進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0508201910105500
論文名稱(中文) 應用於行動通訊射頻電路之研製
論文名稱(英文) Development of RF Circuits for Mobile Communication
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 107
學期 2
出版年 108
研究生(中文) 林冠宇
研究生(英文) Kuan-Yu Lin
學號 Q16064074
學位類別 碩士
語文別 中文
論文頁數 70頁
口試委員 指導教授-王永和
口試委員-洪茂峰
口試委員-吳昌崙
口試委員-劉宏智
口試委員-蘇俊吉
中文關鍵字 行動通訊  髮夾式微帶線帶通濾波器  功率放大器  寬頻高功率放大器 
英文關鍵字 IMT-2020  Bandpass Filter  Power Amplifier  Push-pull Amplifier 
學科別分類
中文摘要 本研究探討可應用於IMT-2020(5G)行動通訊標準中的LTE-U和FR1頻段之射頻元件與氮化鎵電晶體於功率放大器之優點。第一章介紹此篇論文的研究背景與IMT-2020(5G)通訊標準的現況。第二章以髮夾式結構設計微帶線帶通濾波器,頻段為5-6GHz,期望能運用在3GPP TS 36.104 Evolved Universal Terrestrial Radio Access (E-UTRA);Base Station (BS) radio transmission and reception中的未授權頻譜(LTE-U)。第三章介紹功率放大器,利用0.3µm製程,π型結構,閘極寬為300µm的GaAs Pseudomorphic High Electron Mobility Transistoer (PHEMT) 電晶體,來設計2-8GHz功率放大器,其頻率範圍涵蓋3GPP TS 38.104 Technical Specification Group Radio Access Network (NR);Base Station Station (BS) radio transmission and reception的FR1頻段。第四章介紹寬頻高功率放大器,利用HEMT GaN電晶體搭配巴倫推挽式放大電路結構來設計,期望放大器在20-520MHz頻段範圍裡能達到Psat =50dBm的飽和輸出功率與飽和增益Gp = 17dB以上。第五章為結論以及未來研究。
英文摘要 This research explores RF components for the LTE-U and FR1 bands, and the advantages of GaN transistors in the IMT-2020 (5G) system standard. The first chapter introduces the research background of this research and the current status of IMT-2020 (5G) communication standards. In second chapter, we design the microstrip line bandpass filter of hairpin structure, the frequency band for 5-6GHz, and expected to be used in Unlicensed spectrum (LTE-U) of 3GPP TS 36.104. The third chapter introduces the power amplifier which using the Pseudomorphic High Electron Mobility Transistoer (PHEMT) transistor with a 300μm gate width and a π type structure to design a 2-8GHz power amplifier. It covers the FR1 band of 3GPP TS 38.104 Technical Specification Group Radio Access Network (NR); Base Station (BS) radio transmission and reception. The fourth chapter introduces the broadband high power amplifier which using GaN HEMT with balun push-pull amplifier circuit structure. And we expect the amplifier can achieve Psat = 50dBm saturated output power and Gp = 17dB saturation gain in the bandwidth of 20-520MHz .The fifth chapter is for the conclusion and future research.
論文目次 目錄
中文摘要 I
SUMMARY II
誌謝 V
目錄 VI
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1 研究動機與背景 1
1.2 章節概述 6
1.3 參考文獻 7
第二章 涵蓋LTE-U頻段之髮夾式微帶線帶通濾波器 7
2.1 濾波器簡介 8
2.2 微帶線簡介 8
2.2.1 微帶線濾波器種類 9
2.3 研究動機與架構規格 10
2.4 髮夾式微帶線濾波器基礎理論 11
2.4.1 S參數基礎理論 13
2.4.2 髮夾式微帶線濾波器之設計規格 14
2.4.3 設計流程圖 15
2.5 微帶線帶通濾波器設計與量測結果 16
2.5.1 電路設計模擬 16
2.5.2 量測結果 19
2.6 參考文獻 22
第三章 涵蓋IMT-2020(5G) FR1頻段之功率放大器 23
3.1 相關研究發展現況 23
3.2 研究動機 24
3.3 基本規格參數 25
3.3.1 雜訊指數(Noise Figure) 25
3.3.2 轉換增益/損耗(Conversion Gain/Loss) 27
3.3.3 穩定度(Stability) 27
3.3.4 動態範圍(Dynamic Range) 28
3.3.5 三階交錯點(3rd-order intercept point) 30
3.3.6 功率增加效率(Power Add Efficiency) 32
3.4 功率放大器設計概論 33
3.4.1 功率放大器基本理論 34
3.4.2 功率放大器功率匹配理論 35
3.4.3 藍基正交耦合器(Lange coupler) 36
3.4.4 電路設計之考量 38
3.4.5 設計流程圖 40
3.5 功率放大器設計與量測結果 41
3.5.1 電路架構介紹 41
3.5.2 電路設計模擬 42
3.5.2.1 LC Simulation 43
3.5.2.2 Microstripline Simulation 44
3.5.2.3 Layout 45
3.5.3 量測結果 48
3.6小結 52
3.7 參考文獻 52
第四章 巴倫寬頻(20-520MHZ)高功率放大器 54
4.1 巴倫 (平衡-不平衡轉換器)簡介與應用 54
4.2 鐵氧體材料(FERRITE MATERIAL)應用 55
4.3 研究動機與架構簡介 56
4.4 電路設計模擬與佈局 59
4.4.1 電路設計與模擬 59
4.4.2 電路布局 63
4.5量測結果 64
4.6 參考文獻 66
第五章 結論 69
5.1 結論 69
5.2 未來研究 70

參考文獻 [1] 3GPP TS 36.101 V11.4.0 (2013-04) E-UTRA: User Equipment (UE) radio transmission and reception, 3GPP Std.
[2] India TELECOMMUNICATION ENGINEERING CENTRE (2014), Supplementary Downlink, available at :
[3] http://tec.gov.in/pdf/Studypaper/Supplementary%20Downlink.pdf
[4] 李大嵩、李明峻、李常慎、黃崇榮(2015),第四代行動通訊系統 3GPP LTE-Advanced:原理與實務
[5] 許超雲、周韻采、劉柏立。103年度「我國3G頻譜屆期釋出規劃及B4G/5G規範與發展研究-B4G/5G規範發展與應用推廣情形」研究報告。財團法人台灣經濟研究院(編號:1031229coco),臺北市:交通部。
[6] 3GPP TS 38.104 V15.4.0 (2018-12) TSG RAN: Base Station (BS) radio transmission and reception, 3GPP Std.
[7] Reference URL https://www.2cm.com.tw/2cm/zhtw/tech/F20D9109
E8FC4D34B9CC25B24A786283
[1] Reference URL http://ir.lib.ksu.edu.tw/bitstream/987654321/2179/1/
[2] Reference URL https://www.etsi.org/deliver/etsi_ts/138100_138199/138
104/15.03.00_60/ts_138104v150300p.pdf
[3] Hassan Sajjad, Sana Khan, Ahsan Altaf and Latif Jan, “A Compact Filter With Stepped Hairpin Defeected Ground Structure,” 2018 IEEE 21st International Multi-Topic Conference (INMIC), 1-2 Nov. 2018.
[4] B. Dana, “The design, fabrication and measurement of microstrip filters and coupler circuits,” High Frequency Electronics, pp. 22-30, 2002.
[5] P. Wade, “Recipes for printed hairpin filters”, W1GHz: www.W1G
Hz.com,2011.
[6] M. Naser-Moghadasi and M. Alamolhoda, “Suprious response suppression in hairpin filter using DMS integrated in filter structure,” Progress in Electromagnetics Research C, Vol. 18, 221-229, 2011.
[7] Wong, C. Y., and Lum, K. M. “Miniaturized Multilayered Bandpass Filter Using Microstrip Hairpin Resonator for C-band Application,” 602-605, 2012
[8] U. H. Gysel, “New theory and design for hairpin-line filters,” IEEE Trans. Microwave Theory Tech., vol. 22, pp. 523-531, 1974.
[9] J. Zhu and Z. Feng, “Microstrip interdigital hairpin resonator with an optimal physical length,” IEEE Microw. Compon. Lett., vol. 16, no. 12, pp. 672–674, Dec. 2006.
[1] R. Vetury, D. Hodge, D. Aichele, J. Shealy ” High Power & Wideband GaN RF Switch Technology” International Conference on Nitride Semiconductors
[2] T. Melly,A.-S. Porret, C. C.Enz and E. A. Vittoz, “An analysis of flicker noise rejection in low-power and low-voltage CMOS mixers,” IEEE J. Solid-State Circuits, vol. 36,pp. 102-109, Jan. 2001.
[3] I.D. Robertson, S. Lucyszyn,”RFIC and MMIC design and technology,” Institution of Electrical Engineers, 2001.
[4] Reference URL https://www.microwaves101.com/encyclopedias/stabili
ty-factor
[5] J. Rollett, ” Stability and Power-Gain Invariants of Linear Twoports, ” IRE Transactions on Circuit Theory, vol. 9, pp.29-32, Mar. 1962.
[6] Reference URL https://e2e.ti.com/blogs_/b/analogwire/archive/2016/08
/30/rf-sampling-linearity-performance-is-not-so-straightforward
[7] S. C. Cripps, “ RF Power Amplifier for Wireless Communications, ” Artech House,Inc., 1999.
[8] Reference URL http://ir.lib.kuas.edu.tw/retrieve/8098/932516S151
005X3.pdf
[9] S. Seo, D. Pavlidis, and J.-S. Moon, “A wideband balanced AlGaN/GaN HEMT MMIC low noise amplifier for transceiver front-ends,” in Eur. Gallium Arsenide Compound Semicond. Appl. (EGAAS) Symp. Dig. , pp. 225–228, 2005.
[10] S. C. Cripps, "Advanced techniques in RF power amplifier design," Norwood, MA: Artech House, 2002.
[11] G. Sun and R. H. Jansen, “Broadband Doherty power amplifier via real frequency technique,” IEEE Trans. Microwave Theory Tech., vol. MTT-60, pp. 99-111, Jan. 2012.
[12] R. Darraji, F. M. Ghannouchi, "Digital Doherty Amplifier With Enhanced Efficiency and Extended Range," IEEE Trans. Microw. Theory Tech., vol. 59, no. 11, pp. 2898– 2909, Nov. 2011.
[1] Reference URL https://www.itread01.com/content/1548526806.html
[2] Reference URL https://rf-design.co.za/wp-content/uploads/2016/02/Push-Pull-Circuits-and-Wideband-Transformers.pdf
[3] Reference URL https://zh.wikipedia.org/wiki/%E5%B1%85%E9%87%8
C%E7%82%B9
[4] Reference URL https://www.2cm.com.tw/2cm/zhtw/tech/F20D9109E8FC
4D34B9CC25B24A786283
[5] Reference URL https://www.wolfspeed.com/media/downloads/396/CGH
40090PP.pdf
[6] C. G. Gentzler and S.K. Leong, ” Broadband VHF/UHF Amplifier Design Using Coaxial Transformers”, From May 2003 High Frequency Electronics Copyright © 2003 Summit Technical Media, LLC.
[7] Sevick, J., “Transmission Line Transformers”, Noble Publishing Corp., 4th Edition 2001.
[8] Steve Cripps, RF Power Amplifiers for Wireless Communications,Artech House, 1999.
[9] Reference URL https://en.wikipedia.org/wiki/Ferranti_effect
[10] J. L. B. Walker, Ed., Classic Works in RF Engineering: Combiners, Couplers, Transformers and Magnetic Materials. Artech House Publishers, 2005.
[11] NXP semiconductor, “Three Balun Designs for Push-Pull Amplifiers,” AN1034 application note, July 1993.
[12] R. M. Smith, J. Lees, P. J. Tasker, J. Benedikt, and S. C. Cripps,“A 40W Push-Pull Power Amplifier for High Efficiency, Decade Bandwidth Applications at Microwave Frequencies, in Microwave Symposium Digest (MTT), 2012 IEEE MTT-S International, pp. 1 - 3, June 2012.
[13] Robert Martin Hooper Smith, BEng(2013), Broadband Microwave Push-Pull Power Amplifiers, University of Cardiff, Doctor of Philosophy.
[14] R. M. Smith and S. C. Cripps, “Design of High Efficiency, Multi-Octave Microwave Push-Pull Power Amplifiers” in Automated RF and Microwave Measurement Society Conference, April 2012
[15] R. M. Smith, J. Lees, P. J. Tasker, J. Benedikt, and S. C. Cripps, “A Novel Formulation for High Efficiency Modes in Push-Pull Power Amplifiers using Transmission Line Baluns,” to be published in IEEE Microwave and Wireless Components Letters, accepted 29th Feb 2012.
[16] S. Pisa, S. Chicarella, R. Cusani, and C. Jerome, “30-512 MHz Hybrid Power Amplifier Design Using GaN transistor,” to be published in International Journal of RF and Microwave Computer-Aided Engineering, 4th April 2018.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-07-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-07-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw