進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0508201818060700
論文名稱(中文) 基於SWOT分析建立考量群體需求之執法和服務品質管理網路選擇方法
論文名稱(英文) Considering group preference for law enforcement and service quality management based on SWOT analysis
校院名稱 成功大學
系所名稱(中) 資訊管理研究所
系所名稱(英) Institute of Information Management
學年度 106
學期 2
出版年 107
研究生(中文) 邱緯賓
研究生(英文) Wei-Pin Chiu
電子信箱 r78981039@mail.ncku.edu.tw
學號 R78981039
學位類別 博士
語文別 英文
論文頁數 60頁
口試委員 口試委員-林懿貞
口試委員-謝焸君
口試委員-林彣珊
口試委員-莊宗嚴
口試委員-陳偉凡
口試委員-蔡青志
指導教授-王惠嘉
中文關鍵字 SWOT  服務組合  QoS,執法與服務品質管理 
英文關鍵字 SWOT  Services Composition  QoS  law enforcement  service quality management 
學科別分類
中文摘要 本研究的目的是藉由將優勢,劣勢,機會和威脅(SWOT)分析策略矩陣模擬為Web服務的一種,組成SWOT分析的方法,結合服務品質(QoS)功能的基礎上來建置業務流程/組合的過程中來選擇SWOT服務,基於網路服務具有跨平台、彈性及重複使用的特性,形成一種彈性策略;並根據我國警察職務行為的現況分析,提出一些觀點,可整合不同SWOT分析提供者的方式來建置執法和服務品質管理系統,提高工作環境品質與警察素質,以促進警察執法與服務品質管理的完善。另外,由於SWOT分析是採取客觀和中立的立場,透過積極參與警方決策前的討論會議,在官員和警察學者的見解中達成共識,雖然有助於形成一致意見的達成,但缺點是SWOT分析可能無法協助決策者訂定完善的行動計劃或策略。
為解決上述問題,本研究除考量網路服務組合流程,針對各流程重視程度去選擇網路服務,整合SWOT分析並形成從方案產生到最後進行群體選擇之網路服務選擇相關研究。故本研究提出一群體決策網路服務選擇流程(Group Decision SWOT ,GDSWOT),首先以語意方式來考量各決策者對任務、服務品質的重視程度與全域最佳化產生多個選擇方案,再以群體決策中之TOPSIS方法為基礎,提出能讓決策者以較少的評估工作且考量群體偏好之網路服務選擇方法,以期能多利用可用之網路服務並可降低整體決策者對系統期望之落差。
預期的表現是有效提高警察素質,並根據時間和社會變化創造高質量的工作環境。本研究試圖分析其基本理論狀況,並提出相關觀點以完善其理論。
英文摘要 This study proposes an architecture in which a SWOT analysis is employed to consider group preference via the concept of web services. The SWOT analysis is based on unanimity, including adopting an objective and neutral stance, and creates a consensus among officers and the insights of police academics through active participation in discussions prior to police decision-making. However, because SWOT analysis may be insufficient to formulate an action plan or strategy, SWOT analysis is integrated into Group Decision Web Service Selection (GDWSS) to form a new GDSWOT for law enforcement and service quality management to rank factors by order of preference. The specific study finds that assigning linguistic variables to decision makers (DMs) is more intuitive for representing their important weights with fuzzy sets for SWOT analysis; doing so helps eliminate the drawbacks in semantic ambiguity and provide better model options. The specific study considers the preferences of DMs and ensures the consistency of the selection. Every task/policy can be finished by a set of services that expose the operations required to analyze composite process-services in multiple tasks/policies. The corresponding optimization approaches for each task/policy select a service to optimize the overall evaluation function. In an effort to provide greater consistency, different DMs assign different task/policy weights to generate global optimization parameters. Then, a new hybrid method named SWOTS-TOPSIS is used to reduce the need for a large amount of input preference data. In addition, improving the disagreement and setting preferences using GDSWOT can alleviate the DMs' workload. The combined methodology is thus a helpful tool for DMs. The expected performance is to improve the quality of police effectively and create a high-quality work environment in response to time and social changes. The study tries to analyze its fundamental theoretical basis and proposes relevant ideas to perfect its theories.
論文目次 中文摘要 I
誌謝 IV
Contents V
List of Tables VI
List of Figures VII
Nomenclature VIII
1. Introduction 1
1.1 Research Background 1
1.2 Research Motivation and Objective 3
2. Theory and methodology 6
2.1 The decision-making methods 6
2.1.1 Inter Programming, IP 6
2.1.2 Simple Additive Weighting, SAW 7
2.1.3 Technique for Order Preference by Similarity to an Ideal Solution, TOPSIS 7
2.2 SWOT analysis with a QoS model 10
2.3 Global optimization and SWOT analysis selection 12
2.4 The method of GDSWOT 14
2.5 Triangular fuzzy number and Defuzzification 18
3. Framework and Group decision SWOT analysis selection model 22
3.1 Preprocessing and Preference setting 24
3.2 Alternatives computing 25
3.3 Alternatives ranking 30
4. Case study 36
4.1 Problem Representation 38
4.2 Evaluation of Fuzzy Set 43
4.3 Ranking of Alternatives 48
5. Conclusion and future works 52
References 55
參考文獻 Afshari, A., Mojahed, M., & Yusuff, R. M. (2010). Simple additive weighting approach to personnel selection problem. International Journal of Innovation, Management and Technology, 1(5), 511-515.
Ajmera, P. (2017). Ranking the strategies for Indian medical tourism sector through the integration of SWOT analysis and TOPSIS method. International Journal of Health Care Quality Assurance, 30(8), 668-679. doi:10.1108/ijhcqa-05-2016-0073
Al-Refaie, A., Sy, E., Rawabdeh, I., & Alaween, W. (2016). Integration of SWOT and ANP for effective strategic planning in the cosmetic industry. Advances in Production Engineering & Management, 11(1), 49-58. doi:10.14743/apem2016.1.209
Ardagna, D., & Pernici, B. (2005). Global and local QoS constraints guarantee in Web service selection. Study presented at the Proceedings - 2005 IEEE International Conference on Web Services, ICWS 2005, Orlando, Florida
Ardagna, D., & Pernici, B. (2007). Adaptive service composition in flexible processes. IEEE Transactions on Software Engineering, 33(6), 369-384. doi:10.1109/tse.2007.1011
Canfora, G., Di Penta, M., Esposito, R., & Villani, M. L. (2005). An approach for QoS-aware service composition on algorithms. Study presented at the GECCO 2005 - Genetic and Evolutionary Computation Conference.
Chen, S. J., Hwang, C. L., & Hwang, F. P. (1992). Fuzzy multiple attribute decision-making - methods and applications. Lecture Notes in Economics and Mathematical Systems, 375, 1-531.
Chen, Z., Shen, L. M., Li, F., & You, D. L. (2017). Your neighbors alleviate cold-start: On geographical neighborhood influence to collaborative web service QoS prediction. Knowledge-Based Systems, 138, 188-201. doi:10.1016/j.knosys.2017.10.001
Cheng, C. H., Yang, K. L., & Hwang, C. L. (1999). Evaluating attack helicopters by AHP based on linguistic variable weight. European Journal of Operational Research, 116(2), 423-435. doi:10.1016/s0377-2217(98)00156-8
Chou, S. Y., Chang, Y. H., & Shen, C. Y. (2008). A fuzzy simple additive weighting system under group decision-making for facility location selection with objective/subjective attributes. European Journal of Operational Research, 189(1), 132-145. doi:10.1016/j.ejor.2007.05.006
Ebonzo, A. D. M., & Liu, X. D. (2013). The use of axiomatic fuzzy set theory in AHP and TOPSIS methodology to determine strategies priorities by SWOT analysis. Quality & Quantity, 47(5), 2671-2685. doi:10.1007/s11135-012-9679-2
Goldstein, H. (1967). Police policy formulation: A study for improving police performance. Michigan Law Review, 65(6), 1123-1146. doi:10.2307/1287280
Hadikurniawati, W., & Wardoyo, R. (2015). A multi-attribute decision making for electrician selection using triangular fuzzy numbers arithmetic approach. International Journal of Advanced Computer Science and Applications, 6(9), 173-178.
Hanine, M., Boutkhoum, O., Tikniouine, A., & Agouti, T. (2016). A new web-based framework development for fuzzy multi-criteria group decision-making. Springerplus, 5. doi:10.1186/s40064-016-2198-1
Hao, Y. A., Zhang, Y. C., & Cao, J. L. (2012). A novel QoS model and computation framework in web service selection. World Wide Web-Internet and Web Information Systems, 15(5-6), 663-684. doi:10.1007/s11280-012-0157-5
Hatami-Marbini, A., Tavana, M., Hajipour, V., Kangi, F., & Kazemi, A. (2013). An extended compromise ratio method for fuzzy group multi-attribute decision-making with SWOT analysis. Applied Soft Computing, 13(8), 3459-3472. doi:10.1016/j.asoc.2013.04.016
Ho, A. T. K., & Cho, W. (2017). Government communication effectiveness and satisfaction with police performance: a large-scale survey study. Public Administration Review, 77(2), 228-239. doi:10.1111/puar.12563
Hu, Y., Peng, Q. M., Hu, X. H., & Yang, R. (2015). Time aware and data sparsity tolerant web service recommendation based on improved collaborative filtering. IEEE Transactions on Services Computing, 8(5), 782-794. doi:10.1109/tsc.2014.2381611
Huang, J., & Lin, C. (2013, June 28 2013-July 3 2013). Agent-based green web service selection and dynamic speed scaling. Study presented at the 2013 IEEE 20th International Conference on Web Services.
Johnson, R. R. (2012). Police officer job satisfaction: a multidimensional analysis. Police Quarterly, 15(2), 157-176. doi:10.1177/1098611112442809
Khanfir, E., Hog, C. E., Djmeaa, R. B., & Amor, I. A. B. (2014, June 27 2014-July 2 2014). A web service selection framework based on user's context and QoS. Study presented at the 2014 IEEE International Conference on Web Services.
Kula, S. (2017). Occupational stress, supervisor support, job satisfaction, and work-related burnout: perceptions of Turkish National Police (TNP) members. Police Practice and Research, 18(2), 146-159. doi:10.1080/15614263.2016.1250630
Li, S., Xia, R., Zong, C., & Huang, C.-R. (2009). A framework of feature selection methods for text categorization. Study presented at the Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 2 - Volume 2, Suntec, Singapore.
Liu, S. L., Liu, Y. X., Jing, N., Tang, G. F., & Tang, Y. (2005). A dynamic web service selection strategy with QoS global optimization based on multi-objective genetic algorithm. In H. Zhuge & G. C. Fox (Eds.), Grid and Cooperative Computing - Gcc 2005, Proceedings (Vol. 3795, pp. 84-89).
Lourenzutti, R., & Krohling, R. A. (2016). A generalized TOPSIS method for group decision-making with heterogeneous information in a dynamic environment. Information Sciences, 330, 1-18. doi:10.1016/j.ins.2015.10.005
Maria, A. S., Worfel, F., Wolter, C., Gusy, B., Rotter, M., Stark, S., . . . Renneberg, B. (2018). The role of job demands and job resources in the development of emotional exhaustion, depression, and anxiety among police officers. Police Quarterly, 21(1), 109-134. doi:10.1177/1098611117743957
Meng, S., & Arbab, F. (2009). QoS-Driven service selection and composition using quantitative constraint automata. Fundamenta Informaticae, 95(1), 103-128. doi:10.3233/fi-2009-144
Modarres, M., & Sadi-Nezhad, S. (2005). Fuzzy simple additive weighting method by preference ratio. Intelligent Automation and Soft Computing, 11(4), 235-244.
Myhill, A., & Bradford, B. (2012). Can police enhance public confidence by improving quality of service? Results from two surveys in England and Wales. Policing & Society, 22(4), 397-425. doi:10.1080/10439463.2011.641551
Neubauer, T., & Stummer, C. (2010). Interactive selection of web services under multiple objectives. Information Technology & Management, 11(1), 25-41. doi:10.1007/s10799-009-0058-1
Papazoglou, M. P., & van den Heuvel, W. J. (2007). Service oriented architectures: approaches, technologies and research issues. Vldb Journal, 16(3), 389-415. doi:10.1007/s00778-007-0044-3
Rai, R. K. (2012). A participatory action research training initiative to improve police effectiveness. Action Research, 10(3), 225-243. doi:10.1177/1476750312439901
Rossler, M. T., & Terrill, W. (2012). Police responsiveness to service-related requests. Police Quarterly, 15(1), 3-24. doi:10.1177/1098611111432679
Roszkowska, E., & Kacprzak, D. (2016). The fuzzy saw and fuzzy TOPSIS procedures based on ordered fuzzy numbers. Information Sciences, 369, 564-584. doi:10.1016/j.ins.2016.07.044
Safari, E., Babakhani, M., Sadjadi, S. J., Shahanaghi, K., & Naboureh, K. (2015). Determining strategy of pricing for a web service with different QoS levels and reservation level constraint. Applied Mathematical Modelling, 39(13), 3784-3813. doi:10.1016/j.apm.2014.11.054
Seyedmohammadi, J., Sarmadian, F., Jafarzadeh, A. A., Ghorbani, M. A., & Shahbazi, F. (2018). Application of SAW, TOPSIS and fuzzy TOPSIS models in cultivation priority planning for maize, rapeseed and soybean crops. Geoderma, 310, 178-190. doi:10.1016/j.geoderma.2017.09.012
Srdjevic, Z., Bajcetic, R., & Srdjevic, B. (2012). Identifying the criteria set for multicriteria decision making based on SWOT/PESTLE analysis: a case study of reconstructing a water intake structure. Water Resources Management, 26(12), 3379-3393. doi:10.1007/s11269-012-0077-2
Sun, S. X., & Zhao, J. (2012). A decomposition-based approach for service composition with global QoS guarantees. Information Sciences, 199, 138-153. doi:10.1016/j.ins.2012.02.061
Teng, J. Y., & Tzeng, G. H. (1998). Transportation investment project selection using fuzzy multiobjective programming. Fuzzy Sets and Systems, 96(3), 259-280. doi:10.1016/s0165-0114(96)00330-2
Van Broekhoven, E., & De Baets, B. (2006). Fast and accurate center of gravity defuzzification of fuzzy system outputs defined on trapezoidal fuzzy partitions. Fuzzy Sets and Systems, 157(7), 904-918. doi:10.1016/j.fss.2005.11.005
Villegas, J. A. (2017). Perception and performance in effective policing. Public Administration Review, 77(2), 240-241. doi:10.1111/puar.12745
Voskoglou, M. G. (2016). Comparison of the COG defuzzification technique and its variations to the GPA index. American Journal of Computational and Applied Mathematics, 6(5), 187-193.
Wang, C. Y., & Chen, S. M. (2017). Multiple attribute decision-making based on interval-valued intuitionistic fuzzy sets, linear programming methodology, and the extended TOPSIS method. Information Sciences, 397, 155-167. doi:10.1016/j.ins.2017.02.045
Wang, H. C., Chiu, W. P., & Wu, S. C. (2015). QoS-driven selection of web service considering group preference. Computer Networks, 93, 111-124. doi:10.1016/j.comnet.2015.10.014
Wang, H. P., Lu, X., Du, Y. X., Zhang, C. W., Sadiq, R., & Deng, Y. (2017). Fault tree analysis based on TOPSIS and triangular fuzzy number. International Journal of System Assurance Engineering and Management, 8(4), 2064-2070. doi:10.1007/s13198-014-0323-5
Wang, S. G., Sun, Q. B., Zou, H., & Yang, F. C. (2011). Web service selection based on adaptive decomposition of global QoS constraints in ubiquitous environment. Journal of Internet Technology, 12(5), 757-768.
Wang, W. D., Huang, Z. Q., & Wang, L. Q. (2018). ISAT: An intelligent web service selection approach for improving reliability via two-phase decisions. Information Sciences, 433, 255-273. doi:10.1016/j.ins.2017.12.048
Wang, Y. J. (2015). A fuzzy multi-criteria decision-making model based on simple additive weighting method and relative preference relation. Applied Soft Computing, 30, 412-420. doi:10.1016/j.asoc.2015.02.002
Weihrich, H. (1982). THE TOWS MATRIX - A tool for situational analysis. Long Range Planning, 15(2), 54-66. doi:10.1016/0024-6301(82)90120-0
Xiong, P. C., Fan, Y. S., & Zhou, M. C. (2008). QoS-aware web service configuration. IEEE Transactions on Systems Man and Cybernetics Part a-Systems and Humans, 38(4), 888-895. doi:10.1109/tsmca.2008.923062
Xu, J., Feng, P., & Yang, P. (2016). Research of development strategy on China's rural drinking water supply based on SWOT-TOPSIS method combined with AHP-Entropy: a case in Hebei Province. Environmental Earth Sciences, 75(1). doi:10.1007/s12665-015-4885-6
Yaakob, A. M., Serguieva, A., & Gegov, A. (2017). FN-TOPSIS: Fuzzy networks for ranking traded equities. IEEE Transactions on Fuzzy Systems, 25(2), 315-332. doi:10.1109/tfuzz.2016.2555999
Yang, W., Chen, Z. P., & Zhang, F. (2017). New group decision making method in intutitionistic fuzzy setting based on TOPSIS. Technological and Economic Development of Economy, 23(3), 441-461. doi:10.3846/20294913.2015.1072754
Yin, J. T., Yang, L. X., Tang, T., Gao, Z. Y., & Ran, B. (2017). Dynamic passenger demand oriented metro train scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear programming approaches. Transportation Research Part B-Methodological, 97, 182-213.
Yin, X. Q. (2016). Study on a dynamic e-business application framework based on web service-based SOA. International Journal of Security and Its Applications, 10(1), 55-64. doi:10.14257/ijsia.2016.10.1.06
Zeng, L. Z., Benatallah, B., Ngu, A. H. H., Dumas, M., Kalagnanam, J., & Chang, H. (2004). QoS-aware middleware for web services composition. IEEE Transactions on Software Engineering, 30(5), 311-327. doi:10.1109/tse.2004.11
Zhang, L.-c., Li, C.-j., & Yu, Z.-l. (2012). Dynamic web service selection group decision-making based on heterogeneous QoS models. The Journal of China Universities of Posts and Telecommunications, 19(3), 80-90. doi:http://dx.doi.org/10.1016/S1005-8885(11)60269-0
Zhao, X. C., Wen, Z. C., & Li, X. M. (2014). QoS-aware web service selection with negative selection algorithm. Knowledge and Information Systems, 40(2), 349-373. doi:10.1007/s10115-013-0642-x
Zionts, S., & Wallenius, J. (1983). An interactive multiple objective linear programming method for a class of underlying nonlinear utility functions. Management Science, 29(5), 519-529. doi:10.1287/mnsc.29.5.519
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-07-18起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-07-18起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw