進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0509201013562800
論文名稱(中文) 微流體技術應用於動物細胞之分離純化、包埋、定量取樣、及連續式三維細胞培養
論文名稱(英文) Development of microfluidic systems for micro-scale animal cell culture- from cell separation, microencapsulation, micro-dispensing to perfusion 3-dimensional cell culture
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 98
學期 2
出版年 99
研究生(中文) 黃菘斌
研究生(英文) Song-Bin Huang
學號 n9896125
學位類別 博士
語文別 英文
論文頁數 132頁
口試委員 指導教授-李國賓
口試委員-楊瑞珍
口試委員-曾繁根
口試委員-楊燿州
口試委員-謝達斌
口試委員-林哲信
口試委員-吳旻憲
中文關鍵字 三維細胞培養  海藻膠  取樣器  分離器  微珠  微型培養區  微包埋  微流體技術  微型幫浦  連續式細胞培養  氣壓驅動 
英文關鍵字 3-D cell culture  Alginate  Dispenser  Filter  Microbeads  Microbioreactors  Microencapsulation  Microfluidics  Micropumps  Perfusion cell culture  Pneumatic pressure 
學科別分類
中文摘要 以細胞為基礎之生醫研究已被廣泛運用於生命科學領域中探討細胞生理反應與環境因子之關係。傳統細胞操控之項目步驟主要包含了細胞分離、純化,固定包埋,流體定量傳輸以及細胞培養。然而這些操作方法大多無法運用在處理小量的生物樣本體積量。甚且,傳統細胞培養過程中需要消耗大量資源(例如:細胞數量),進而影響了細胞基礎分析研究結果之生產率。此外,傳統的細胞培養方式無法提供具有生理意義、均質、且穩定之細胞培養環境。然而,近幾年來,由於微流體技術被驗證出許多優勢能夠改善傳統技術之缺點,且藉由其本身微小尺度之物理意義不同於傳統大尺度,微流體技術能夠提供許多獨特之機能是為傳統技術無法達到。因此,在此篇論文中提出了許多由微流體技術建構之高效率細胞處理方式以及高通量化之細胞培養方法。其先利用微雕機或者微影技術製作母模結構,再以聚二甲基矽氧烷 (PDMS: poly-dimethylsiloxane) 翻模建置出所需晶片。首先,一微流體技術建構之微型過濾晶片被提出用於微量細胞或是微珠之分離。其分離機制是利用可撓性的薄膜,加以適當氣體壓力驅此可撓性的薄膜產生不同下壓程度而產生不同大小的通道以用於篩選不同大小之細胞或微珠。甚且,利用整合於晶片當中之微型幫浦以達成自動化流體流向控制以及提供一機制防止於分離步驟當中之阻塞現象。接著,提出一新型的海藻膠微珠成型微流體裝置並且應用於細胞包埋。此裝置整合了氣動式振動原件且其下方連接著針頭,因此當針頭振動時,變會驅使於海藻膠液滴產生於油相當中,再利用重力方式,讓海藻膠液滴沉入氯化鈣溶液中固化形成海藻膠微珠。而不同的海藻膠微珠大小可藉由適當調控海藻膠流速以及氣動式振動原件振動頻率搭配而達成。此外,一微流體建構之微型取樣器被提出能夠送樣樣品量小於微升體積量。其特色便是整合氣壓驅動之薄膜當作快速吸取/送樣定量液體之原件。藉由適當控制氣壓驅動之薄膜元件當中之壓力釋放時間,便能夠快速取樣且送量不同量之樣品量範圍從0.05-0.45微升 (最小樣品量單位為0.05微升)。因此,此裝置提供了一易整合之多樣品量取樣送樣裝置。甚且,一新式微流體建置之連續式、微型三維細胞培養晶片亦被提出並應用於高通量生物分析研究。其主要特色為整合了利用新型C形狀微型幫浦建構之高通量培養液傳輸系統具有防止液體回流、高通量細胞膠體注入之功能。藉由此細胞培養晶片微型化之特色,其不僅提供了一生理意義、均質、且穩定之細胞培養環境,更大幅減少了細胞培養時所需之生物樣品消耗量。這些特點皆高度適用於高通量化以及高精確之三維細胞培養系統。最後,為了證實此研究所提出之裝置,將所提出之微流體裝置被應用於分離/純化、包埋關節軟骨細胞,以及探討關節軟骨細胞與其生長環境中酸鹼度之影響。實驗結果表示微型過濾晶片能提供高效率之體積量受限之細胞,其分離篩選率(93%)且不會對細胞造成傷害(細胞存活率:96%)之操作。而被分離出的關節軟骨細胞更進一步利用之海藻膠微珠成型裝置完成將細胞包埋於海藻膠微珠之程序,同樣的,此裝置亦不會對細胞造成傷害死亡於操作過程當中(細胞存活率:94±2%)。此外,微型取樣器亦成功用於調配出不同酸鹼值之培養液並將調配完之培養液與關節軟骨細胞一同放入新式細胞培養晶片培養以及分析最後細胞代謝產物。甚且為了比較微型化連續式細胞培養以及傳統細胞培養之差異,實驗結果更與一般大型靜置式的細胞培養結果有所比較。因此,此研究中所提出的微流體裝置,不僅提供了簡單、自動化、容易控制、條件均一、不傷害細胞生理、低汙染之細胞操作以及培養方法,更提供了高通量以及與生物體相似的培養環境以利細胞生理研究之進行。
英文摘要 Cell-based assays have been widely utilized in life science-related area to quantitatively investigate the link between the cellular responses and the tested conditions for decades. Conventional cell handling techniques mainly involve the cell isolation, separation, immobilization, liquid dispensing, and cell culture practice. These operations, however, might not be able to deal well with the biological sample with a small size. In addition, the commonly-used cell culture protocols might consume more experimental research resources (e.g. number of cells), and therefore the throughput of a cell-based assay might be compromised. More importantly, traditional cell cultures could not provide a stable, well-defined, and physiologically-meaningful culture conditions for cell-based assays due to the design of cell culture format. During the past decade, there have been tremendous advances in microfluidics. Due to the significant differences in several physical phenomena between microscale and macroscale devices, microfluidic technology provides unique functionality, which is not previously possible by using traditional techniques. This study reports several new microfluidic devices for high-performance cell handling and for high-throughput cell culture. All these devices fabricated based on a computer numerical controlled (CNC) milling or SU-8 lithography process for molds and polydimethylsiloxane (PDMS) replica molding processes. Firstly, to achieve cell isolation and separation, a new microfluidic-based filter was presented. The filtration separation mechanism is based on the pneumatically tunable deformation of PDMS membranes, which block the fluid channel with a varied degree. This defines the dimensions of the remaining passageway of fluid channel and thus the passage of the microbeads/cells with a specific size. Because of the miniaturization and tunable characteristics of separation performance, not only is the proposed device applicable to perform cell separation under the circumstance that either harvested specimen is limited to the cell content in a sample is sparse, but it also paves a new rout to separate/isolate cells in a simple, controllable and cell-friendly manner. To immobilize cells for 3-D cell culture purpose, a new microfluidic device for continuous generation of alginate microbeads was proposed. The working mechanism is based on the use of a pneumatically-driven vibrator to continuously spot tiny alginate microdroplets in a thin oil layer. The temporarily formed alginate microdroplets are soon sinking into a sterile calcium chloride solution to become gelled microbeads. By regulating the alginate suspension flow rate and the pulsation frequency of the integrated vibrator, the alginate microbeads can be produced in a size-controllable manner. Furthermore, a microfluidic-based pneumatically-driven micro-dispenser was demonstrated for precise pipetting of sub-microliter samples. The key feature of the micro-dispenser is the use of a suction membrane to provide a driving force for precise and quick aqueous liquid sampling and pipetting. The micro-dispenser features in the elegant control of the releasing time of the air pressure in the pneumatic chamber of the pressure-generating unit, contributing to precise pipetting of aqueous liquid volumes ranging from 0.05 μl to 0.45 μl (the minimum unit is 0.05 μl) achieving the multi-volume dispensing capability. By means of proper combinations, the liquid of various volumes would be easily sampled. In addition, a new perfusion-based, micro three-dimensional (3-D) cell culture platform was proposed for high-throughput bioassays using enabling microfluidic technologies. The main characteristics of the chip are the capability of multiple medium deliveries without any back-flow by using the new design pneumatic C-shape micropumps, and the function of efficient cells/hydrogel scaffold loading. Based on the inherent natures of miniaturized perfusion 3-D cell culture, the cell culture chip not only can provide stable, well-defined and more biologically-relevant culture environments, but also features in low consumption of research resource. All these traits are found particularly useful for high-precision and high-throughput 3-D cell culture-based assays. Finally, all the microfluidic devices proposed in the research were demonstrated to perform the process including separation, microencapsulation of the chondrocytes and investigation the effect of extracellular pH on chondrocyte functions. Experimental results showed that the chondrocytes from the limited enzymatically-digested tissue suspension can be successfully separated by using the microfluidic-based filter with an excellent cell separation efficiency of 93 % and a high cell viability of 96%. Moreover, the separated chondrocytes were encapsulated in alginate microbeads with high cell viability (94±2%) by using the microfluidic alginate microbead generator. Besides, a micro-scale perfusion 3-D cell culture-based assay to study the effect of extracellular pH on chondrocyte was successfully demonstrated using the proposed cell culture chip and the micro-dispenser was used to adjust the different pH value of the medium. The results were also compared with the same evaluation based on conventional static cell culture with larger culture scale. As a whole, these microfluidic systems proposed in the study provide a simple, automatic, controllable, uniform, cell friendly, less contaminated manner for cell manipulation and culturing and may facilitate a high-throughput cell culture based assay in the more in vivo-like environment.
論文目次 Abstract I
中文摘要 IV
致謝 VI
List of Figures XII
Nomenclature XVIII
Abbreviation XIX
Chapter 1: Introduction 1
1.1 Introduction to animal cell culture 1
1.2 Microfluidics as a niche technology for cell culture based assay 4
1.2.1 Introduction to microfluidics 4
1.2.2 Microfluidic-based Lab on a chip 5
1.3 Motivation and objectives 6
1.4 Scope and structure of the dissertation 7
Chapter 2 Theory 11
2.1 Chemical gradients in 3-D cell culture construct 11
2.2 Fundamentals of pneumatically-driven membrane-based actuators 13
2.2.1 Deflection of the circular-type PDMS membrane 13
2.2.2 Deflection of the rectangular-type PDMS membrane 14
2.2.3 Operation time of the pneumatic-based actuators 14
Chapter 3 Materials and Methods 18
3.1 Microfabrication of microfluidic devices 18
3.1.1 Fabrication of masters using photolithography 18
3.1.2 Fabrication of masters using computer numerical control (CNC) milling 19
3.1.3 PDMS replica molding 20
3.1.4 Chip packaging 20
3.1.5 PDMS surface modification 21
3.2 Performances of microfluidic devices 21
3.2.1 Evaluation of the pumping rates 21
3.2.2 Observation of the high-speed motions 22
3.2.3 Experimental setups for fluidic and temperature control 22
3.2.4 Image analysis 22
3.3 Bioassays 23
3.3.1 Cell number and cell viability 23
3.3.2 Lactate 23
3.3.3 Glycosaminoglycan 23
Chapter 4 Development of a tunable micro filter modulated by pneumatic pressure 26
4.1 Introduction 26
4.2 Design and Fabrication 28
4.2.1 Design 28
4.2.2 Fabrication 31
4.3 Evaluation of separation performances 32
4.3.1 Evaluation of the tunable membrane filter 32
4.3.2 Evaluation of the sorting ratio 32
4.3.3 Evaluation of the filtration flux rate 33
4.4 Results and discussion 33
4.4.1 Characterization of the pneumatically-tunable microfluidic filter 33
4.4.2 Separation performance 35
4.5 Summary 37
Chapter 5 Development of Pneumatically-driven micro-vibrators to generate alginate microbeads 46
5.1 Introduction 46
5.2 Design and Fabrication 48
5.2.1 Design 48
5.2.2 Fabrication 50
5.3 Experimental 51
5.3.1 Setup 51
5.3.2 Evaluation of flow output 51
5.3.3 Evaluation of the vertical displacement of the vibrators 52
5.3.4 Evaluation of alginate microbead size and uniformity 52
5.4 Results and discussion 53
5.4.1 Characterization of the pneumatically-driven micro-vibrators 53
5.4.2 Evaluation of the size and uniformity of alginate microbeads 55
5.5 Summary 56
Chapter 6 Development of pneumatically driven micro-dispenser for sub-micro-liter pipetting 64
6.1 Introduction 64
6.2 Design and Fabrication 65
6.2.1 Design 65
6.2.2 Fabrication 67
6.3 Experimental 67
6.3.1 Evaluation of the micro-dispenser 67
6.3.2 Evaluation of the titration ability of the micro-dispenser 68
6.4 Results and Discussion 68
6.4.1 Characterization of the micro-dispenser 68
6.4.2 Comparison the performance of the micro-dispenser and the commercial pipettor 70
6.5 Summary 71
Chapter 7 Development of high-throughput perfusion-based micro 3-D cell culture platform 78
7.1 introduction 78
7.2 Design and Fabrication 81
7.2.1 Design 81
7.2.2 Microfabrication 84
7.3 Experimental 84
7.3.1 Setup 84
7.3.2 Pumping action and performance 85
7.4 Results and Discussion 85
7.4.1 Cells/agarose loading mechanism 85
7.4.2 Pneumatic micropumps for multiplex culture medium delivery 86
7.5 Summary 87
Chapter 8 The separation, microencapsulation, cell culture of articular chondrocytes-demonstration for high throughput 3-D cell culture-based assay 94
8.1 Preparation of chondrocytes suspension 95
8.2 Separation of chondrocytes from enzymatically-digested cartilage tissue suspension by using the micro filter 95
8.3 Pneumatically-driven micro-vibrators to generate alginate microbeads for the microencapsulation of cells 97
8.4 Adjustment of the pH value of the culture medium by using the micro-dispenser 98
8.5 Investigation of the effect of extracellular pH on chondrocyte function using the microfluidic cell culture chip 99
8.6 Summary 102
Chapter 9 Conclusions and Future Work 107
9.1 Conclusions 107
9.2 Future Work 110
References 113
Biography 128
Publication list 129
參考文獻 [1] N. Maluf, “An Introduction to Microelectromechanical Systems Engineering”, Artech House, Boston, 1, 2000.
[2] M. Sittinger, O. Schultz, G. Keyszer, W. W. Minuth, and G. R. Burmester, “Artificial tissues in perfusion culture,” Int. J. Artif. Organs, 1997, 20, 57-62.
[3] M. H. Wu, J. P. G. Urban, Z. Cui, and Z. F. Cui, “Development of PDMS microbioreactor with well-defined and homogenous culture environment for chondrocyte 3-D culture,” Biomed. Microdevices, 2006, 8, 331-340.
[4] T. Ma, S. T. Yang, and D. A. Kniss, “Development of an in vitro human placenta model by the cultivation of human trophoblasts in a fiber-based bioreactor system,” Tissue Eng., 1999, 5, 91-102.
[5] H. Baharvand, S. M. Hashemi, S. K. Ashtiani, and A. Farrokhi, “Differentiation of Human Embryonic Stem Cells into Hepatocytes in 2D and 3D Culture System in vitro,’’ Int. J. Dev. Biol., 2006, 50, 645-652.
[6] P. D. Benya, and J. D. Shaffer, “Dedifferentiated chondrocytes re-express the differentiated collagen phenotype when cultured in agarose gels,” Cell, 1982, 30, 215-224.
[7] S. Zhang, “Beyond the perti dish,” Nat. Biotechnol., 2004, 22, 151-152.
[8] W. M.Saltzman, and W. L. Olbricht, “Building drug delivery into tissue engineering,” Nat. Rev. Drug Discov., 2002, 1, 177-186.
[9] G. M. Walker, H. C. Zeringue and D. J. Beebe, “Microenvironment design considerations for cellular scale studies,” Lab Chip, 2004, 4, 91-97.
[10] G. M. Whitesides, “The origins and the future of microfluidics,” Nature, 2006, 442, 368-473.
[11] H. Becker, and L. E. Locascio, “Polymer Microfluidic Devices,” Talanta, 2002, 56, 267-287.
[12] S. L. Chong, D. G. Mou, A. M. Ali, S. H. Lim, and B. T. Tey, “Cell growth, cell cycle progress and antibody production in hybridoma cells cultivated under mild hypothermic conditions,” Hybridoma, 2008, 27, 107-111.
[13] C. Brandam, C. Castro-Martínez, M. L. Délia, F. Ramón-Portugal, and P. Strehaiano, “Effect of temperature on Brettanomyces bruxellensis: metabolic and kinetic aspects,” Can. J Microbiol., 2008, 54, 11-18.
[14] E. Leclerc, Y. Sakai, and T. Fujii, “Microfluidic PDMS (Polydimethylsiloxane) Bioreactor for Large-scale Culture of Hepatocytes,” Biotechnol. Prog., 2004, 20, 750-755.
[15] J. C. Macdonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of Microfluidic Systems in Poly(dimethylsiloxane),” Electrophoresis, 2000, 21, 27-40.
[16] Y. Xia, and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci., 1998, 28, 153–184.
[17] D. D. Carlo, L. Y. Wu, and L. P. Lee, “Dynamic single cell culture array,” Lab Chip, 2006, 6, 1445-1449.
[18] H. Mirzadeh, F. Shokrolashi, and M. Daliri, “Effect of silicon rubber crosslink density on fibroblast cell behavior in vitro,” J. Biomed. Mater. Res. B, 67A, 2003, 727-732.
[19] J. N. Lee, X. Jiang, D. Ryan, and G. M. Whitesides, “Compatibility of mammalian cells on surfaces of polydimethylsiloxane,” Langmuir, 2004, 20, 11684-11691.
[20] S. G. Charati, and S. A. Sterm, “Diffusion of gases in silicone polymers: molecular dynamic simulations,” Macromolecules, 1998, 31, 5529-5535.
[21] M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science, 2000, 288, 113-116.
[22] C. H. Wang, and G. B. Lee, “Automatic bio-sampling chips integrated with micro-pumps and micro-valves for disease detection,” Biosens. Bioelectron., 2005, 21, 419-425.
[23] C. H. Wang, and G. B. Lee, “Pneumatically driven peristaltic micropumps utilizing serpentine-shape channels,” J. Micromech. Microeng., 2006, 16, 341-348.
[24] S. B. Huang, M. H. Wu, J. P. G. Urban, Z. Cui, Z. F. Cui, and G. B. Lee, “A membrane-based serpentine-shape pneumatic micropump with pumping performance modulated by fluidic resistance,” J. Micromech. Microeng., 2008, 18, 045008 (12pp).
[25] P. J. Hung, P. J. Lee, P. Sabounchi, N. Aghdam, R. Lin, and L. P. Lee, “A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in high throughput mammalian cell culture array,” Lab Chip, 2004, 5, 44-48.
[26] W. Gu, X. Zhu, N. Futai, B. S. Cho, and S. Takayama, “Computerized microfluidic cell culture using elastomeric channels and braille displays,” Proc. Natl. Acad. Sci. U. S. A., 2004, 9, 15861-15866.
[27] B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, and N. L. Jeon, “Human neural stem cell growth and differentiation in a gradient-generating microfluidic device,” Lab Chip, 2005, 5, 401-406.
[28] A. Paguirigan, and Beebe D. J., “Gelatin based microfluidic devices for cell culture,” Lab Chip, 2006, 6, 407-413.
[29] J. R. Anderson, D. T. Chiu, J. C. McDonald, R. J. Jackman, O. Cherniavskaya, H. Wu, S. Whitesides, and G. M. Whitesides, “Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping,” Anal. Chem., 2000, 72, 3158-4164.
[30] M. H. Wu, S. B. Huang, J. P. G. Urban, Z. Cui, Z. F. Cui, and G. B. Lee, “Development of perfusion-based micro 3-D cell culture platform and its application for high throughput drug testing,” Sensor. Actuat. B, 2008, 129, 231–240.
[31] M. H. Wu, S. B. Huang, J. P. G. Urban, Z. Cui, Z. F. Cui, and G. B. Lee, “A high throughput perfusion-based microbioreactor platform integrated with pneumatic micropumps for three-dimensional cell culture,” Biomed. Microdevices, 2008, 10, 309–319.
[32] S. Timoshenko and S. Woinowsky-krieger, “Theory of Plates and Shells,” New York, McGraw-Hill, 1959.
[33] A. D. Kerr, and H. Alexander, “An application of the extended Kantorovich method to the stress analysis of a clamped rectangular plate,” Acta. Mechanica., 1968, 6, 180-196.
[34] C. W. Huang, S. B. Huang, and G. B. Lee, “Pneumatic micropumps with serially connected actuation chambers,” J. Micromech. Microeng., 2006, 16, 2265–2272.
[35] G. T. A. Kovacs, “Micromachined Transducers Sourcebook,” New York, McGraw-Hill, 2000, 792-793.
[36] Z. Wu, N. Xanthopoulos, F. Reymond, J. S. Rossier, and H. H. Girault, “Polymer microchips bonded by O2-plasma activation,” Electrophoresis, 2002, 23, 782-790.
[37] K. Efimenko, W. E. Wallace, and J. Genzer, “Surface modification of Sylgard-184 polydimethylsiloxane networks by ultraviolet and ultraviolet/ozone treatment,” J. Colloid Interf. Sci., 2002, 254, 306-315.
[38] A. Higuchia, K. Sugiyamaa, B. O. Yoona, M. Sakuraib, M. Haraa, M. Sumitac, M. Sugawarac, and T. Shirai, “Serum protein adsorption and platelet adhesion on pluronict-adsorbed polysulfone membranes,” Biomaterials, 2003, 24, 3235–3245.
[39] J. L. Lin, M. H. Wu, C. Y. Kuo, K.D. Lee, and Y. L. Shen, “Application of indium tin oxide (ITO)-based microheater chip with uniform thermal distribution for perfusion cell culture outside a cell incubator,” Biomed. Microdevices, 2010, 3, 389-398.
[40] R. W. Farndale, D. J. Buttle, and A. J. Barrett, “Improved Quantitation and Discrimination of Sulphated Glycosaminoglycans by Use of Dimethylmethylene Blue,” J Biochim. Biophys. Acta, 1986, 883, 173-177.
[41] C. D. Hoemann, J. Sun, V. Chrzanowski, and M. D. Buschmann, “A Multivalent Assay to Detect Glycosaminoglycan, Protein, Collagen, RNA, DNA Content in Milligram Samples of Cartilage or Hydrogel-based Repair Cartilage,” Analytical Biochemistry, 2002, 300, 1-10.
[42] S. Fiedler, S. Shirley, T. Schnelle, and G. Fuhr, “Dielectrophoretic sorting of particles and cells in a microsystem,” Anal. Chem., 1998, 70, 1909–1915.
[43] G. Markx, Y. Huang, X. Zhou, and R. Pethig, “Dielectrophoretic characterization and separation of microorganisms,” Microbiology, 1994, 140, 585–591.
[44] X. Wang, J. Yang, Y. Huang, J. Vykoukal, F. Becker, and P. Gascoyne, “Cell separation by dielectrophoretic field-flow-fractionation,” Anal. Chem., 2000, 72, 832–839.
[45] Y. Huang, S. Joo, M. Duhon, M. Heller, B. Wallace, and X. Xu, “Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays,” Anal. Chem., 2002, 74, 3362–3371.
[46] Y. Huang, K. Ewalt, M. Tirado, R. Haigis, A. Forster, D. Ackley, M. Heller, J. O’Connell, and M. Krihak, “Electric manipulation of bioparticles and macromolecules on microfabricated electrodes,” Anal. Chem., 2001, 73, 1549–1559.
[47] J. J. Hawkes, and W. T. Coakley, “Force field particle filter, combining ultrasound standing waves and laminar flow,” Sens. Actuat. B Chem., 2001, 75, 213–222.
[48] A. D. Johnson, and D. L. Feke, “Methodology for fractionating suspended particles using ultrasonic standing wave and divided flow fields,” Separations Tech., 1995, 5, 251-258.
[49] K. Yasuda, S. Umemura, and K. Takeda, “Studies on particle separation by acoustic radiation force and electrostatic force,” Jpn. J. Appl. Phys., 1996, 1, 3295–3299.
[50] T. Laurell, F. Petersson, and A. Nilsson, “Chip integrated strategies for acoustic separation and manipulation of cells and particles,” Chem. Soc. Rev., 2007, 36, 492–506.
[51] F. Petersson, L. Aberg, A.-M. Sward-Nilsson, and T. Laurell, “Free Flow Acoustophoresis: Microfluidic-Based Mode of Particle and Cell Separation,” Anal. Chem. 2007, 79, 5117-5123.
[52] R. Rong, J. W. Choi, and C. H. Ahn, “An on-chip magnetic bead separator for biocell sorting,” J. Micromech. Microeng., 2006, 16, 2783–2790.
[53] Y. A. Lin, T. S. Wong, U. Bhardwaj, J. M. Chen, E. McCabe, and C. M. Ho, “Formation of high electromagnetic gradients through a particle-based microfluidic approach”, J. Micromech. Microeng., 2007, 17, 1299–1306.
[54] K. Y. Lien, C. J. Liu, Y. C. Lin, P. L. Kuo, and G. B. Lee, “Extraction of genomic DNA and detection of single nucleotide polymorphism genotyping utilizing an integrated magnetic bead-based microfluidic platform,” Microfluid. and Nanofluid., 2009, 6, 539–555.
[55] M. Yamada, and M. Seki, “Microfluidic Particle Sorter Employing Flow Splitting and Recombining,” Anal. Chem., 2006, 78, 1357-1362.
[56] M. Yamada, K. Kano, Y. Tsuda, J. Kobayashi, M. Yamato, M. Seki, and T. Okano, “Microfluidic devices for size-dependent separation of liver cells,” Biomed. Microdevices, 2007, 9, 637–645.
[57] V. VanDelinder, and A. Groisman, “Perfusion in Microfluidic Cross-Flow: Separation of White Blood Cells from Whole Blood and Exchange of Medium in a Continuous Flow,” Anal. Chem., 2007, 79, 2023-2030.
[58] W. C. Chang, L. P. Lee and D. Liepmann, “Biomimetic technique for adhesion-based collection and separation of cells in a microfluidic channel,” Lab Chip, 2005, 5, 64–73.
[59] D. Huh, J. H. Bahng, Y. Ling, H. H. Wei, O. D. Kripfgans, J. B. Fowlkes, J. B. Grotberg, and S. Takayama, “Gravity-Driven Microfluidic Particle Sorting Device with Hydrodynamic Separation Amplification,” Anal. Chem., 2007, 79, 1369-1376.
[60] S. Choi, S. Song, C. Choi, and J. K. Park, “Continuous blood cell separation by hydrophoretic filtration,” Lab Chip, 2007, 7, 1532–1538.
[61] M. Yamada, M. Nakashima and M. Seki, “Pinched Flow Fractionation: Continuous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel,” Anal. Chem., 2004, 76, 5465-5471.
[62] J. Takagi, M. Yamada, M. Yasuda and M. Seki, “Continuous particle separation in a microchannel having asymmetrically arranged multiple branches,” Lab Chip, 2005, 5, 778-784.
[63] H. Andersson, W. van der Wijngaart, G. Stemme, “Micromachined filter-chamber array with passive valves for biochemical assays on beads,” Electrophoresis, 2001, 22, 249-257.
[64] H. M. Ji, V. Samper, Y. Chen, C. K. Heng, T. M. Lim, and L. Yobas, “Silicon-based microfilters for whole blood cell separation,” Biomed. Microdevices, 2008, 10, 251–257.
[65] S. Zheng, H. Lin, J. Q. Liu, M. Balic, R. Datar, R. J. Cote, and Y. C. Tai, “Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells,” J. Chromatogr. A, 2007, 1162, 154–161.
[66] M. Cheryan, “Ultrafiltration and microfiltration,” Technomic Publishing Company, Lancaster Pennsylvania U.S.A, 1, 1998.
[67] S. B. Huang, M. H. Wu, and G. B. Lee, “A tunable micro filter modulated by pneumatic pressure for cell separation,” Senor. Actuat. B, 2009, 142, 389-399.
[68] Y. Sun, X. Ma, D. Zhou, I. Vacek, and A. M. Sun, “Normalization of diabetes in spontaneously diabetic cynomologus monkeys by xenografts of microencapsulated porcine islets without immunosuppression,” J. Clin. Invest., 1996, 98,1417–1422.
[69] S. Prakash, and T. M. S. Chang, “Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats,” Nat. Med., 1996, 2, 883–887.
[70] G. Hortelano, A. Al-Hendy, F. A. Ofosu, and P. L. Chang, “Delivery of human factor IX in mice by encapsulated recombinant myoblasts: a novel approach towards allogeneic gene therapy of hemophilia B,” Blood, 1996, 87, 5095–5103.
[71] R. B. Elliott, L. Escobar, P. L. J. Tan, O. Garkavenko, R. Calafiore, P. Basta, A.V. Vasconcellos, D. F. Emerich, C. Thanos, and C. Bambra, “Intraperitoneal alginate-encapsulated neonatal porcine islets in a placebo-controlled study with 16 diabetic cynomolgus primates,” Transplant. Proc., 2005, 37, 3505–3508.
[72] D. F. Emerich, C. G. Thanos, M. Goddard, S. J. M. Skinner, M. S. Geany, W. J. Bell, B. Bintz, P. Schneider, Y. Chu, R. S. Babu, C. V. Borlongan, K. Boekelheide, S. Hall, B. Bryant, and J. H. Kordower, “Extensive neuroprotection by choroid plexus transplants in excitotoxin lesioned monkeys,” Neurobiol. Dis., 2006, 23, 471–480.
[73] C. Chung, J. Mesa, G. J. Miller, M. A. Randolph, T. J. Gill, and J. A. Burdick, “Effects of articular chondrocyte expansion on neocartilage formation in photocrosslinked hyaluronic acid networks,” Tissue Eng., 2006, 12, 2665-2673.
[74] D. Kaigler, P. H. Krebsbach, Z. Wang, E. R. West, K. Horger, and D. J. Mooney, “Transplanted endothelial cells enhance orthotopic bone regeneration,” J. Dent. Res., 2006, 85, 633-637.
[75] G. Klock, A. Pfeffermann, C. Ryser, P. Grohn, B. Kuttler, H. J. Hahn, and U. Zimmermann, “Biocompatibility of mannuronic acid-rich alginates,” Biomaterials, 1997, 18, 707-713.
[76] A. Jork, F. Thurmer, H. Cramer, G. Zimmermann, P. Gessner, K. Hamel, G. Hofmann, B. Kuttler, H. J. Hahn, O. Josimovic-Alasevic, K. G. Fritsch, and U. Zimmermann, “Biocompatible alginate from freshly collected laminaria pallida for implantation,” Appl. Microbiol. Biotechnol., 2002, 53, 224-229.
[77] S. A. Abbah, W. W. Lu, D. Chan, K. M. C. Cheung, W. G. Liu, F. Zhao, Z. Y. Li, J. C. Y. Leong, and K. D. K. Luk, “In vitro evaluation of alginate encapsulated adipose-tissue stromal cells for use as injectable bone graft substitute,” Biochem. Biophys. Res. Commun., 2006, 347, 185–191.
[78] X. Cai, Y. Lin, G. Ou, E. Luo, Y. Man, Q. Yuan, and P. Gong, “Ectopic osteogenesis and chondrogenesis of bone marrow stromal stem cells in alginate system,” Cell Biol. Int., 2007, 31, 776–783.
[79] S. Schneider, P. J. Feilen, F.Brunnenmeier, T. Minnemann, H. Zimmermann, U. Zimmermann, and M. M. Weber, “Long-term graft function of adult rat and human islets encapsulated in novel alginate-based microcapsules after transplantation in immunocompetent diabetic mice,” Diabetes, 2005, 54, 687–693.
[80] M. Dvir-Ginzberg, A. Konson, S. Cohen, and R. Agbaria, “Entrapment of retroviral vector producer cells in three-dimensional alginate scaffolds for potential use in cancer gene therapy,” J. Biomed. Mater. Res. B, 2007, 80, 59–66.
[81] V. A. Liu, and S. N. Bhatia, “Three-dimensional photopatterning of hydrogels containing living cells,” Biomed. Microdevices, 2002, 4, 257-266.
[82] J. Yeh, Y. Lin, J. M. Karp, J. Gantz, A. Chandawarkar, and G. Eng, “Micromolding of shape-controlled, harvestable cell-laden hydrogels,” Biomaterials, 2006, 27, 5391-5398.
[83] C. H. Choi, J. H. Jung, Y. W. Rhee, D. P. Kim, S. E. Shim, and C. S. Lee, “Generation of monodisperse alginate microspheres and in situ encapsulation of cells in microfluidic device,” Biomed. Microdevices, 2007, 9, 855-862.
[84] Y. H. Lin, C. T. Chen, L. L. H. Hung and G. B. Lee, “Multiple-channel emulsion chips utilizing pneumatic choppers for biotechnology applications,” Biomed. Microdevices, 2007, 9, 833-843.
[85] K. S. Huang, M. K. Liu, C. H. Wu, Y. T. Yen, and Y. C. Lin, “Calcium alginate microcapsule generation on a microfluidic system fabricated using the optical disk process,” J. Micromech. Microeng, 2007, 17, 1428-1434.
[86] S. Sugiura, T. Oda, Y. Aoyagi, R. Matsuo, T. Enomoto, K. Matsumoto, T. Nakamura, M. Satake, A. Ochiai, N. Ohkohchi, and M. Nakajima, “Microfabricated airflow nozzle for microencapsulation of living cells into 150 micrometers microcapsules,” Biomed. Microdevices, 2007, 9, 91-99.
[87] C. H. Yang, K. S. Huang, and J. Y. Chang, “Manufacturing monodisperse chitosan microparticles containing ampicillin using a microchannel chip,” Biomed. Microdevices, 2007, 9, 253-259.
[88] M. H. Wu, and W. C. Pan, “Development of microfluidic alginate microbead generator tunable by pulsed airflow injection for the microencapsulation of cells,” Microfluid. Nanofluid., 2010, 8, 823–835.
[89] J. Xie, and C. H. Wang, “Electrospray in the dipping mode for cell microencapsulation,” J. Colloid. Interface. Sci., 2007, 312, 247-255.
[90] K. Liu, H. J. Ding, J. Liu, Y. Chen, and X. Z. Zhao, “Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device,” Langmuir, 2006, 22, 9453-9457.
[91] W. H. Tan, and S. Takeuchi, “Monodisperse alginate hydrogel microbeads for cell encapsulation,” Adv. Mater., 2007, 19, 2696-2701.
[92] H. Shintaku, T. Kuwabara, S. Kawano, T. Suzuki, I. Kanno, and H. Kotera, “Micro cell encapsulation and its hydrogel-beads production using microfluidic device,” Microsyst. Technol, 2007, 13, 951-958.
[93] J. Xu, S. Li, J. Tan, and G. Luo, “Controllable preparation of monodispersed calcium alginate microbeads in a novel microfluidic system,” Chem. Eng. Technol., 2008, 31, 1223-1226.
[94] S. Koster, F. E. Angile, H. Duan, J. J. Agresti, A. Wintner, C. Schmitz, A. C. Rowat, C. A. Merten, D. Pisignnano, A. D. Griffiths, and D. A. Weitz, “Drop-based microfluidic devices for encapsulation of single cells,” Lab Chip, 2008, 8, 1110-1115.
[95] J. Clausell-Tormos, D. Lieber, J. C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Koster, H. Duan, C. Holtze, D. A. Weitz, A. D. Griffths, and C. A. Merten, “Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms,” Chem. Biol., 2008, 15, 427-437.
[96] Y. Morimoto, W. H. Tan, and S. Takeuchi, “Three-dimensional axisymmetric flow-focusing device using stereolithography,” Biomed. Microdevices, 2009, 11, 369-377.
[97] S. B. Huang, M. H. Wu, and G. B. Lee “Microfluidic device utilizing pneumatic micro-vibrators to generate alginate microbeads for microencapsulation of cells,” Senor. Actuat. B, 2010, 147, 755-764.
[98] M. Hulsman, M. Bos, and W. E. van der Linden, “Automated injection of slurry samples in flow-injection analysis,” Anal. Chim. Acta., 1996, 324, 13-19.
[99] B. H. Vaughn, J. W. C. White, M. Delomtte, M. Trolier, O. Cattani, and M. Stievenard, “An automated system for hydrogen isotope analysis of water,” Chem. Geol., 1998, 152, 309-319.
[100] L. L. Lipe, S. M. Purinton, E. Mederios, C. C. Harrell, C. Efta, M. Murray, M. Wood, R. B. Portier, and S. J. Chalk, “Development of the continuously variable volume reactor for flow injection analysis: part 1. design, capabilities and testing,” Anal. Chim. Acta., 2002, 455, 287-304.
[101] M. D. Foster, M. A. Arnold, J. A. Nichols, and S. R. Bakalyar, “Performance of experimental sample injectors for high-performance liquid charomatography microcolumns,” J. Chromatogr. A, 2000, 869, 231-241.
[102] H. T. G. Van Lintel, F. C. M. Van de Pol, and S. Bouwstra, “A piezoelectric micropump based on micromachining of silicon,” Senor. Actuat. A, 1988, 15, 153–67.
[103] T. Bourouina, A. Bosseboeuf, and J. Grandchamp, “Design and simulation of an electrostatic micropump for drug-delivery applications,” J. Micromech. Microeng., 1997, 7, 186–188.
[104] C. Yamahata, F. Lacharme, and M. A. M. Gijs, “Glass valveless micropump using electromagnetic actuation,” Microelectron. Eng., 2005, 78–79, 132–137.
[105] O. C. Jeong, and S. S. Yang, “Fabrication and test of a thermopneumatic micropump with a corrugated p+ diaphragm,” Sensor. Actuat. A, 2000, 83, 249–255.
[106] N. Szita, R. Sutter, J. Dual, and R. A. Buser, “A micropipettor with integrated sensors,” Sensor. Actuat. A, 2001, 89, 112-118.
[107] K. Handique, D. T. Burke, C. Mastrangelo, and M. A. Hand Burns, “On-Chip Thermopneumatic Pressure for Discrete Drop Pumping,” Anal. Chem., 2001, 73, 1831-1838.
[108] C. K. Byun, X. Wang, Q. Pu, and S. Liu, “Electroosmosis-Based Nanopipettor,” Anal. Chem., 2007, 79, 3862-3866.
[109] L. M. Fu, R. J. Yang, G. B. Lee, and H. H. Liu, “Electrokinetic injection techniques in microfluidic chips,” Anal. Chem., 2002, 74, 5084-5091.
[110] C. W. Huang and G. B. Lee, “Microautosamplers for discrete sample injection and dispensation,” Electrophoresis, 2005, 26, 1807-1813.
[111] R. Kane, S. Takayama, E. Ostuni, D. E. Ingber, and G. M. Whitesides, “Patterning proteins and cells using soft lithography,” Biomaterials, 1999, 20, 2363-2376.
[112] E. Kim, Y. Xia, and G. M. Whitesides, “Polymer microstructures formed by moulding in capillaries,” Nature, 1995, 376, 581-584.
[113] C. W. Huang, S. B. Huang, and G. B. Lee, “A microfluidic device for precise pipetting,” J. Micromech. Microeng., 2008, 18, 035004 (7pp).
[114] S. H. Lee, C. S. Lee, B. G. Kim, and Y. K. Kim, “Quantitatively controlled nanoliter liquid manipulation using hydrophobic valving and control of surface wettability,” J. Micromech. Microeng., 2003, 13, 89-97.
[115] S. H. Lee, C. S. Lee, B. G. Kim, and Y. K. Kim, “An integrated microfluidic chip for the analysis of biochemical reactions by MALDI mass spectrometry,” Biomed. Microdevices, 2008, 10, 1–9.
[116] S. B. Huang and G. B. Lee, “Pneumatically driven micro-dispenser for sub micro liter pipetting,” J. Micromech. Microeng., 2009, 19, 035027 (8pp).
[117] M. Butler, “Animal Cell Culture & Technology,” BIOS Scientific Publishers, USA, 1, 2004.
[118] Y. Torisawa, H. Shiku, T. Yasukawa, M. Nishizawa, and T. Matsue, “Multi-channel 3-D cell culture device integrated on a silicon chip for anticancer drug sensitivity test,” Biomaterials, 2005, 26, 2165-2172.
[119] Y. C. Toh, S. Ng, Y. M. Khong, V. Samper, and H. Yu, “A configurable three-dimensional microenvironment in a microfluidic channel for primary hepatocyte culture,” Assay Drug Dev.t Techn., 2005, 3, 169-176.
[120] W. C. Tang, T. C. H. Nguyen, and R. T. Howe, “Laterally driven polysilicon resonant microstructures,” Sensor. Actuat. A, 1989, 20, 25-32.
[121] Y. F. Su, W. Y. Chen, F. Cui F, and W. P. Zhang, “Electro-magnetically actuated valveless micropump with two flexible diaphragms,” Int. J. Adv. Manuf. Tech., 2006, 30, 215-220.
[122] F. C. M. Van De Pol, H. T. G. Van Lintel, M. Elwenspoek, and J. H. J. Fluitman, “Thermopneumatic micropump based on microengineering technique,” Sensor. Actuat. A, 1990, 21, 198-302.
[123] S. Zeng, C. H. Chen, J. C. Mikkelsen, and J. G. Santiago, “Fabrication and characterization of electroosmotic micropumps,” Sensor. Actuat. B, 2001, 79, 107–14.
[124] C. H. Chen and J. G. Santiago, “A planar electroosmotic micropump,” J. Microelectron. System., 2002, 11, 672–683.
[125] P. Wang, Z. L. Chen, and H. C. Chang, “A new electro-osmotic pump based on silica monoliths” Sensor. Actuat. B, 2006, 113, 500–509.
[126] A. Brask, J. P. Kutter, and H. Bruus, “Long-term stable electroosmotic pump with ion exchange membranes” Lab Chip, 2005, 5, 730–738.
[127] J. A. Tripp, F. Svec, J. M. J. Frechet, S. L. Zeng, J. C. Mikkelsen, and J. G. Santiago, “High-pressure electroosmotic pumps based on porous polymer monoliths,” Sensor. Actuat. B, 2004, 99, 66–73.
[128] Y. N. Yang, S. K. Hsiung, and G. B. Lee, “A pneumatic micropump incorporated with a normally closed valve capable of generating a high pumping rate and a high back pressure,” Microfluid. Nanofluid., 2009, 6, 823–833.
[129] E. G. L. Bywaters, “The Metabolism of Join Tissue,” J. Pathol Bacteriol., 1937, 44, 247-268.
[130] R. B. Lee, and J. P. G. Urban, “Evidence of a Negative Pasteur Effect in Articular cartilage,” Biochem. J., 1997, 321, 95-102.
[131] S. Holm, A. Maroudas, J. P. G. Urban, G. Selstam, and A. Nachemson, “Nutrition of The Intervertebral Disc: Solute Transport and Metabolism,” Connect. Tissue Res., 1981, 8, 101-119.
[132] B. Diamant, J. Karlsson, and A. Nachemson, “Correlation Between Lactate Levels and pH in Discs of Patients with Lumbar Rhizopathies,” Experientia, 1968, 24, 1195-1196.
[133] S. D. Waldman, D. C. Couto, S. J. Omelon, and R. A. Kandel, “Effect of Sodium Bicarbonate on Extracellular pH, Matrix Accumulation, and Morphology of Cultured Articular Chondrocytes,” Tissue Engineering, 2004, 10, 1633-1640.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw