進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0508202014322400
論文名稱(中文) 利用瓶形光束泵源控制低階光學渦流產生
論文名稱(英文) Generation of low-order vortex beam in a solid-state laser pumped by a bottle beam
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 108
學期 2
出版年 109
研究生(中文) 王思涵
研究生(英文) Ssu-Han Wang
學號 L76071273
學位類別 碩士
語文別 中文
論文頁數 62頁
口試委員 指導教授-魏明達
口試委員-徐旭政
口試委員-曾碩彥
口試委員-黃勝廣
中文關鍵字 光學渦流  軌道角動量  軸稜錐  M2 品質因子 
英文關鍵字 optical vortex  orbital angular momentum  axicon  M2 quality factor 
學科別分類
中文摘要 本實驗是利用軸稜錐來產生貝索光束(Bessel beam),搭配透鏡產生瓶形光束(bottle beam),改變透鏡焦距以及軸稜錐到透鏡距離可以塑形不同的瓶型光束,我們將環形光泵浦Nd:YVO4晶體,共振腔輸出的雷射光帶有不同的軌道角動量(orbital angular momentum),可以調整晶體以及輸出耦合鏡位置來產生特定軌道角動量的光學渦流,也能在固定的腔長下調控不同軌道角動量來產生不同的環形光大小,並使用圓柱透鏡、馬赫.曾爾德干涉儀(Mach-Zehnder interferometer)以及M2品質因子等方式驗證其相位分佈。
英文摘要 SUMMARY
In this thesis, we use the bottle beam to pump the Nd:YVO4 laser crystal to generate optical vortex beam. The bottle beam is shaped by comprising of axicon and lens, so we can shape different spot size of bottle beam by adjusting the focal length of the lens and the distance between the axicon and the lens. Considering different spot sizes of bottle beam, the relative position of lens and laser crystal, and cavity length, we can generate optical vortex with different orbital angular momentum. We can adjust the parameters and thus produce optical vortex beams of topological charge l = 1 ~ 6, and prove that the radius of the output annular beam will increase as the topological charge number rises. Finally, we use Mach-Zehnder interferometer, cylindrical lens, M^2 quality factor to verify the topological charge of optical vortex .
論文目次 摘要 I
SUMMARY II
誌謝 VI
目錄 VII
圖目錄 IX
表目錄 XI
第一章 序論 1
1.1 簡介 1
1.2 研究動機與目的 5
第二章 光學渦流 6
2.1 光學渦流的軌道角動量 6
2.2 以軸稜錐產生之瓶型光束 9
2.3渦流光束軌道角動量的檢測方法 18
2.3.1 渦流光束的干涉與疊加態 18
2.3.2 圓柱透鏡判斷拓樸電荷 19
2.3.3 M-squared品質因子 21
第三章 實驗數據與討論 28
3.1實驗架構與步驟 28
3.2瓶形光束泵源的特性 29
3.3 光學渦流的輸出特性 33
3.3.1不同腔長下的軌道角動量 33
3.3.2 固定腔長下調控渦流光束 41
第四章 結論與未來展望 56
4.1 結論 56
4.2 未來展望 56
參考文獻 57

參考文獻 [1] J. H. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 82, 560-567 (1909).
[2] R. A. Beth, “Mechanical Detection and Measurement of the Angular Momentum of Light,” Physical Review 50, 115-125 (1936).
[3] J. F. Nye, M. V. Berry, and F. C. Frank, “Dislocations in wave trains,” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 336, 165-190 (1974).
[4] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Physical Review A 45, 8185-8189 (1992).
[5] D. G. Grier, “A revolution in optical manipulation,” nature 424, 810-816 (2003).
[6] Y. Kozawa, D. Matsunaga, and S. Sato, “Superresolution imaging via superoscillation focusing of a radially polarized beam,” Optica 5, 86-92 (2018).
[7] G. Foo, D. M. Palacios, and G. A. Swartzlander, “Optical vortex coronagraph,” Opt. Lett. 30, 3308-3310 (2005).
[8] J. Wang, “Advances in communications using optical vortices,” Photon. Res. 4, B14-B28 (2016).
[9] A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313-316 (2001).
[10] M. W. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Optics Communications 96, 123-132 (1993).
[11] M. Beijersbergen, R. Coerwinkel, M. Kristensen, and J. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Optics communications 112, 321-327 (1994).
[12] N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, and T. Hara, “Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators,” J. Opt. Soc. Am. A 25, 1642-1651 (2008).
[13] N. Heckenberg, R. McDuff, C. Smith, and A. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221-223 (1992).
[14] S. Zheng, and J. Wang, “Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings,” Scientific Reports 7, 40781 (2017).
[15] J. Li, Y. Yao, J. Yu, K. Xia, and C. Zhou, “Efficient vortex laser with annular pumping formed by circle Dammann grating,” IEEE Photonics Technology Letters 28, 473-476 (2015).
[16] J. Durnin, J. Miceli Jr, and J. Eberly, “Diffraction-free beams,” Physical review letters 58, 1499 (1987).
[17] J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” JOSA A 4, 651-654 (1987).
[18] G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and synthesis,” JOSA A 6, 150-152 (1989).
[19] A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” JOSA A 6, 1748-1754 (1989).
[20] J. Turunen, A. Vasara, and A. T. Friberg, “Holographic generation of diffraction-free beams,” Applied optics 27, 3959-3962 (1988).
[21] K. Ait-Ameur, and F. Sanchez, “Gaussian beam conversion using an axicon,” Journal of modern optics 46, 1537-1548 (1999).
[22] Y. Zhao, Z. Wang, H. Yu, S. Zhuang, H. Zhang, X. Xu, J. Xu, X. Xu, and J. Wang, “Direct generation of optical vortex pulses,” Applied Physics Letters 101, 031113 (2012).
[23] J. W. Kim, and W. A. Clarkson, “Selective generation of Laguerre–Gaussian (LG0n) mode output in a diode-laser pumped Nd:YAG laser,” Optics Communications 296, 109-112 (2013).
[24] G. Li, K. Xia, Z. Wang, H. Shen, A. Shirakawa, K.-i. Ueda, and J. Li, “Conical refraction, for annular pumping of an efficient vortex Nd: YAG laser,” Laser Physics Letters 14, 075001 (2017).
[25] D. Chen, Y. Miao, H. Fu, H. He, J. Tong, and J. Dong, “High-order cylindrical vector beams with tunable topological charge up to 14 directly generated from a microchip laser with high beam quality and high efficiency,” APL Photonics 4, 106106 (2019).
[26] J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Physical review letters 88, 257901 (2002).
[27] H. I. Sztul, and R. R. Alfano, “Double-slit interference with Laguerre-Gaussian beams,” Opt. Lett. 31, 999-1001 (2006).
[28] Y.-Y. Lin, C.-C. Yeh, H.-C. Lee, S.-L. Yang, J.-H. Tu, and C.-P. Tang, “Optical vortex lasers by the coherent superposition of off-axis multiple-pass transverse modes in an azimuthal symmetry breaking laser resonator,” Journal of Optics 20, 075203 (2018).
[29] M. Padgett, and L. Allen, “Orbital angular momentum exchange in cylindrical-lens mode converters,” Journal of Optics B: Quantum and Semiclassical Optics 4, S17 (2002).
[30] A. Volyar, M. Bretsko, Y. Akimova, and Y. Egorov, “Measurement of the vortex and orbital angular momentum spectra with a single cylindrical lens,” Applied Optics 58, 5748-5755 (2019).
[31] Siegman, Defining, measuring, and optimizing laser beam quality (SPIE, 1993).
[32] J.-h. Wen, L.-p. Jia, and Y.-h. Zhu, Measurement of the laser beam quality using knife-edge method (SPIE, 2009).
[33] A. E. Siegman, “How to (Maybe) Measure Laser Beam Quality,” in DPSS (Diode Pumped Solid State) Lasers: Applications and Issues(Optical Society of America, Washington, D.C., 1998), pp. 184-199.
[34] H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39, 197-200 (2014).
[35] M. Padgett, J. Courtial, and L. Allen, “Light's orbital angular momentum,” Physics today 57, 35-40 (2004).
[36] S. Qiu, T. Liu, Z. Li, C. Wang, Y. Ren, Q. Shao, and C. Xing, “Influence of lateral misalignment on the optical rotational Doppler effect,” Applied Optics 58, 2650-2655 (2019).
[37] M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Divergence of an orbital-angular-momentum-carrying beam upon propagation,” New Journal of Physics 17, 023011 (2015).
[38] Sephton, A. Dudley, and A. Forbes, “Revealing the radial modes in vortex beams,” Applied optics 55, 7830-7835 (2016).
[39] X. Wei, C. Liu, L. Niu, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range,” Applied Optics 54, 10641-10649 (2015).
[40] J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).
[41] S. Chávez-Cerda, and G. New, “Evolution of focused Hankel waves and Bessel beams,” Optics communications 181, 369-377 (2000).
[42] M.-D. Wei, W.-L. Shiao, and Y.-T. Lin, “Adjustable generation of bottle and hollow beams using an axicon,” Optics communications 248, 7-14 (2005).
[43] S. N. Alperin, R. D. Niederriter, J. T. Gopinath, and M. E. Siemens, “Quantitative measurement of the orbital angular momentum of light with a single, stationary lens,” Opt. Lett. 41, 5019-5022 (2016).
[44] P. W. Epperlein, Semiconductor laser engineering, reliability and diagnostics: a practical approach to high power and single mode devices (John Wiley & Sons, 2013).
[45] M. Eichhorn, Laser physics: from principles to practical work in the lab (Springer Science & Business Media, 2014).
[46] A. Siegman, New developments in laser resonators (SPIE, 1990).
[47] N. Simpson, L. Allen, and M. Padgett, “Optical tweezers and optical spanners with Laguerre–Gaussian modes,” Journal of modern optics 43, 2485-2491 (1996).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-07-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-07-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw