進階搜尋


 
系統識別號 U0026-0508201820444100
論文名稱(中文) 鋼筋混凝土結構受地震載重之三維有限元素分析
論文名稱(英文) Finite Element 3D Modeling of Reinforced Concrete Structures Subject to Earthquake Loading
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 李綺芸
研究生(英文) Lisha Gineli Sosa
學號 N66057172
學位類別 碩士
語文別 英文
論文頁數 115頁
口試委員 指導教授-胡宣德
共同指導教授-蕭輔沛
口試委員-劉光晏
口試委員-戴毓修
口試委員-吳致平
中文關鍵字 none 
英文關鍵字 finite element analysis  concrete damaged plasticity  Abaqus  dynamic analysis  seismic behavior  shake table 
學科別分類
中文摘要 none
英文摘要 Shaking table experiments of relatively large-scale specimens have become crucial in deepening our understanding of how reinforced concrete structures respond to seismic movements. When these dynamic tests are modeled numerically, they can provide a wealth of information to engineers and designers at a more cost-effective rate than laboratory type testing. Many commercial software programs can perform three-dimensional structural analysis; however, they have limitations in their analytical functions and capabilities to model complex composite materials such as reinforced concrete. This project will develop a 3D finite-element model of a ½ scaled three-story reinforced concrete building tested under dynamic conditions applied through a triaxial shaking table housed at the National Center for Research on Earthquake Engineering located in Tainan. The building specimen is representative of many mid-rise buildings in Taiwan that were damaged during earthquakes such as the 1999 Chi-Chi earthquake and the 2016 Meinong earthquake. The finite-element analysis will be done using the advanced computer software ABAQUS/Standard and will take advantage of the concrete damaged plasticity material model. Also, solid elements will be used to model the concrete and truss elements to model the steel rebars. Results of a linear dynamic analysis showed that acceleration and displacement time-history data compared well with experimental results thereby indicating that the ABAQUS concrete damaged plasticity model can successfully be used to model reinforced concrete to predict the dynamic behavior of structures.
論文目次 Table of contents
ABSTRACT i
ACKNOWLEDGMENTS ii
LIST OF TABLES vi
LIST OF FIGURES vii

CHAPTER 1: INTRODUCTION 1
1.1 Overview 1
1.2 Motivation and case study 3
1.3 Objectives 4
1.4 Thesis structure 5
1.5 Research procedure 6
CHAPTER 2: LITERATURE REVIEW 7
2.1 Seismology 7
2.1.1 General information 7
2.1.2 Seismic waves 9
2.1.3 Seismic magnitude and intensity 11
2.2 Earthquake engineering 12
2.2.1 Earthquake demand vs. earthquake capacity 14
2.3 Plain concrete 15
2.3.2 Elastic and plastic strain 16
2.2.3 Coupling between damage and plasticity theory 18
2.3 Abaqus concrete damage plasticity model 19
2.3.1 Mechanical behavior of concrete 20
2.3.1.1 Uniaxial tension and compression loading response 21
2.3.1.2 Uniaxial cyclic response 22
2.3.1.3 Tension stiffening 24
2.3.1.4 Compression Hardening 25
2.3.1.5 Concrete plasticity 27
2.4 Steel behavior 30
2.5 Finite element analysis 31
2.5.1 Element type 31
2.5.1.1 Solid elements 31
2.5.1.2 Truss elements 34
2.5.2 Analysis type 34
2.5.2.1 Static linear analysis 35
2.5.2.2 Static nonlinear analysis 35
2.5.2.3 Dynamic analysis 36
CHAPTER 3: MATERIAL VALIDATION 37
3.1 Experimental test 37
3.1.1 Equipment and procedure 37
3.1.2 Results 40
3.2 Finite element modeling 43
3.2.1 Simplifications 43
3.2.2 Model geometry 44
3.2.3 Boundary conditions and interactions 45
3.2.4 Element type and meshing 46
3.2.5 Step solver 48
3.2.6 Material behavior 49
3.2.6.1 Steel material properties 49
3.2.6.2 Concrete material properties 50
3.3 Results and discussion 58
3.3.1 Linear static analysis 58
3.3.2 Nonlinear static analysis 61
CHAPTER 4: THREE-STORY BUILDING DYNAMIC ANALYSIS 67
4.1 Experimental test 67
4.1.1 Equipment and procedure 67
4.1.2 Results 69
4.2 Finite element modeling 73
4.2.1 Simplifications 73
4.2.2 Model geometry 74
4.2.3 Boundary conditions and interactions 76
4.2.4 Element type and meshing 77
4.2.5 Step solver 78
4.2.6 Material behavior 80
4.3 Results and discussion 82
4.3.1 Modal analysis 82
4.3.2 Linear dynamic analysis 85
4.3.3 Nonlinear dynamic analysis 89
CHAPTER 5: CONCLUSIONS 94
CHAPTER 6: LIMITATIONS AND SUGGESTIONS 96
REFERENCES 97
APPENDIX: INPUT FILES 100
Linear static analysis of Column A 100
Nonlinear static analysis of Column A 104
Linear dynamic analysis of the three-story building 107
Nonlinear dynamic analysis of the three-story building 112

參考文獻 REFERENCES

[1] Abaqus. (2012). Abaqus analysis user's manual Vol. 3 Materials. Dassault Systèmes Simulia.
[2] Abaqus theory manual. (2007). Dassault Systèmes Simulia.
[3] ACI Committe 318. (1995). Building Code Requirements for structural concrete. Detroit, Michigan: American Concrete Institute.
[4] Aktas, M., & Sumer, Y. (2014). Nonlinear finite element analysis of damaged and strengthened reinforced concrete beams. Journal of Civil Engineering and Management, 2(20),201-210.
[5] Alfarah, B., López-Almansa, F., & Oller, S. (2017). New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures. Engineering Structures, 132, 70-86.
[6] ASCE. (1982). State of the art report on finite element analysis of reinforced concrete. New York: Task committee on concrete and masonry structures.
[7] Birtel, V., Mark, P., & Bochum, R. (2006). Parameterised finite element modeling of RC beam shear failure. Ruhr university institure for reinforced and prestessed concrete stuctures.
[8] Bitiusca, L.-F. (2016). Finite Element Modelling of Reinforced Concrete Frame.
[9] Chaudhari, S. V., & Chakrabarti, M. A. (2012). Modeling of concrete for nonlinear analysis using finite element code Abaqus. International Journal of Computer Applications, 44(7), 14-18.
[10] Cicekli, U. et al (2007). A plasticity and anisotropic damage model for plain concrete. International Journal of Plasticity, 23(10-11), 1874-1900.
[11] Clough, R. W., & Penzien, J. (2003). Dynamics of structures. McGraw-Hill Education.
[12] Handbook of Engineering Mechanics. (1962). McGraw-Hill.
[13] Hibbeler, R. C. (10th Edition). Mechanics of Materials.
[14] Hibbitt; Karlsson; Sorensen, Inc. (1997). Abaqus theory manual and user manual. Rhode Island.
[15] Hu, H.-T., & Schnobrich, W. C. (1990). Nonlinear analysis of cracked reinforced concrete. ACI Structural Journal, 87(2), 199-207.
[16] Jankowiak, T., & Lodygowski, T. (2005). Identification of parameters of concrete damage plasticity constitutive model. Foundations of civil and environmental engineering, 6, 53-69.
[17] Kmiecik, P., & Kamiński, M. (2011). Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration. Archives of civil and mechanical engineering, 11(3), 623-636.
[18] Kupfer, H., Hilsdorf, H., & Rusch, H. (1969). Behavior of concrete under biaxial stresses. ACI Structural Journal, 66(8), 656-66.
[19] Lee, J., & Fenves, G. L. (1998). Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics , 124(8), 892-900.
[20] Lubliner, J. J., Oliver, S. O., & Oñate, E. (1989). A plastic-damage model for concrete. International Journal of Solids and Structures, 25(3), 229-326.
[21] Madariaga, B. Y. (1976). Bulletin of the Seismological Society of America, 66(6), 1271-1302.
[22] Mehta, P., & Monteiro, P. (1993). Concrete: Microstructure, properties, and materials. 2nd edition. McGraw-Hill, Inc.
[23] Mindess, S., Young, J., & Darwin, D. (2003). Concrete (2nd Ed). Upper Saddle River, NJ: Prentice Hall.
[24] Murthy, C. V., & V. A. (2012). Some Concepts in Earthquake Behavior of Buildings. Project on Review of Seismic Codes, & Preparation of Commentary and Handbooks, 268.
[25] Najwa, H. F., Hantouche, E. G., & Mohamed, H. H. (2016). Finite element modeling of FRP-confined concrete using modified concrete damage plasticity. Engineering structures, 125: 1-14.
[26] Oller, S. (2014). Nonlinear Dynamics of Structures. International Center for Numerical Methods in Engineering, Technical University of Catalonia.
[27] Pascu. (2008). Behavior and computation of reinforced concrete elements. Technical University of Civil Engineering.
[28] Pita, P. (2018). Studies on behavior of non-ductile reinforced concrete columns and beam-column joints subjected to cyclic loading. Tainan: National Cheng Kung University.
[29] Saenz, L. (1964). "Equation for the stress-strain curve of concrete" by Desayi P, and Krishnan S. ACI Structural Journal, 61(9), 1229-35.
[30] Tarbuck, E. J., & Lutgens, F. K. (2011). Earth 10th ed. Prentice Hall.
[31] USGS. (n.d.). Retrieved from USGS: www.usgs.gov
[32] Wight, J. K., & MacGregor, G. J. (2012). Reinforced Concrete Mechanics and Design. England: Pearson Education.
[33] Yu, T., Teng, J., Wong, Y. L., & Dong, S. L. (2010). Finite element modeling of confined concrete-I: Drucker-Prager type plasticity model. Engineering structures , 32, 665-679.
[34] Zhang, B. (2012). The Transformation of Nonlinear Structure Analysis Model From NosaCAD to Abaqus. 15th World Conference on Earthquake Engineering.
[35] 陸景文, 詹穎雯, & 陳振川. (2010). 台灣地區混凝土抗壓強度與彈性模數特性研究. Taiwan : 中國土木水利工程學刊,14(3),371-379.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-06起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-06起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw