進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0508201716485400
論文名稱(中文) 廢棄物焚化爐與柴油引擎之持久性有機污染物排放研究
論文名稱(英文) Emissions of Persistent Organic Pollutants (POPs) from the Waste Incinerator and Diesel Engine
校院名稱 成功大學
系所名稱(中) 環境工程學系
系所名稱(英) Department of Environmental Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 雷宸
研究生(英文) Farran Mack Redfern
學號 P58047025
學位類別 博士
語文別 英文
論文頁數 132頁
口試委員 召集委員-陳瑞仁
口試委員-方國權
指導教授-李文智
口試委員-林達昌
口試委員-林聖倫
口試委員-王琳麒
口試委員-趙浩然
中文關鍵字 電子廢棄物  多溴二苯醚(PBDEs)  工業廢棄物焚化爐  廢棄食用油  啟動程序  多燃料燃燒  生質柴油  多環芳香烴(PAHs)  戴奧辛及呋喃(PCCD / Fs)  耐久性試驗 
英文關鍵字 E-wast  Polybrominated diphenyl ethers (PBDEs)  Industrial waste incinerator  Waste cooking oil (WCO)  Start-up  Multi-fuel Combustion  Biodiesel  Polycyclic aromatic hydrocarbons (PAHs)  Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs)  Durability tests 
學科別分類
中文摘要 多溴二苯醚(PBDEs)用作阻燃劑,但由於其潛在的健康風險而引起關注。PBDEs在環境中無處不在,尤其在極地地區更突顯其大氣運輸的重要性。至此,大多數研究都著重在PBDEs之生產、使用和廢棄物管理階段的蒸發和逸散。然而,最近的研究已經揭示了在考慮將PBDEs釋放到大氣中時燃燒源的重要性。然而,最近的研究已經發現,當考慮到PBDEs釋放到大氣中時,燃燒源的重要性。然而,缺乏完整的PBDEs排放紀錄,且來自燃燒源的全球性PBDEs排放量尚未被估計。因此,本研究估計了來自燃燒源的全球性PBDEs排放量和WEEE與電子廢棄物的非法露天燃燒以及商業PBDE混合物的蒸發和逸散。我們發現電子廢棄物的燃燒源和非法露天燃燒的PBDEs全球性排放量為6.75和0.255-5.56噸/年,是重要的PBDEs燃燒源。如果忽略來自燃燒源的PBDEs排放緩和,可以減輕和延遲減少人體暴露於PBDEs的有效性。來自燃燒源的PBDEs排放之控制應與禁止商業PBDE混合物一起執行。
本研究檢視在工業廢棄物焚化爐(IWI)啟動期間,使用廢棄食用油(WCO)作為替代柴油,對PBDEs排放的影響。共同燃燒設計為0、40和60%WCO注射,成為D100、W40D60和W60D40多燃料燃燒。在爐子的4個溫度階段對煙道氣進行採樣:階段A(<200℃),階段B(200-450℃),階段C(580-700℃)和階段D(> 850℃ )。最高的PBDEs量發生在階段A,B階段使用柴油即急劇下降。PBDEs總量的減少是因階段B殘渣排放和熱分解間的競爭結果。WCO發現,在階段C和階段D,為PBDEs的形成提供了合適的溫度(600-800°C),而略微增加了PBDEs排放量。因此,當WCO用其作為IWI運作時的替代燃料時,粘度成為重要的控制因素。分別使用D100、W40D60和W60D40,啟動過程中累積的PBDEs排放量分別為1,099、1253和1,207μg。此外,如果IWI每月重新啟動一次,啟動程序所產生的年PBDEs排放量分別提高了三個燃料組合的4.60%、5.47%和5.20%,此為一個值得注意的問題。因此,避免不必要的啟動是IWI操作的必要準則。藉由使用WCO替代 40%和60%的柴油,使PBDEs排放量有些微的增長(<1%),此提供了WCO處理有用的資訊。此種新的廢棄油處理也為循環經濟建立了良好的示範。
在本研究中,分別透過使用B10(10%廢棄食用油+ 90%柴油)和B8(8%廢棄食用油+ 92%柴油),對兩台柴油引擎(EURO IV和EURO II)進行了6萬公里的耐久性試驗,以確定多環芳香烴(PAHs)和戴奧辛及呋喃(PCCD / Fs)之排放的影響。上述排放量是以每20,000公里測試間隔進行測量的。在進行EURO IV和II型引擎的耐久性試驗前,最高的總PAH質量濃度分別為38.2和25.6μgNm-3,在經6萬公里後降低了51-55%。PAH排放的主要同源物是屬於LM-PAHs的萘(> 45%),芘和菲。在耐久性試驗期間,PAH BaPeq的總排放量在兩台引擎之間有不同的排放趨勢。最高水平的是,EURO II引擎試驗前的2.17μgBaPeq Nm-3,經過6萬公里的循環後,降低了84%,而EURO IV的總BaPeq排放量,在經相同的試驗後,從0.0894增加到0.154μgBaPeq Nm-3。毒性排放主要的同類物是苯甲醚(約70%)。此外,藉由使用B10,對EURO IV引擎測試PCDD / F的排放量。
分別在6萬公里和2萬公里使用循環後,PCDD / F的質量和毒性濃度分別達到最高水平,167 ng Nm-3和3.69 pg WHO-TEQ Nm-3。毒性的主要同類物質為OCDD(> 50%),2,3,7,8-TeCDD(> 35%)和1,2,3,7,8-PeCDD(> 18%)。因此,使用WCO-生物柴油可能可以降低舊引擎的PAH質量和毒性排放,但較新的引擎劣化時,對PAH和PCDD / F的排放無顯著影響。
英文摘要 Polybrominated diphenyl ethers (PBDEs) are used as flame retardants, but are of concern due to their potential health risks. PBDEs are ubiquitous in the environment and their occurrence in Polar Regions highlights the importance of atmospheric transport. As yet, most researches emphasized evaporative and fugitive releases of PBDEs during production, use and waste management phases. However, the recent studies have uncovered the importance of the combustion source when considering the release of PBDEs into the atmosphere. Nevertheless, complete PBDE emission inventories are lacking, and no global PBDE emissions from combustion sources have been estimated. Therefore, this study estimated the global PBDE emissions from combustion sources and illegal open burning of WEEE and e-waste, as well as evaporative and fugitive releases from commercial PBDE mixtures. We found that combustion sources and illegal open burning of e-waste globally emit PBDEs at 6.75 and 0.255-5.56 tonnes yr-1, and are important PBDE emitters. The effectiveness of reducing human exposure to PBDEs will be minimized and delayed if mitigation of PBDE emissions from combustion sources is ignored. Control of PBDE emissions from combustion sources should be taken along with the ban of commercial PBDE mixtures.
This study examined the effect of using waste cooking oil (WCO) as an alternative to diesel on PBDE emissions during the start-up of an industrial waste incinerator (IWI). The co-combustions were designed with 0, 40, and 60% WCO injection and became D100, W40D60, and W60D40 multi-fuel combustions, respectively. The flue gas was sampled at four temperature stages of the furnace: Stage A (<200°C), Stage B (200–450°C), Stage C (580–700°C), and Stage D (>850°C). The highest PBDE level was found in Stage A and sharply declined in Stage B by using diesel. The reduction of total PBDE was a competitive result between residue releasing and thermal decomposition in Stage B. The WCO were found to slightly increase the PBDE emissions during Stage C and D, which provided the suitable temperature for PBDE formation (600–800°C). Therefore, the viscosity became an important control factor when the WCO were utilized as an alternative fuel in IWI operation. The accumulated PBDE emissions during the start-up procedure were 1,099, 1,253, and 1,207 µg by using D100, W40D60, and W60D40, respectively. Additionally, the annual PBDE emissions contributed by start-up procedures increased up to 4.60%, 5.47%, and 5.20% by three fuel combinations, respectively, if the IWI has to be restarted once per month, and became a noticeable issue. Therefore, avoiding unnecessary start-ups was an essential criterion for IWI operation. The small increases (<1%) of PBDE emissions by altering 40% and 60% diesel with WCO provided an useful information on WCO treatment. This new disposal for waste oil also revealed a good demonstration of Circular Economy.
In this study, the 60,000-km durability tests were performed on two diesel engines (EURO IV and EURO II) by using B10 (10% WCO + 90% diesel) and B8 (8% WCO + 92% diesel), respectively, to determine the impacts on the emissions of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCCD/Fs). The above emissions were measured per 20,000-km testing intervals. The highest total PAH mass concentrations were 38.2 and 25.6 µg Nm–3 before durability test by operating EURO IV and II engines, respectively, and decreased 51–55% after 60,000-km operation. The dominant congeners of PAH emissions were naphthalene (> 45%), pyrene, and phenanthrene, which belonged to the LM-PAHs. The total PAH BaPeq had different emission trends between the two engines during the durability tests. The highest level was 2.17 µg BaPeq Nm–3 from EURO II engine before the test and reduced by 84% after a 60,000-km cycle, when the total-BaPeq emissions of EURO IV tended to increase from 0.0894 to 0.154 µg BaPeq Nm–3 after the same test. The dominant congener in the toxicity emissions was benzo(a)pyrene (~70%). Additionally, the PCDD/F emissions were tested in EURO IV engine by using B10. The PCDD/F concentrations of mass and toxicity approached the highest levels, 167 ng Nm–3 and 3.69 pg WHO-TEQ Nm–3, after 60,000-km and 20,000-km running cycles, respectively. The main dominant congeners were OCDD (> 50%) for mass; 2,3,7,8-TeCDD (> 35%) and 1,2,3,7,8-PeCDD (> 18%) for toxicity. Consequently, the use of WCO-biodiesel might reduce the PAH mass and toxicity emissions in older engine but had no significant effect in PAH and PCDD/F emissions during the deterioration of the latest engine.
論文目次 Abstract II
摘要 V
Acknowledgements VII
Table of Content VIII
List of Tables XII
List of Figures XIV
Acronyms XV
Chapter 1 Introduction 1
1.1 Background 1
1.2 Objectives 6
Chapter 2 Literature Review 8
2.1 Global evaporative and fugitive emissions from commercial PBDE mixtures 8
2.1.1 Global production of the three commercial PBDE mixtures 8
2.1.1.1 The global cumulative use of the three commercial PBDE mixtures 9
2.1.1.2 The cumulative PBDE amounts in landfills 9
2.1.1.3 Waste electrical and electronic equipment (WEEE) and e-waste 12
2.1.1.4 PBDE emission factors during production, use and waste management phases 12
2.1.2 Global PBDE evaporative and fugitive emissions 14
2.1.3 Survival and formation of PBDEs in combustion system 15
2.2 Physical and chemical properties of PBDEs 19
2.3 PAHs and PCDD/Fs Emissions from Diesel Engine 21
2.3.1 Chemical structure of PAHs and PCDD/Fs 21
2.3.2 Biodiesel Development 21
2.3.2.1 Biodiesel Application and Their Emissions 23
2.3.2.2 Durability Test and Deterioration of Diesel Engine 24
Chapter 3 Research Methodology and Experimental Section 26
3.1 Global PBDE emissions 26
3.1.1 PBDE emission factors of combustion sources 27
3.1.2 Global PBDE emissions from combustion sources 31
3.2 Incinerator, Fuels, and Start-up Operation 35
3.2.1 Physical and Chemical Properties of Testing Fuels 36
3.2.1.1 Fuel stability 36
3.2.1.2 Physical Properties 39
3.2.1.3 Chemical Compositions and Properties 39
3.2.2 Sampling Strategy 40
3.2.3 Flue Gas Samplings and PBDE Analyses 40
3.2.3.1 Flue Gas Sampling 42
3.2.3.2 PBDE Analyses 42
3.2.4 QA/QC Information 43
3.3 Emissions from Diesel Engine 44
3.3.1 Engine, Durability Test and Sampling Procedure 44
3.3.2 Analytical Processes 46
3.3.2.1 PAH Analysis 46
3.3.2.2 PCDD/F Analysis 47
3.3.3 Quality Assurance and Quality Control (QA/QC) 47
Chapter 4 Results and Discussion 49
4.1 Global PBDE emissions from combustion sources 49
4.1.1 Uncertainties 50
4.2 PBDE Emissions from Waste Incinerator 52
4.2.1 Fuel properties - Physical Properties 52
4.2.2 Chemical Compositions 53
4.2.3 Thermal Reaction Properties 53
4.2.4 PBDE Emissions in the Flue Gases 54
4.2.5 Emission Rates and Annual Emissions for PBDEs by using Various Fuels 61
4.3 Emissions from Diesel Engines 65
4.3.1 PAHs emission from Diesel Engines 65
4.3.1.1 Euro IV Engine 65
4.3.1.2 Euro II Engine 72
Chapter 5 Conclusions 77
5.1 Global PBDE emissions from combustion sources 77
5.2 Emissions from Waste Incinerator 77
5.3 Emissions from Diesel Engines 78
Suggestions 79
References 80
Appendices 97
Curriculum Vitae 128

參考文獻 Agarwai, A.K., Bijwe, J. and Das, L.M. (2003). Wear assessment in a biodiesel fueled compression ignition engine. J. Eng. Gas Turbines Power. 125: 820–826.
Agarwal, A.K., Srivastava, D.K., Dwivedi, G., Kawatra, G., Kumar, M.R.P., Bhardwaj, O.P., Abraham, M. and Jaura, A. (2008). Field trial of biodiesel (B100) and diesel fuelled common rail direct injection Euro-III compliant sports utility vehicles in India condition. SAE Technical Paper 2008-28-0077.
Alaee, M., Arias, P., Sjödin, A. and Bergman, Å. (2003). An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ. Int. 29: 683-689.
Alcock, R.E., Sweetman, A.J., Prevedouros, K. and Jones, K.C. (2003). Understanding levels and trends of BDE-47 in the UK and North America: an assessment of principal reservoirs and source inputs. Environ. Int. 29: 691-698.
Altarawneh, M. and Dlugogorski, B.Z. (2013). A Mechanistic and Kinetic Study on the Formation of PBDD/Fs from PBDEs. Environ. Sci. Technol. 47: 5118-5127.
Artha, A.A., Wu, E.M.-Y., Wang, L.-C., Chen, C.-H. and Chang-Chien, G.-P. (2011). Thermal formation of polybrominated diphenyl ethers in raw and water-washed fly ash. Aerosol Air Qual. Res. 11: 393-400.
Batterman, S.A., Chernyak, S., Jia, C., Godwin, C. and Charles, S. (2009). Concentrations and emissions of polybrominated diphenyl ethers from US houses and garages. Environ. Sci. Technol. 43: 2693-2700.
Besis, A., Voutsa, D. and Samara, C. (2016). Atmospheric Occurrence and Gas-Particle Partitioning of PBDEs at Industrial, Urban and Suburban Sites of Thessaloniki, Northern Greece: Implications for Human Health. Environ. Pollut. 215: 113-124.
Breivik, K., Armitage, J.M., Wania, F. and Jones, K.C. (2014). Tracking the global generation and exports of e-waste. Do existing estimates add up? Environ. Sci. Technol. 48: 8735-8743.
Cetin, B. and Odabasi, M. (2008). Atmospheric concentrations and phase partitioning of polybrominated diphenyl ethers (PBDEs) in Izmir, Turkey. Chemosphere. 71: 1067-1078.
Chang, S. S., Lee, W. J., Holsen, T.M., Li, H. W., Wang, L.-C. and Chang-Chien, G.-P. (2014a). Emissions of polychlorinated-p-dibenzo dioxin, dibenzofurans (PCDD/Fs) and polybrominated diphenyl ethers (PBDEs) from rice straw biomass burning. Atmos. Environ. 94: 573-581.
Chang, S. S., Lee, W. J., Wang, L. C., Chang-Chien, G.-P. and Wu, C.-Y. (2013a). Energy recovery and emissions of PBDD/Fs and PBDEs from co-combustion of woodchip and wastewater sludge in an industrial boiler. Environ. Sci. Technol. 47: 12600-12606.
Chang, S. S., Lee, W. J., Wang, L. C., Lin, N.-H. and Chang-Chien, G.-P. (2013b). Influence of the Southeast Asian biomass burnings on the atmospheric persistent organic pollutants observed at near sources and receptor site. Atmos. Environ. 78: 184-194.
Chang, Y. C., Lee, W.-J., Wang, L.-C., Yang, H.-H., Cheng, M.-T., Lu, J.-H., Tsai, Y.I. and Young, L.-H. (2014b). Effects of waste cooking oil-based biodiesel on the toxic organic pollutant emissions from a diesel engine. Appl. Energ. . 113: 631-638.
Chang, Y. C., Lee, W.-J., Yang, H.-H., Wang, L.-C., Lu, J.-H., Tsai, Y.I., Cheng, M.-T., Young, L.-H. and Chiang, C.-J. (2014c). Reducing emissions of persistent organic pollutants from a diesel engine by fueling with water-containing butanol diesel blends. Environ. Sci. Technol. 48: 6010-6018.
Chang, Y.C., Lee, W.J., Lin, S.-L., Wang, L.-C. (2013). Green energy: Water-containing acetone–butanol–ethanol diesel blends fueled in diesel engines. Appl. Energy. 109: 182-191.
Chao, H.-R., Lin, D.-Y., Chen, K.-Y., Gou, Y.-Y., Chiou, T.-H., Lee, W.-J., Chen, S.-J. and Wang, L.-C. (2014). Atmospheric concentrations of persistent organic pollutants over the Pacific Ocean near southern Taiwan and the northern Philippines. Sci. Total Environ. 491: 51-59.
Chen, C.Y., Lee, W.J., Mwangi, K.J., Wang*, L.C., Wu, J.L., Lin, S.L. (2017) Reduction of Persistent Organic Pollutant Emissions during Incinerator Start-up by Using Crude Waste Cooking Oil as an Alternative Fuel. Aerosol Air Qual. Res., Impress.
Chen, C. Y., Lee, W.-J., Wang, L.-C., Chang, Y.-C., Yang, H.-H., Young, L.-H., Lu, J.-H., Tsai, Y.I., Cheng, M.-T. and Mwangi, J.K. (2017). Impact of high soot-loaded and regenerated diesel particulate filters on the emissions of persistent organic pollutants from a diesel engine fueled with waste cooking oil-based biodiesel. Appl. Energ. 191: 35-43.
Cheruiyot, N.K., Lee, W.-J., Mwangi, J.K., Wang, L.-C., Lin, N.-H., Lin, Y.-C., Cao, J., Zhang, R. and Chang-Chien, G.-P. (2015). An overview: Polycyclic aromatic hydrocarbon emissions from the stationary and mobile sources and in the ambient air. Aerosol Air Qual. Res. 15: 2730-2762.
Cheruiyot, N.K., Lee, W.-J., Yan, P., Mwangi, J.K., Wang, L.-C., Gao, X., Lin, N.-H. and Chang-Chien, G.-P. (2016). An Overview of PCDD/F Inventories and Emission Factors from Stationary and Mobile Sources: What We Know and What is Missing. Aerosol Air Qual. Res. 16: 2965-2988.
Cheung, C.S., Zhu, L. and Huang, Z. (2009). Regulated and unregulated emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol. Atmos. Environ. 43: 4865–4872.
Choi, S.D., Baek, S.Y. and Chang, Y.S. (2008). Atmospheric levels and distribution of dioxin-like polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in the vicinity of an iron and steel making plant. Atmos. Environ. 42: 2479-2488.
Clark, S.J., Wagner, L., Schrock, M.D. and Piennaar, P.G. (1984). Methyl and ethyl soybean esters as renewable fuels for diesel-engines. J. Am. Oil Chem. Soc. 61: 1632–1638.
de Boer, J. and Wells, D.E. (2006). Pitfalls in the analysis of brominated flame retardants in environmental, human and food samples–including results of three international interlaboratory studies. TrAC, Trends Anal. Chem. 25: 364-372.
de Mello, M., Young, A., Villardi, H., Pessoa, F. and Salgado, A. (2017). Biodiesel production by the methylic-alkaline and ethylic-enzymatic routes: Discussion of some environmental aspects. J. Cleaner Prod. 144: 347–357.
Demirbas, A. (2008). Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers. Manage. 49: 2106–2116.
Dong, Y., Fu, S., Zhang, Y., Nie, H. and Li, Z. (2015). Polybrominated Diphenyl Ethers in Atmosphere from Three Different Typical Industrial Areas in Beijing, China. Chemosphere. 123: 33-42.
Drage, D., Aries, E. and Harrad, S. (2014). Studies into the formation of PBDEs and PBDD/Fs in the iron ore sintering process. Sci. Total Environ. 485: 497-507.
Earnshaw, M.R., Jones, K.C. and Sweetman, A.J. (2013). Estimating European historical production, consumption and atmospheric emissions of decabromodiphenyl ether. Sci. Total Environ. 447: 133-142.
Gebbink, W.A., Sonne, C., Dietz, R., Kirkegaard, M., Born, E.W., Muir, D.C.G. and Letcher, R.J. (2008). Target tissue selectivity and burdens of diverse classes of brominated and chlorinated contaminants in polar bears (Ursus maritimus) from east Greenland. Environ. Sci. Technol. 42: 752-759.
Gou, Y.-Y., Hsu, Y.-C., Chao, H.-R., Que, D.E., Tayo, L.L., Lin, C.-H., Huang, S.M., Tsai, C.-H. and Shih, S.-I. (2016). Pollution characteristics and diurnal variations in polybrominated diphenyl ethers in indoor and outdoor air from vehicle dismantler factories in southern Taiwan. Aerosol Air Qual. Res. 16: 1931-1941.
Fajriutami, T., Seo, Y.C. and Chu, Y.H. (2013). Optimization of Two-Step Catalyzed Biodiesel Production from Soybean Waste Cooking Oil. J. Mater. Cycles Waste. 15: 179-186.
Fazal, M.A., Haseeb, A.S.M.A. and Masjuki, H.H. (2011). Biodiesel feasibility study: An evaluation of material compatibility; performance; emission and engine durability. Renew. Sust. Energ. Rev. 15: 1314–1324.
Fraer, R., Dinh, H., Proc, K., McCormick, R.L., Chandler, K. and Buchholz, B. (2005). Operating experience and teardown analysis for engines operating on biodiesel blends (B20). SAE Technical Paper 2005-01-3641
Gass, H.C., Lüder, K. and Wilken, M. (2002). PCDD/F-Emissions During Cold Start-up and Shut-Down of a Municipal Waste Incinerator. Organohalogen compd. 56: 193-196.
Gouin, T., Thomas, G.O., Chaemfa, C., Harner, T., Mackay, D. and Jones, K.C. (2006). Concentrations of Decabromodiphenyl Ether in Air from Southern Ontario: Implications for Particle-Bound Transport. Chemosphere. 64: 256-261.
Guo, C.J. (2014). Emissions of PCDD/Fs and PCBs During the Cold-start of A Municipal Solid Waste Incinerator. (Masters dissertation). National Cheng Kung University.
Hale, R.C., La Guardia, M.J., Harvey, E. and Mainor, T.M. (2002). Potential role of fire retardant-treated polyurethane foam as a source of brominated diphenyl ethers to the US environment. Chemosphere. 46: 729-735.
Haseeb, A., Sia, S.Y., Fazal, M.A. and Masjuki, H.H. (2010). Effect of temperature on tribological properties of palm biodiesel. Energy. 35: 1460–1464.
Hays, M.D., Fine, P.M., Geron, C.D., Kleeman, M.J. and Gullett, B.K. (2005). Open burning of agricultural biomass: physical and chemical properties of particle-phase emissions. Atmos. Environ. 39: 6747-6764.
Ho, K.-C., Chen, C.-L., Hsiao, P.-X., Wu, M.-S., Huang, C.-C. and Chang, J.-S. (2014). Biodiesel Production from Waste Cooking Oil by Two-Step Catalytic Conversion. Energy Procedia. 61: 1302-1305.
Hoh, E. and Hites, R.A. (2005). Brominated flame retardants in the atmosphere of the east-central United States. Environ. Sci. Technol. 39: 7794-7802.
Hsieh, L.T., Wu, E.M.Y., Wang, L.C., Chang-Chien, G.P. and Yeh, Y.F. (2011). Reduction of toxic pollutants emitted from heavy-duty diesel vehicles by deploying diesel particulate filters. Aerosol Air Qual. Res. 11: 709–715.
Huwe, J.K. and Smith, D.J. (2007). Accumulation, whole-body depletion, and debromination of decabromodiphenyl ether in male sprague-dawley rats following dietary exposure. Environ. Sci. Technol. 41: 2371-2377.
Inal, F. and Senkan, S.M. (2002). Effects of oxygenate additives on polycyclic aromatic hydrocarbons(PAHs) and soot formation. Combust. Sci. Technol. 174: 1–19.
Ji, K., Choi, K., Giesy, J.P., Musarrat, J. and Takeda, S. (2011). Genotoxicity of Several Polybrominated Diphenyl Ethers (PBDEs) and Hydroxylated PBDEs, and Their Mechanisms of Toxicity. Environ. Sci. Technol. 45: 5003-5008.
Jones-Otazo, H., Clarke, J., Diamond, M., Archbold, J., Ferguson, G., Harner, T., Richardson, G., Ryan, J. and Wilford, B. (2005). Is house dust the missing exposure pathway for PBDEs? An analysis of the urban fate and human exposure to PBDEs. Environ. Sci. Technol. 39: 5121-5130.
Kalam, M.A. and Masjuki, H.H. (2002). Biodiesel from palmoil - An analysis of its properties and potential. Biomass Bioenergy. 23: 471–479.
Kalam, M., Masjuki, H., Jayed, M. and Liaquat, A. (2011). Emission and Performance Characteristics of an Indirect Ignition Diesel Engine Fuelled with Waste Cooking Oil. Energy. 36: 397-402.
Kelly, B.C., Ikonomou, M.G., Blair, J.D., Morin, A.E. and Gobas, F.A. (2007). Food Web–Specific Biomagnification of Persistent Organic Pollutants. Science. 317: 236-239.
Kuo, Y.-C., Chen, Y.-C., Lin, M.-Y., Young, L.-H., Hsu, H.-T., Liou, S.-H., Wu, T.-N., Wang, L.-C. and Tsai, P.-J. (2015). Ambient air concentrations of PCDD/Fs, coplanar PCBs, PBDD/Fs, and PBDEs and their impacts on vegetation and soil. Int. J. Environ. Sci. Technol. 12: 2997-3008.
La Guardia, M.J., Hale, R.C. and Harvey, E. (2006). Detailed polybrominated diphenyl ether (PBDE) congener composition of the widely used penta-, octa-, and deca-PBDE technical flame-retardant mixtures. Environ. Sci. Technol. 40: 6247-54.
Laroo, C.A., Schenk, C.R., Sanchez, L.J. and McDonald, J. (2011). Emissions of PCDD/Fs, PCBs, and PAHs from a modern diesel engine equipped with catalyzed emission control systems. Environ. Sci. Technol. 45: 6420–6428.
Laroo, C.A., Schenk, C.R., Sanchez, L.J., McDonald, J. and Smith, P.L. (2012). Emissions of PCDD/Fs, PCBs, and PAHs from legacy on-road heavy-duty diesel engines. Chemosphere. 89: 1287–1294.
Lassen, C., Jensen, A.A., Crookes, M., Christensen, F., Jeppesen, C.N., Clausen, A.J. and Mikkelsen, S.H. (2014). Survey of brominated flame retardants. The Danish Environmental Protection Agency. Environmental Project No. 1536, 2014:
Lee, W.J., Liu, Y.C., Mwangi, F.K., Chen, W.H., Lin, S.L., Fukushima, Y., Liao, C.N. and Wang, L.C. (2011). Assessment of energy performance and air pollutant emissions in a diesel engine generator fueled with water-containing ethanol–biodiesel–diesel blend of fuels. Energy. 36: 5591–5599.
Lee, W. S., Chang-Chien, G.-P., Wang, L.-C., Lee, W.-J., Tsai, P.-J., Wu, K.-Y. and Lin, C. (2004). Source identification of PCDD/Fs for various atmospheric environments in a highly industrialized city. Environ. Sci. Technol. 38: 4937-4944.
Leung, D. and Guo, Y. (2006). Transesterification of Neat and Used Frying Oil: Optimization for Biodiesel Production. Fuel Process. Technol. 87: 883-890.
Liao, W. T., Kennedy, M.J., Mi, H.-H., Wang, L.-C., Tu, L.-K. and Chang-Chien, G.-P. (2012). Distribution of polybrominated diphenyl ethers (PBDEs) in a fly ash treatment plant. Aerosol Air Qual. Res. 12: 1345-1354.
Li, S., Liu, G., Zheng, M., Liu, W., Li, J., Wang, M., Li, C. and Chen, Y. (2017). Unintentional production of persistent chlorinated and brominated organic pollutants during iron ore sintering processes. J. Hazard. Mater. 331: 63-70.
Li, S., Liu, W., Liu, G., Wang, M., Li, C. and Zheng, M. (2015). Atmospheric emission of polybrominated dibenzo-p-dioxins and dibenzofurans from converter steelmaking processes. Aerosol Air Qual. Res. 15: 1118-1124.
Li, W., Zhao, X.H., Ji, Y.H., Peng, H., Li, Y.F., Liu, L. and Han, X. (2016). An investigation on environmentally friendly biodiesel-based invert emulsion drilling fluid. J. Pet. Explor. Prod. Technol. 6: 505–517.
Li, W.L., Ma, W.L., Jia, H.L., Hong, W.J., Moon, H.B., Nakata, H., Minh, N.H., Sinha, R.K., Chi, K.H., Kannan, K., Sverko, E. and Li, Y.-F. (2016). Polybrominated Diphenyl Ethers (PBDEs) in Surface Soils across Five Asian Countries: Levels, Spatial Distribution, and Source Contribution. Environ. Sci. Technol. 50: 12779−12788
Lin, L., Zhou, C.S., Vittayapadung, S., Shen, X.Q. and Dong, M.D. (2011). Opportunities and challenges for biodiesel fuel. Appl. Energy. 88: 1020–1031.
Lin, S. L., Lee, W. J., Lee, C.F., Wu, Y. P. (2012). Reduction in emissions of nitrogen oxides, particulate matter, and polycyclic aromatic hydrocarbon by adding water-containing butanol into a diesel-fueled engine generator. Fuel. 93: 364–372.
Lin, S.L., Lee, W.J., Lee, C.F. and Chen, S.J. (2010). Energy savings and emission reduction of nitrogen oxides, particulate matter, and polycyclic aromatic hydrocarbons by adding water-containing acetone and neat soybean oil to a diesel-fueled engine generator. Energy Fuels. 24: 4522–4533.
Lin, Y. M., Zhou, S.-q., Lee, W.-J., Wang, L.-C., Chang-Chien, G.-P. and Lin, W.-C. (2014). Size distribution and leaching characteristics of poly brominated diphenyl ethers (PBDEs) in the bottom ashes of municipal solid waste incinerators. Environ. Sci. Pollut. Res.. 21: 4614-4623.
Lloyd, A.C. and Cackette, T.A. (2001). Diesel engines: Environmental impact and control. J. Air Waste Manage. Assoc. 51: 809–847.
Lu, T., Cheung, C. and Huang, Z. (2013). Influence of Waste Cooking Oil Biodiesel on the Particulate Emissions and Particle Volatility of a Di Diesel Engine. Aerosol Air Qual. Res. 13: 243-254.
Luo, Q., Zha, J., Wang, Z. and Cai, Z. (2011). Estrogenic, Genotoxic and Mutagenic Toxicity Study of PBDEs. Organohalogen Compd. 73: 1180-1183.
Mahfouz, A., Emara, A., Gad, M. and Elfatih, A. In (Ed.)^(Eds.) Proceedings of the ASME 2015 International Mechanical Engineering Congress & Exposition IMECE2015, 2015, Houston, Texas, USA, p. 5.
Mandalakis, M., Stephanou, E.G., Horii, Y. and Kannan, K. (2008). Emerging Contaminants in Car Interiors: Evaluating the Impact of Airborne PBDEs and PBDD/Fs. Environ. Sci. Technol. 42: 6431-6436.
Mi, H.H., Lee, W.J., Wu, T.L., Lin, T.C., Wang, L.C. and Chao, H.R. (1996). PAH emission from a gasoline‐powered engine. J. Environ. Sci. Health., Part A. 31: 1981-2003.
Morf, L., Buser, A. and Taverna, R. (2007). Dynamic Substance Flow Analysis Model for Selected Brominated Flame Retardants As a Base for Decision Making on Risk Reduction Measures (FABRO). Geo Partner AG Resource Management.Muralidharan, K. and Vasudevan, D. (2011). Performance, Emission and Combustion Characteristics of a Variable Compression Ratio Engine Using Methyl Esters of Waste Cooking Oil and Diesel Blends. Appl. Energy. 88: 3959-3968.
Muralidharan, K. and Vasudevan, D. (2011). Performance, emission and combustion characteristics of a variable compression ratio engine using methyl esters of waste cooking oil and diesel blends. Appl. Energy. 88: 3959–3968.
Mwangi, J.K., Lee, W.J., Chang, Y.C., Chen, C.Y. and Wang, L.C. (2015). An Overview: Energy Saving and Pollution Reduction by Using Green Fuel Blends in Diesel Engines. Appl. Energy. 159: 214-236.
Mwangi, J.K., Lee, W.J., Wang, L.C., Cheruyiot, N.K., Chen, C.Y. and Redfern, F. (2015b). An overview: Emission of brominated persistent organic compounds in the diesel engine exhaust. Earozoru Kenkyu. 30: 254–260.
Mwangi, J.K., Lee, W.J., Whang, L.M., Wu, T.S., Chen, W.H., Chang, J.S., Chen, C.Y. and Chen, C.L. (2015a). Microalgae oil: Algae cultivation and harvest, algae residue torrefaction and diesel engine emissions tests. Aerosol Air Qual. Res. 15: 81–98.
Mwangi, J.K., Lee, W.-J., Wang, L. C., Sung, P.-J., Fang, L.-S., Lee, Y.-Y. and Chang-Chien, G.-P. (2016). Persistent organic pollutants in the Antarctic coastal environment and their bioaccumulation in penguins. Environ. Pollut. 216: 924-934.
Ni, H.-G., Lu, S.-Y., Mo, T. and Zeng, H. (2016). Brominated flame retardant emissions from the open burning of five plastic wastes and implications for environmental exposure in China. Environ. Pollut. 214: 70-76.
Nisbet, I.C.T. and LaGoy, P.K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharm. 16: 290–300.
Odabasi, M., Bayram, A., Elbir, T., Seyfioglu, R., Dumanoglu, Y., Bozlaker, A., Demircioglu, H., Altiok, H., Yatkin, S. and Cetin, B. (2009). Electric arc furnaces for steel-making: hot spots for persistent organic pollutants. Environ. Sci. Technol. 43: 5205-5211.
Odabasi, M., Ozgunerge Falay, E., Tuna, G., Altiok, H., Kara, M., Dumanoglu, Y., Bayram, A., Tolunay, D. and Elbir, T. (2015). Biomonitoring the spatial and historical variations of persistent organic pollutants (POPs) in an industrial region. Environ. Sci. Technol. 49: 2105-2114.
Ongondo, F.O., Williams, I.D. and Cherrett, T.J. (2011). How are WEEE doing? A global review of the management of electrical and electronic wastes. Waste Manage. 31: 714-730.
Ortuño, N., Lundstedt, S. and Lundin, L. (2015). Emissions of PBDD/Fs, PCDD/Fs and PBDEs from flame-retarded high-impact polystyrene under thermal stress. Chemosphere. 123: 64-70.
Özener, O., Yüksek, L., Ergenç, A.T. and Özkan, M. (2014). Effects of soybean biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel. 115: 875–883.
Pimentel, D., Marklein, A., Toth, M.A., Karpoff, M.N., Paul, G.S., McCormack, R., Kyriazis, J. and Krueger, T. (2009). Food versus biofuels: Environmental and economic costs. Hum. Ecol. 37: 1–12.
Predojević, Z.J. (2008). The Production of Biodiesel from Waste Frying Oils: A Comparison of Different Purification Steps. Fuel. 87: 3522-3528.
Prevedouros, K., Jones, K.C. and Sweetman, A.J. (2004). Estimation of the Production, Consumption, and Atmospheric Emissions of Pentabrominated Diphenyl Ether in Europe between 1970 and 2000. Environ. Sci. Technol. 38: 3224-3231.
Proc, K., Barnitt, R., Hayes, R.R., Ratcliff, M., McCormick, R.L., Ha, L. and Fang, H.L. (2006). 100,000-mile evaluation of transit buses operated on biodiesel blends (B20). SAE Technical Paper 2006-01-3253.
Raheman, H. and Ghadge, S.V. (2007). Performance of compression ignition engine with mahua (Madhuca indica) biodiesel. Fuel. 86: 2568–2573.
Rahman, F., Langford, K.H., Scrimshaw, M.D. and Lester, J.N. (2001). Polybrominated Diphenyl Ether (PBDE) Flame Retardants. Sci. Total Environ. 275: 1-17.
Ramadhas, A., Jayaraj, S. and Muraleedharan, C. (2004). Use of Vegetable Oils as I.C. Engine Fuels—A Review. Renew. Energy. 29: 727-742.
Ramadhas, A.S., Jayaraj, S. and Muraleedharan, C. (2005). Biodiesel production from high FFA rubber seed oil. Fuel. 84: 335–340.
Sabudak, T. and Yildiz, M. (2010). Biodiesel Production from Waste Frying Oils and Its Quality Control. Waste Manage. 30: 799-803.
Sakai, S.I., Hirai, Y., Aizawa, H., Ota, S. and Muroishi, Y. (2006). Emission Inventory of Deca-Brominated Diphenyl Ether (DBDE) in Japan. J. Mater. Cycles Waste Manage. 8: 56-62.
Sakai, S., Watanabe, J., Honda, Y., Takatsuki, H., Aoki, I., Futamatsu, M. and Shiozaki, K. (2001). Combustion of brominated flame retardants and behavior of its byproducts. Chemosphere. 42: 519-531.
Santos, J., Santos, I., Conceiçăo, M., Porto, S., Trindade, M., Souza, A., Prasad, S., Fernandes, V. and Araújo, A. (2004). Thermoanalytical, Kinetic and Rheological Parameters of Commercial Edible Vegetable Oils. J. Therm. Anal. Calorim. 75: 419-428.
Saxena, M.R. and Maurya, R.K. (2016). Effect of butanol blends on nano particle emissions from a stationary conventional diesel engine. Aerosol Air Qual. Res. 16: 2255–2266.
Sepúlveda, A., Schluep, M., Renaud, F.G., Streicher, M., Kuehr, R., Hagelüken, C. and Gerecke, A.C. (2010). A review of the environmental fate and effects of hazardous substances released from electrical and electronic equipments during recycling: Examples from China and India. Environ. Impact Assess. Rev. 30: 28-41.
Scheepers, P.T.J. (2015). Health Implications of Combustion Engine Exhaust, In Environmental Indicators, Armon, R.H. and Hänninen, O. (Eds.), Springer Netherlands, Dordrecht, pp. 899–924.
Schenker, U., Soltermann, F., Scheringer, M. and Hungerbuhler, K. (2008). Modeling the environmental fate of polybrominated diphenyl ethers (PBDEs): the importance of photolysis for the formation of lighter PBDEs. Environ. Sci. Technol. 42: 9244-9249.
Shah, S.D., Ogunyoku, T.A., Miller, J.W. and Cocker, D.R. (2005). On-road emission rates of PAH and n-Alkane compounds from heavy-duty diesel vehicles. Environ. Sci. Technol. 39: 5276–5284.
Stapleton, H.M., Brazil, B., Holbrook, R.D., Mitchelmore, C.L., Benedict, R., Konstantinov, A. and Potter, D. (2006). In vivo and in vitro debromination of decabromodiphenyl ether (BDE 209) by juvenile rainbow trout and common carp. Environ. Sci. Technol. 40: 4653-4658.
Tsai, J.H., Chen, S.J., Huang, K.L., Chang Chien, G.P., Lin, W.Y., Feng, C.W., Syu, J.Y. and Huang, H.T. (2016). Characteristics of Persistent Organic Pollutant Emissions from a Diesel-Engine Generator Fueled Using Blends of Waste Cooking Oil-Based Biodiesel and Fossil Diesel. Aerosol Air Qual. Res. 16: 2048-2058.
Tsai, J.H., Chen, S.J., Huang, K.L., Chaung, H.C., Lin, W.Y., Lin, C.C., Wu, T.Y., Yang, C.H. and Chiu, J.Y. (2015a). Biological Toxicities of Exhausts from a Diesel-Generator Fueled with Water-Containing Acetone/Butanol and Waste-Edible-Oil-Biodiesel Blends. Aerosol Air Qual. Res. 15: 2668-2675.
Tsai, J.H., Chen, S.J., Huang, K.L., Lin, W.Y., Lin, C.C., Ding, J.Y., Yang, C.H., Chiu, J.Y. and Chiu, C.H. (2015b). Characteristics of Exhaust Emissions of a Diesel Generator Fueled with Water-Containing Butanol and Waste-Edible-Oil-Biodiesel Blends. Aerosol Air Qual. Res. 15: 2129-2139.
USDHHS (2015). Toxicological Profile for Polybrominated Diphenyl ethers (PBDEs). Public Health Service, Agency for Toxic Substances and Disease Registry, 327.
USGS National Minerals Information Center Bromine Statistics and Informations. https://minerals.usgs.gov/minerals/pubs/commodity/bromine/.
USEPA (2001). Modified Method 5. Determination of Particulate Emission from Stationary Sources. Code of Federal Regulations, Title 40, Part 60, Appendix A.
USEPA (2006). Polybrominated Diphenyl Ethers (PBDEs) Project Plan, U.S. Environmental Protection Agency. 2–4.
USEPA (2014). Technical Fact Sheet – Polybrominated Diphenyl Ethers (PBDEs) and Polybrominated Biphenyls (PBBs), O.o.S.W.a.E.R. (Ed.), 510.
Vives, I., Canuti, E., Castro-Jiménez, J., Christoph, E.H., Eisenreich, S.J., Hanke, G., Huber, T., Mariani, G., Mueller, A. and Skejo, H. (2007). Occurrence of Polychlorinated Dibenzo-P-Dioxins and Dibenzofurans (PCDD/Fs), Polychlorinated Biphenyls (PCBs) and Polybrominated Diphenyl Ethers (PBDEs) in Lake Maggiore (Italy and Switzerland). J. Environ. Monit. 9: 589-598.
Wang, L.C. and Chang Chien, G.P. (2007). Characterizing the Emissions of Polybrominated Dibenzo-P-Dioxins and Dibenzofurans from Municipal and Industrial Waste Incinerators. Environ. Sci. Technol. 41: 1159-1165.
Wang, L.-C., Lee, W.-J., Lee, W.-S. and Chang-Chien, G.-P. (2011). Polybrominated diphenyl ethers in various atmospheric environments of Taiwan: their levels, source identification and influence of combustion sources. Chemosphere. 84: 936-942.
Wang, L.-C., Lee, W.-J., Lee, W.-S., Chang-Chien, G.-P. and Tsai, P.-J. (2003a). Characterizing the emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from crematories and their impacts to the surrounding environment. Environ. Sci. Technol. 37: 62-67.
Wang, L.-C., Lee, W.-J., Tsai, P.-J., Lee, W.-S. and Chang-Chien, G.-P. (2003b). Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from stack flue gases of sinter plants. Chemosphere. 50: 1123-1129.
Wang, L.C., Lee, W.J., Lee, W.S. and Chang-Chien, G.P. (2010b). Emission estimation and congener-specific characterization of polybrominated diphenyl ethers from various stationary and mobile sources. Environ. Pollut. 158: 3108-3115.
Wang, L.C., Lee, W.J., Lee, W.S., Chang-Chien, G.P. and Tsai, P.J. (2003b). Effect of chlorine content in feeding wastes of incineration on the emission of polychlorinated dibenzo-p-dioxins/dibenzofurans. Sci. Total Environ. 302: 185–198.
Wang, L.C., Hsi, H.C., Chang, J.E., Yang, X.Y., Chang Chien, G.P. and Lee, W.S. (2007). Influence of Start-up on PCDD/F Emission of Incinerators. Chemosphere. 67: 1346-1353.
Wang, L.C., Hsi, H.C., Wang, Y.F., Lin, S.L. and Chang-Chien, G.P. (2010a). Distribution of polybrominated diphenyl ethers (PBDEs) and polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) in municipal solid waste incinerators. Environ. Pollut. 158: 1595-1602.
Wang, L.C., Lin, L.F. and Lai, S.O. (2009). Emissions of polycyclic aromatic hydrocarbons from fluidized and fixed bed incinerators disposing petrochemical industrial biological sludge. J. Hazard. Mater. 168: 438–444.
Wang, L.C., Wang, I.C., Chang, J.E., Lai, S.O. and Chang-Chien, G.P. (2007). Emission of polycyclic aromatic hydrocarbons (PAHs) from the liquid injection incineration of petrochemical industrial wastewater. J. Hazard. Mater. 148: 296–302.
Wang, L.C., Wang, Y.F., Hsi, H.C. and Chang-Chien, G.P. (2010c). Characterizing the emissions of polybrominated diphenyl ethers (PBDEs) and polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) from metallurgical processes. Environ. Sci. Technol. 44: 1240-1246.
Wang, M.S., Chen, S.J., Huang, K.L., Lai, Y.C., Chang-Chien, G.P., Tsai, J.H., Lin, W.Y., Chang, K.C. and Lee, J.T. (2010). Determination of levels of persistent organic pollutants (PCDD/Fs, PBDD/Fs, PBDEs, PCBs, and PBBs) in atmosphere near a municipal solid waste incinerator. Chemosphere. 80: 1220–1226.
Wang, M. S., Lin, S. L., Chang-Chien, G.-P., Wang, L.-C. and Chen, C.-Y. (2015). Utilization and Improvement of the Adsorption Method for Sampling PCDD/Fs from a Sinter Plant. Aerosol Air Qual. Res. 15: 1917-1932.
Wang, Z.-Y., Zeng, X.-L. and Zhai, Z.-C. (2008). Prediction of supercooled liquid vapor pressures and n-octanol/air partition coefficients for polybrominated diphenyl ethers by means of molecular descriptors from DFT method. Sci. Total Environ. 389: 296-305.
Wichmann, H.E. (2007). Diesel Exhaust Particles. Inhalation Toxicol. 19: 241–244.
Wilford, B., Shoeib, M., Harner, T., Zhu, J. and Jones, K. (2005). Polybrominated diphenyl ethers in indoor dust in Ottawa, Canada: implications for sources and exposure. Environ. Sci. Technol. 39: 7027-7035.
Williams, A., McCormick, R., Luecke, J., Brezny, R., Geisselmann, A., Voss, K., Hallstrom, K., Leustek, M., Parsons, J. and Abi-Akar, H. (2011). Impact of biodiesel impurities on the performance and durability of DOC, DPF and SCR technologies. SAE Int. J. Fuels Lubr. 4: 110–124.
Worasuwannarak, N., Sonobe, T. and Tanthapanichakoon, W. (2007). Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique. J Anal Appl Pyrolysis. 78: 265-271.
Wu, E.M.-Y., Wang, L.-C., Lin, S.-L. and Chang-Chien, G.-P. (2014). Validation and characterization of persistent organic pollutant emissions from stack flue gases of an electric arc furnace by using a long-term sampling system (AMESA®). Aerosol Air Qual. Res. 14: 185-196.
Wu, J.L., Lin, T.C., Wang, L.C. and Chang Chien, G.P. (2014). Memory Effects of Polychlorinated Dibenzo-P-Dioxin and Furan Emissions in a Laboratory Waste Incinerator. Aerosol Air Qual. Res. 14: 1168-1178.
Wyrzykowska, B., Gullett, B., Tabor, D. and Touati, A. (2008). Levels of Brominated Diphenylether, Dibenzo-P-Dioxin, and Dibenzofuran in Flue Gases of a Municipal Waste Combustor. Organohalogen Compd. 70: 62-65.
Wyrzykowska-Ceradini, B., Gullett, B.K., Tabor, D. and Touati, A. (2011). Waste combustion as a source of ambient air polybrominated diphenylethers (PBDEs). Atmos. Environ. 45: 4008-4014.
Xu, F.-Q., Huang, S.-B., Liao, W.-T., Wang, L.-C., Chang, Y.-C. and Chang-Chien, G.-P. (2014). Submerged arc furnace process superior to the Waelz process in reducing PCDD/F emission during thermal treatment of electric arc furnace dust. Sci. Total Environ. 466: 598-603.
Yang, H.H., Chien, S.M., Lo, M.Y., Lan, J.C.W., Lu, W.C. and Ku, Y.Y. (2007). Effects of biodiesel on emissions of regulated air pollutants and polycyclic aromatic hydrocarbons under engine durability testing. Atmos. Environ. 41: 7232–7240.
Yang, H. H., Tsai, C. H., Chao, M.-R., Su, Y.-L. and Chien, S.-M. (2006). Source identification and size distribution of atmospheric polycyclic aromatic hydrocarbons during rice straw burning period. Atmos. Environ. 40: 1266-1274.
Yang, M., Qi, H., Jia, H.L., Ren, N.Q., Ding, Y.S., Ma, W.L., Liu, L.Y., Hung, H., Sverko, E. and Li, Y.F. (2013a). Polybrominated Diphenyl Ethers in Air across China: Levels, Compositions, and Gas-Particle Partitioning. Environ. Sci. Technol. 47: 8978-8984.
Yang, T.T., Hsu, C.Y., Chen, Y.C., Young, L.H., Huang, C.H. and Ku, C.H. (2017). Characteristics, sources, and health risks of atmospheric PM2.5-bound, polycyclic aromatic hydrocarbons in Hsinchu, Taiwan. Aerosol Air Qual. Res. 17: 563–573.
Yang, X., Sun, L., Xiang, J., Hu, S. and Su, S. (2013b). Pyrolysis and Dehalogenation of Plastics from Waste Electrical and Electronic Equipment (WEEE): A Review. Waste Manage. 33: 462-473.
Zeng, X., Li, J., Stevels, A. and Liu, L. (2013). Perspective of electronic waste management in China based on a legislation comparison between China and the EU. J. Cleaner Prod. 51: 80-87.
Zhao, Y.Y., Tao, F.M. and Zeng, E.Y. (2008). Theoretical Study on the Chemical Properties of Polybrominated Diphenyl Ethers. Chemosphere. 70: 901-907.
Zheng, S., Kates, M., Dube, M. and McLean, D. (2006). Acid-Catalyzed Production of Biodiesel from Waste Frying Oil. Biomass and Bioenerg. 30: 267-272.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw