進階搜尋


下載電子全文  
系統識別號 U0026-0508201915552900
論文名稱(中文) 水溶液組成及陰極極化程度對17-4 PH不銹鋼氫誘發破裂及氫脆之影響研究
論文名稱(英文) Effects of Solution Composition and Degree of Cathodic Polarization on Hydrogen Induced Cracking and Hydrogen Embrittlement Behavior of 17-4 PH Stainless Steel
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 林岳霆
研究生(英文) Yueh-Ting Lin
學號 N56061111
學位類別 碩士
語文別 中文
論文頁數 81頁
口試委員 指導教授-蔡文達
口試委員-郭瑞昭
口試委員-陳嘉勻
口試委員-曾傳銘
中文關鍵字 17-4析出硬化型不銹鋼  氫誘發破裂  氫脆  陰極充氫  毒化物 
英文關鍵字 17-4 Precipitation-Hardening Stainless Steel  Cathodic charging  Hydrogen Induced Cracking  Hydrogen Embrittlement 
學科別分類
中文摘要 本研究探討17-4 PH不銹鋼於酸性、中性、鹼性及含添加劑之水溶液中,透過控制不同陰極極化程度,來評估氫含量變化、氫誘發破裂以及氫脆之敏感性。利用定電位法將試片極化充氫後,以氫測定儀進行氫含量測定;充氫過程中以光學顯微鏡(OM)觀察氫誘發裂紋的出現;最後利用彈簧拉伸試驗機,紀錄充氫及未充氫試片斷裂之最大抗拉強度,以及定負荷下充氫試片的斷裂時間。裂紋以及破斷面形貌利用掃描式電子顯微鏡(SEM)進行觀察。實驗結果顯示,極化曲線之陰極還原的電流密度隨pH值降低而上升;添加NH4SCN會抑制陰極極化反應,降低陰極反應速率;添加Na2S2O3反而促進陰極極化反應,使陰極電流密度增加。氫含量測定之結果顯示,17-4 PH不銹鋼中氫的吸收速率隨水溶液的pH值降低而提升;在含添加劑之水溶液中充氫,氫吸收速率更明顯加速,而添加Na2S2O3的效果又優於NH4SCN。實驗結果顯示17-4 PH不銹鋼熱軋棒材容易發生氫誘發破裂,其敏感性隨著溶液pH值及控制電位的降低而提高。在含添加劑之硫酸水溶液,氫誘發破裂裂縫萌芽時間更短。拉伸試驗結果顯示,經過充氫後17-4 PH不銹鋼的脆性大幅提升並促使抗拉強度降低;在597 MPa的應力下,定負荷拉伸結果顯示,在酸性水溶液中破斷時間(time-to-fracture, tf)隨陰極電位的降低而縮短;而在中性溶液中,即使含有添加劑,在 -0.6 VSCE的電位下不會發生氫脆。發生氫誘發破裂或是氫脆之17-4 PH不銹鋼破斷面,皆呈現脆性的沿晶、穿晶、劈裂特徵形貌。
英文摘要 In this study, the susceptibility to HIC of 17-4 PH stainless steel (SS) in various aqueous solution and under cathodic polarization was investigated. The experimental results showed that the amount of hydrogen absorbed strongly depended on solution pH under constant applied potential condition, which increased with decreasing solution pH. The addition of Na2S2O3 or NH4SCN caused a further increase in hydrogen absorption, where the former was more significant than the latter. The roles of the additives on hydrogen absorption were elucidated. The experimental results also showed that 17-4 PH SS was susceptible to hydrogen induced cracking (HIC) under loading-free condition, which was solution pH dependent. The initiation time for the occurrence of HIC was very short in sulfuric acid solution with the addition of NH4SCN under cathodic polarization. In neutral and alkaline solution with the presence of NH4SCN, however, 17-4 PH SS was immune to HIC at cathodic charging condition. The results of constant load tensile test at 80% UTS (597 Mpa) showed 17-4 PH SS suffered hydrogen assisted fracture (HAF) in acidic aqueous solution, and its sensitivity varied with applied potential. In neutral sodium sulfate solution, 17-4 PH SS was resistant to HAF at potentials higher than -0.6 VSCE. Fractographical examination showed that a transition from ductile to brittle fracture occurred when hydrogen was absorbed
論文目次 摘要 I
Extended Abstract II
致謝 XI
總目錄 XIII
表目錄 XVI
圖目錄 XVII
第一章 前言 1
第二章 文獻回顧 2
2.1 析出硬化型不銹鋼 2
2.2 氫對材料之影響 3
2.2.1 氫的來源 3
2.2.2 氫進入材料的方式 5
2.2.3 氫捕集與臨界濃度 6
2.2.4 氫損傷 7
2.3 氫脆機制 8
2.3.1 內壓理論(Internal pressure) 8
2.3.2 氫致鍵結能弱化理論(HEDE, hydrogen-enhanced decohesion) 8
2.3.3 氫致局部塑性變形理論(HELP, hydrogen-enhanced localized plasticity) 9
2.3.4 表面能吸附理論(AIDE, adsorption-induced dislocation emission) 9
2.4 常見的氫脆破斷面分析 10
2.4.1 劈裂破斷(Cleavage) 10
2.4.2 半劈裂破斷(Quasi-Cleavage) 10
2.4.3 沿晶破斷(Intergranular Fracture) 11
第三章 實驗方法與步驟 25
3.1 材料基本性質分析 25
3.2 動電位極化曲線試驗 25
3.3 陰極充氫試驗 26
3.4 氫含量測定 26
3.5 拉伸試驗 27
第四章 實驗結果 34
4.1 材料基本性質分析 34
4.2 動電位極化曲線試驗 34
4.2.1 水溶液pH值之影響 34
4.2.2 添加劑之影響 35
4.3 氫含量測定 36
4.3.1 測試溶液對氫含量之影響 36
4.3.2 添加劑對氫含量之影響 36
4.3.3 充氫時間對氫含量之影響 37
4.4 氫誘發破裂敏感性分析 38
4.4.1 水溶液之影響 39
4.4.2 外加電位之影響 40
4.4.3 氫誘發裂紋之破斷面觀察 41
4.5 拉伸試驗 42
4.5.1 充氫拉伸試驗 42
4.5.2 定負荷拉伸試驗 43
4.6 充氫條件和臨界氫含量對氫脆及氫誘發破裂的關係 44
第五章 結論 77
第六章 參考文獻 79
參考文獻 [1] D. A. Porter, K. E. Easterling, and M. Sherif, Phase Transformations in Metals and Alloys. CRC press, 2009.
[2] T. Velikanova and M. Turchanin, "Chromium–Copper–Iron," Ternary Alloy Systems: Springer, pp. 88-128, 2008.
[3] K. C. Antony, "Aging Reactions in Precipitation Hardenable Stainless Steel," JOM, journal article Vol. 15, No. 12, pp. 922-927, 1963.
[4] C. Hsiao, C. Chiou, and J. Yang, "Aging reactions in a 17-4 PH stainless steel," Materials Chemistry and Physics, Vol. 74, No. 2, pp. 134-142, 2002.
[5] G. Yeli, M. A. Auger, K. Wilford, G. D. W. Smith, P. A. J. Bagot, and M. P. Moody, "Sequential nucleation of phases in a 17-4PH steel: Microstructural characterisation and mechanical properties," Acta Materialia, Vol. 125, pp. 38-49, 2017.
[6] U. K. Viswanathan, S. Banerjee, and R. Krishnan, "Effects of aging on the microstructure of 17-4 PH stainless steel, " Materials Science and Engineering: A, Vol. 104, pp. 181-189, 1988.
[7] M. B. Djukic, V. Sijacki Zeravcic, G. M. Bakic, A. Sedmak, and B. Rajicic, "Hydrogen damage of steels: A case study and hydrogen embrittlement model," Engineering Failure Analysis, Vol. 58, pp. 485-498, 2015.
[8] 張海兵、朱王晶、郭建章、馬力,阴极极化对590高强度钢氢脆敏感性影响研究,第十一屆海峽兩岸材料腐蝕與防護研討會,2018.
[9] N. Bandyopadhyay, J. Kameda, and C. J. McMahon, "Hydrogen-induced cracking in 4340-type steel: Effects of composition, yield strength, and H2 pressure," Metallurgical Transactions A, Vol. 14, No. 4, pp. 881-888, 1983.
[10] M. R. Louthan, Hydrogen Embrittlement of Metals: A Primer for the Failure Analyst, Journal of Failure Analysis and Prevention, pp. 289-307, 2008.
[11] 褚武扬,氢损伤和滞后断裂,冶金工业出版社,1988.
[12] 陈廉、徐永波、尹万全,钢中白点断口的显微空隙与台阶花样,金属学报, Vol. 14, No. 3, pp. 253-333, 1978.
[13] M. Smialowski, Hydrogen in steel: effect of hydrogen on iron and steel during production, fabrication, and use. Elsevier, 2014.
[14] S. Dushman, J. M. Lafferty, and R. Pasternak, "Scientific foundations of vacuum technique," Physics Today, Vol. 15, p. 53, 1962.
[15] R. M. Hudson and G. L. STragand, "Influence of Arsenic on Pickling of And Hydrogen Absorption by Mild Steel In Sulfuric Acid Solutions," Corrosion, Vol. 18, No. 7, pp. 259-261, 1962.
[16] J. C. Barker, MaTSU, Culham, and Abingdon, "Data Surveys of Hydrogen Assisted Cracking in High Strength Jack-Up Steels," Health and Safety Executive, 1998.
[17] J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, and U. Stimming, "Trends in the Exchange Current for Hydrogen Evolution," Journal of The Electrochemical Society, Vol. 152, No. 3, pp. J23-J26, 2005.
[18] W. Sheng, H. A. Gasteiger, and Y. Shao-Horn, "Hydrogen Oxidation and Evolution Reaction Kinetics on Platinum: Acid vs Alkaline Electrolytes," Journal of The Electrochemical Society, Vol. 157, No. 11, pp. 1529-1536, 2010.
[19] D. Strmcnik, P. P. Lopes, B. Genorio, V. R. Stamenkovic, and N. M. Markovic, "Design principles for hydrogen evolution reaction catalyst materials," Nano Energy, Vol. 29, pp. 29-36, 2016.
[20] Y. Zheng, Y. Jiao, A. Vasileff, and S. Z. Qiao, "The Hydrogen Evolution Reaction in Alkaline Solution: From Theory, Single Crystal Models, to Practical Electrocatalysts," Angew Chem Int Ed Engl, Vol. 57, No. 26, pp. 7568-7579, 2018.
[21] G. Jerkiewicz, J. Borodzinski, W. Chrzanowskia, and B. Conway, "Examination of Factors Influencing Promotion of H Absorption into Metals by Site‐Blocking Elements," Journal of The Electrochemical Society, Vol. 142, No. 11, pp. 3755-3763, 1995.
[22] J. O. M. Bockris and B. E. Conway, "Studies in hydrogen overpotential. The effect of catalytic poisons at platinized platinum and nickel," Transactions of the Faraday Society, Vol. 45, No. 0, pp. 989-999, 1949.
[23] G. M. Pressouyre, "Trap theory of Hydrogen embrittlement," Acta Metallurgica, Vol. 28, No. 7, pp. 895-911, 1980.
[24] N. R. Quick and H. H. Johnson, "Hydrogen and deuterium in iron, 49–506°C," Acta Metallurgica, Vol. 26, No. 6, pp. 903-907, 1978.
[25] L. R. C. Malheiros, F. Decultieux, J. Creus, X. Feaugas, F. Thébault, J. Bouhattate, A. Oudriss, and D. Guedes, "Effect of Hydrogen Flux on the Plasticity and Damage Mechanisms of Martensitic Steels," presented at the Corrosion 2019, Nashville, Tennessee, USA, 2019.
[26] G. M. Pressouyre, Ph.D. Thesis, Carnegie-Mellon University, 1977.
[27] Z. Ahmad, "Types Of Corrosion: Materials and Environments," Principles of Corrosion Engineering and Corrosion Control, pp. 120-270, 2006.
[28] K. O. Findley, M. K. O'Brien, and H. Nako, "Critical Assessment 17: Mechanisms of hydrogen induced cracking in pipeline steels," Materials Science and Technology, Vol. 31, No. 14, pp. 1673-1680, 2015.
[29] C. Zapffe and C. Sims, "Hydrogen embrittlement, internal stress and defects in steel," Transactions of the Metallurgical Society of AIME, Vol. 145, No. 1941, pp. 225-271, 1941.
[30] T. Depover, A. Laureys, D. Pérez Escobar, E. Van den Eeckhout, E. Wallaert, and K. Verbeken, "Understanding the Interaction between a Steel Microstructure and Hydrogen," Materials, Vol. 11, No. 5, p. 698, 2018.
[31] L. B. Pfeil, "The effect of occluded hydrogen on the tensile strength of iron," Proceedings of the Royal Society of London. A, Vol. 112, No. 760, pp. 182-195, 1926.
[32] A. R. Troiano, "The role of hydrogen and other interstitials in the mechanical behavior of metals," trans. ASM, Vol. 52, pp. 54-80, 1960.
[33] R. A. Oriani and P. H. Josephic, "Equilibrium aspects of hydrogen-induced cracking of steels," Acta Metallurgica, Vol. 22, No. 9, pp. 1065-1074, 1974.
[34] C. Beachem, "A new model for hydrogen-assisted cracking hydrogen “embrittlement”," Metallurgical and Materials Transactions B, Vol. 3, No. 2, pp. 441-455, 1972.
[35] N. Petch and P. Stables, "Delayed fracture of metals under static load," Nature, Vol. 169, No. 4307, p. 842, 1952.
[36] A. F. Liu, Mechanics and mechanisms of fracture: an introduction. ASM International, 2005.
[37] A. Nagao, C. D. Smith, M. Dadfarnia, P. Sofronis, and I. M. Robertson, "The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel," Acta Materialia, Vol. 60, No. 13, pp. 5182-5189, 2012.
[38] X. Li, J. Zhang, E. Akiyama, Q. Li, and Y. Wang, "Effect of heat treatment on hydrogen-assisted fracture behavior of PH13-8Mo steel," Corrosion Science, Vol. 128, pp. 198-212, 2017.
[39] S. P. Lynch, "Hydrogen embrittlement phenomena and mechanisms," in Stress Corrosion Cracking, pp. 90-130, 2011.
[40] A. Khare, M. Vishwakarma, and V. Parashar, "A review on failures of industrial components due to hydrogen embrittlement & techniques for damage prevention," International Journal of Applied Engineering Research, Vol. 12, pp. 1784-1792, 2017.
[41] T. Chida, Y. Hagihara, E. Akiyama, K. Iwanaga, S. Takagi, H. Ohishi, M. Hayakawa, D. Hirakami, and T. Tarui, "Comparison of Constant Load, SSRT and CSRT Methods for Hydrogen Embrittlement Evaluation Using Round Bar Specimens of High Strength Steels," Tetsu-to-Hagane, Vol. 100, No. 10, pp. 1298-1305, 2014.
[42] E. Protopopoff and P. Marcus, "Poisoning of the cathodic hydrogen evolution reaction by sulfur chemisorbed on platinum (110)," Journal of The Electrochemical Society, Vol. 135, No. 12, pp. 3073-3075, 1988.
[43] S. Tsujikawa et al., "Alternative for Evaluating Sour Gas Resistance of Low-Alloy Steels and Corrosion-Resistant Alloys," Corrosion, Vol. 49, No. 5, pp. 409-419, 1993.
[44] Y. Lee, T. Wang, and W. Tsai, "Pitting Corrosion of Ni Based Alloy in Thiosulfate ion Containing Chloride Solutions," Journal of Electrochemistry, Vol. 5, No. 01, pp. 18-24, 1999.
[45] L. Choudhary, D. D. Macdonald, and A. Alfantazi, "Role of Thiosulfate in the Corrosion of Steels: A Review," Corrosion, Vol. 71, No. 9, pp. 1147-1168, 2015.
[46] A. Kawashima, K. Hashimoto, and S. Shimodaira, "Hydrogen Electrode Reaction and Hydrogen Embrittlement of Mild Steel in Hydrogen Sulfide Solutions," Corrosion, Vol. 32, No. 8, pp. 321-331, 1976.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw