystals in ZnS-doped glass,” Opt. Lett. 30, 537-539 (2005).
15. G. Zhou and M. Gu, “Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal,” Opt. Lett. 31, 2783-2785 (2006).
16. Z. B. Sun, X. Z. Dong, S. Nzkanishi, W. Q. Chen, X. M. Duan, and S. Kawata, “Log-pile photonic crystal of CdS-polymer nanocomposites fabricated by combination of two-photon polymerization and in situ synthesis,” Appl. Phys. A 86, 427-431 (2007).
17. W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents and in near-infrared optical imaging,” Angew. Chem. Int. Ed. 49, 2711-2715 (2010).
18. W. S. Kuo, C. M. Wu, Z. S. Yang, S. Y. Chen, C. Y. Chen, C. C. Huang, W. M. Li, C. K. Sun, and C. S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. 37, 4430-4432 (2008).
19. W. S. Kuo, C. N. Chang, Y. T. Chang, and C. S. Yeh, “Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia,” Chem. Commun. 32, 4853-4855 (2009)
20. J. Nappa, G. Revillod, J. P. Abid, I. Russier-Antoine, C. Jonin, E. Benichou, H. H. Giraultb, and P. F. Brevet, “Hyper-Rayleigh scattering of gold nanorods and their relationship with linear assemblies of gold nanospheres,” Faraday Discuss. 269, 935-939 (2004).
21. A. K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K. M. Naylor, B. Varisli, J. R. Kalluri, and P. C. Ray, “Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy,” ACS Nano 3, 1906-1912 (2009).
22. Q. Liao, C. Mu, D. S. Xu, X. C. Ai, J. N. Yao, and J. P. Zhang, “Gold nanorod array with good reproducibility for high-performance surface-enhanced Raman scattering,“ Langmuir 25, 4708-4714 (2009).
23. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, “Plasmon-resonant gold nanorods as backscattering albedo contrast agents for optical coherent tomography, “ Opt. Express 14, 6724-6738 (2006).
24. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano. Lett. 7, 941-945 (2007).
25. M.B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317, 517-523 (2000).
26. C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
27. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459, 410-413 (2009).
28. C. Ungureanu, R. G. Rayavarapu, S. Manohar, and T. G. van Leeuwen, “Discrete dipole approximation simulations of gold nanorod optical properties: Choice of input parameters and comparison with experiment,” Appl. Phys. 105, 102032-7 (2009).
29. C. A. Foss Jr., G. L. Hornyak, J. A. Stockert, and C. R. Martin, “Optical properties of composite membranes containing arrays of nanoscopic gold cylinders,” J. Phys. Chem. 96, 7497-7499 (1992).
30. C. R. Martin, “Nanomaterials - a membrane-based synthetic approach,” Science 266, 1961-1966 (1994).
31. Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C.R.C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661-6664 (1997).
32. N. R. Jana, L. Gearheart, and C. J. Murphy, “Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles,” Chem. Mater. 13, 2313-2322 (2001).
33. J. Perez-juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coordination Chem. Rev. 249, 1870-1901 (2005).
34. M. Z. Liu and P. Guyot-Sionnest, “Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids,” J. Phys. Chem. B 109, 22192–22200 (2005).
35. Z. Zhang and T. Yagi, “Observation of group delay dispersion as a function of the pulse width in as mode locked Ti:sapphire laser,” Appl. Phys. Lett. 63, 2993-2995 (1993).
36. L. P. Cunningham, M. P. Veilleux, and P. J. Campagnola, “Freeform multiphoton excited microfabrication for biological applications using a rapid prototyping CAD-based approach,” Opt. Express 14, 8613-8621 (2006).
37. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13,481-491 (1996).
38. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. 104, 6152-6163 (2000).
39. O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D: Appl. Phys. 41, 185501 (2008).
40. C.-Y. Lin, K.-C. Chiu, C.-Y. Chang, S.-H. Chang, T.-F. Guo, and S.-J. Chen, “Surface plasmon-enhanced and quenched two-photon excited fluorescence,” Opt. Express 18, 12807-12817 (2010).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2011-09-09起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2011-09-09起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw