進階搜尋


下載電子全文  
系統識別號 U0026-0508201414070400
論文名稱(中文) 以鎳催化進行二聚合反應合成8,17-二苯基苯駢[ij]萘駢[1,2,3-de]-1,2,1’,2’-萘並蒽和9,18-二苯基二苯駢[fg,st]稠六苯
論文名稱(英文) Nickel-Catalyzed Dimerization for Synthesis of 8,17-diphenylbenzo[ij]naphtho[1,2,3-de] pentaphene and 9,18-diphenyl dibenzo[fg,st]hexacene
校院名稱 成功大學
系所名稱(中) 化學系
系所名稱(英) Department of Chemistry
學年度 102
學期 2
出版年 103
研究生(中文) 洪鈺婷
研究生(英文) Yu-Ting Hung
學號 L36011097
學位類別 碩士
語文別 中文
論文頁數 59頁
口試委員 指導教授-吳耀庭
口試委員-劉青原
口試委員-吳培琳
中文關鍵字 二苯駢[de,mn]稠四苯  雙自由基  鎳催化  二聚合反應 
英文關鍵字 Zethrene  Biradical  Nickel catalysis  Dimerization. 
學科別分類
中文摘要 歷年來已有許多二苯駢[de,mn]稠四苯衍生物的相關合成文獻被陸續發表,由於具有雙自由基特性及特殊的物理性質,二苯駢[de,mn]稠四苯衍生物的材料應用前景受到科學家的關注。研究指出當分子愈傾向自由基性質時其生命週期縮短導致化合物較易衰敗,因此如何使化合物更傾向雙自由基性質及如何穩定其雙自由基性質成為許多科學家思考的議題。
本實驗期望以菲衍生物為基底並以不同連結方式形成不同的二苯駢[de,mn]稠四苯構型24、25,因此實驗利用鈴木和薗頭耦合反應合成1-溴-9-苯乙炔菲環26以及1-苯乙炔-9-三氟甲磺醯基菲環27並將化合物分別經由NiBr2(dppe)催化進行二聚合反應得到二苯駢[de,mn]稠四苯衍生物24、25。
在合成二苯駢[de,mn]稠四苯的反應中我們調整反應溫度並觀察各別化合物的產率,發現以化合物26或27 (0.5毫莫耳)、NiBr2(dppe) (5 mol %)、鋅粉(3當量)和溶劑1,4-二氧六環(3毫升)在150 ℃下反應14小時,其產率分別為13 %和19 %。最後我們推測其可能的反應機構並進行產物的晶體分析。
英文摘要 Nickel-Catalyzed Dimerization for Synthesis of 8,17-diphenylbenzo[ij]naphtho[1,2,3-de]pentaphene and 9,18-diphenyldibenzo[fg,st]hexacene
Yu-Ting Hung
Yao-Ting Wu
Department of Chemistry, College of Science

SUMMARY

We succeed in the synthesis of 8,17- diphenylbenzo[ij]naphtho[1,2,3-de]pentaphene (24) and 9,18-diphenyldibenzo[fg,st]hexacene (25) by using NiBr2(dppe) as catalyst, zinc as reductant to dimerize 1-Bromo-10-(phenylethynyl) phenanthrene (26) and 8-(phenylethynyl)phenanthrenyl-9-trifluoromethanesulfonate (27) under 150 ℃ for 14 hours. Through the X-ray diffraction analysis, both compound 24 and compound 25 are non-plane and twist conformation unlike the zethrene with no substitute addition which is planar structure. Finally, we propose the possible mechanism of this reaction and expect to have more synthetic applications in the future.

Key words: Zethrene; Biradical; Nickel catalysis; Dimerization.

INTRODUCTION

Polycyclic aromatic hydrocarbons (PAHs) have widely applications in many fields. Owing to the overlap of inter-conjugate structure, carries could transport between molecules in the overlapping area. Thus, PAHs are useful material in organic semiconductor, organic field-effect transistor (OFET) and organic light-emitting diode (OLED). Scientists had studied the properties of PAHs for many years, there have many report been published including zethrene. The first zethrene molecule had been synthesized by Clar in 1955, Clar also pointed out characteristic properties of zethrene associated with Kekulé structure consisting of naphthalene and fixed butadiene substructures. Although zethrene could be synthesized completely, the procedure was too complicated for reproduction. Thus, other chemists propose alternative method by using transition-metal for cross-coupling or dimerization to simplify experimental process. Zethrene has biradical property attracting many scientists. In addition, Maksić studies proton affinity and second-order hyperpolarizability of zethrene by theoretical calculation and determine it non-linear optical property. Those specific properties make zethrene an useful material in the field of organic semiconductor. Even though biradical and non-linear optical properties makes zethrene has potential for material application, molecular lifetime would be shortness when zethrene trend to open-shell character. To stabilize the biradical property of zethrene has become a interesting issue for scientists.
MATERIALS AND METHODS

8,17- diphenylbenzo[ij]naphtho[1,2,3-de]pentaphene (24).
Through the iodination of 2-bromobenzoic acid by Pd catalyst to produce 2-bromo-6- iodobenzoic acid(33). Then compound 33 reacts with the mixture consist of triphenyl- phosphane (PPh3) and iodine to form complex which then continuing to interact with diethylamine to obtain 2-bromo-N,N-diethyl-6-iodobenzamide(38). Compound 38 then following reacts with o-tolylboronic acid to acquired 3-bromo-N,N-diethyl-2'-methyl diphenyl- 2-carboxamide(39) by the path of Suzuki cross-coupling reaction. Under the temperature of -78 ℃, lithium diisopropylamide (LDA) is added into compound 39 to form 8-bromo-9- phenanthrol (40) then replace alcohol with triflate gives 8-bromo phenanthrenyl-9-trifluoro methanesulfonate (41). Finally, compound 41 reacts with ethynylbenzene through the Sonogashira reaction to obtain 1-bromo-10-(phenylethynyl) phenanthrene (26), then catalyzed by NiBr2(dppe) and reduced by zinc powder to produce the desired compound, 8,17- diphenylbenzo[ij]naphtha [1,2,3-de] pentaphene (24).
9,18-diphenyldibenzo[fg,st]hexacene (25).
The initial reaction procedure is the same as the synthesis procedure of compound24. Iodination of 2-bromobenzoic acid to produce 2-bromo-6- iodobenzoic acid(33), reacts with the mixture consist of triphenylphosphane (PPh3) and iodine to form complex which then continuing to interact with diethylamine to acquire 2-bromo-N,N-diethyl-6-iodobenz amide(38). Compound 38 reacts with ethynylbenzene by the path of the Sonogashira reaction to give 2-bromo-N,N-diethyl-6-(phenylethynyl)benzamide (42), then following the Suzuki cross-coupling reaction with o-tolylboronic acid to obtain N,N-diethyl-2’- methyl-3-(phenylethynyl)diphenyl-2-carboxamide (43). Finally, compound 43 reacts with LDA under -78 ℃ for 1 hour, trifluoromethanesulfonic anhydride is added into the reaction to acquire the desire compound, 9,18-diphenyldibenzo[fg,st]hexacene (25).

RESULTS AND DISCUSSION

We use NiBr2(dppe) as catalyst, zinc as reducing agent to dimerize compound 26 and compound 27 to produce zethrene derivative compounds 24 and 25 successfully. The yield was low at the initial condition 7% and 9 %, we arise the reaction temperature with no other variable changed in order to improve the yield 13% and 19 %. The crystals of zethrene derivative compounds 24 and 25 have been analysis by XRD to confirm the structure are non-plane and twist conformation, their twist angle are 44.56 ° and 45.10 °, respectively. The bond length of C7-C18 and C8-C25 which are locate in the central six ring of compound 24 are 1.375 Å and 1.370 Å, respectively. However, the bond length of C7-C8 and C21-C22 which are locate in the central six ring of compound 25 are 1.368 Å and 1.369 Å, respectively. From the above mention, the bond length of compound 24 and compound 25 are longer than carbon-carbon double bond(1.33~ 1.34 Å) but shorter than benzene ring(1.399 Å).

CONCLUSION

We use NiBr2(dppe) and zinc to dimerize compound 26 and compound 27 to produce zethrene derivatives compound 24 and compound 25, respectively. We also postulate that the mechanism of this reaction may be the circulation consisting of three steps, oxidative addition, insertion and reductive elimination. In the future, we expect to improve the reaction yield and extend to the similar reaction.
論文目次 中文摘要 I
Extended Abstract II
謝誌 V
總目錄 VI
表目錄 VIII
圖目錄 IX
壹 簡介 1
1-1 多環芳香烴碳氫化合物 1
1-2 二苯駢[de,mn]稠四苯 2
1-3 二苯駢[de,mn]稠四苯的合成 6
1-4 實驗目的 10
貳 結果與討論 13
2-1 菲衍生物合成路徑 13
2-2二苯駢[de,mn]稠四苯衍生物的合成 19
2-3 晶體分析 23
2-4 反應機構 26
參 結論 28
肆 實驗部分 29
4-1 實驗儀器 29
4-2 實驗操作 31
伍 參考資料 43
附錄 46
核磁共振圖譜 46
NMR變溫圖 55
X-ray單晶繞射資料 57
X-ray 晶體圖 59
參考文獻 (1) Pope, M.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042.
(2) Grimsdale, A. C.; Wu, J.; Mullen, K. Chem. Commun. 2005, 2197.
(3) Duong, H. M.; Bendikov, M.; Steiger, D.; Zhang, Q.; Sonmez, G.; Yamada, J.; Wudl, F. Org. Lett. 2003, 5, 4433.
(4) Facchetti, A.; Yoon, M. H.; Marks, T. J. Adv. Mater. 2005, 17, 1705.
(5) Yang, S. Y.; Shin, K.; Park, C. E. Adv. Funct. Mater. 2005, 15, 1806.
(6) Seong, N.-C.; Jeon, Y.-M.; Lim, T.-H.; Kim, J.-W.; Lee, C.-W.; Lee, E.-J.; Jang, J.-G.; Jang, H.-J.; Lee, J.-Y.; Gong, M.-S. Synthetic Met. 2007, 157, 421.
(7) Kim, Y. H.; Jeong, H. C.; Kim, S. H.; Yang, K.; Kwon, S. K. Adv. Mate. 2005, 15, 1799.
(8) Meng, H.; Bendikov, M.; Mitchell, G.; Helgeson, R.; Wudl, F.; Bao, Z.; Siegrist, T.; Kloc, C.; Chen, C. H. Adv. Mater. 2003, 15, 1090.
(9) Anthony, J. E. Angew. Chem. Int. Ed. 2008, 47, 452.
(10) Birks, J. B.; Appleyard, J. H.; Pope, R. Photochem. Photobiol. 1963, 2, 493.
(11) Katz, H. E.; Singer, K. D.; Sohn, J. E.; Dirk, C. W.; King, L. A.; Gordon, H. M. J. Am. Chem. Soc. 1987, 109, 6561.
(12) Bredas, J. L.; Adant, C.; Tackx, P.; Persoons, A.; Pierce, B. M. Chem. Rev. 1994, 94, 243.
(13) Lu, D.; Chen, G.; Perry, J. W.; Goddard, W. A. J. Am. Chem. Soc. 1994, 116, 10679.
(14) Podzorov, V.; Pudalov, V. M.; Gershenson, M. E. Appl. Phys. Lett. 2003, 82, 1739.
(15) da Silva Filho, D. A.; Kim, E. G.; Brédas, J. L. Adv. Mater. 2005, 17, 1072.
(16) Kim, Y.; Cook, S.; Tuladhar, S. M.; Choulis, S. A.; Nelson, J.; Durrant, J. R.; Bradley, D. D. C.; Giles, M.; McCulloch, I.; Ha, C.-S.; Ree, M. Nat. Mater. 2006, 5, 197.
(17) Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 99.
(18) Umeda, R.; Hibi, D.; Miki, K.; Tobe, Y. Pure Appl. Chem. 2010, 82, 871.
(19) Shan, L.; Liang, Z.; Xu, X.; Tang, Q.; Miao, Q. Chem. Sci. 2013, 4, 3294.
(20) Clar, E.; Lang, K. F.; Schulz-Kiesow, H. Chem. Ber. 1955, 88, 1520.
(21) Randić, M. Chem. Rev. 2003, 103, 3449.
(22) Randić, M. Tetrahedron 1975, 31, 1477.
(23) Morikawa, T.; Narita, S.; Klein, D. J. J. Chem. Inf. Comp. Sci. 2004, 44, 1891.
(24) Poater, J.; Fradera, X.; Duran, M.; Solà, M. Chem. Eur. J. 2003, 9, 400.
(25) Aihara, J.-i. J. Phys. Chem. A 2003, 107, 11553.
(26) Sun, Z.; Wu, J. J. Mater. Chem. 2012, 22, 4151.
(27) Kubo, T.; Shimizu, A.; Sakamoto, M.; Uruichi, M.; Yakushi, K.; Nakano, M.; Shiomi, D.; Sato, K.; Takui, T.; Morita, Y.; Nakasuji, K. Angew. Chem. 2005, 117, 6722.
(28) Knezevic, A.; Maksic, Z. B. New J. Chem. 2006, 30, 215.
(29) Ruiz-Morales, Y. J. Phys. Chem. A 2002, 106, 11283.
(30) Mitchell, R. H.; Sondheimer, F. J. Am. Chem. Soc. 1968, 90, 530.
(31) Kemp, W.; Storie, I. T.; Tulloch, C. D. J. Chem. Soc. Perk. T. 1 1980, 2812.
(32) Staab, H. A.; Nissen, A.; Ipaktschi, J. Angew. Chem. Int. Ed. 1968, 7, 226.
(33) Mitchell, R. H.; Sondheimer, F. Tetrahedron 1970, 26, 2141.
(34) Chakraborty, M.; Tessier, C. A.; Youngs, W. J. J. Org. Chem. 1999, 64, 2947.
(35) Levi, Z. U.; Tilley, T. D. J. Am. Chem. Soc. 2009, 131, 2796.
(36) Kawase, T.; Konishi, A.; Hirao, Y.; Matsumoto, K.; Kurata, H.; Kubo, T. Chem. Eur. J. 2009, 15, 2653.
(37) Wu, T.-C.; Tai, C.-C.; Tiao, H.-C.; Kuo, M.-Y.; Wu, Y.-T. Chem. Eur. J. 2011, 17, 1930.
(38) Sun, Z.; Huang, K.-W.; Wu, J. J. Am. Chem. Soc. 2011, 133, 11896.
(39) Li, Y.; Heng, W.-K.; Lee, B. S.; Aratani, N.; Zafra, J. L.; Bao, N.; Lee, R.; Sung, Y. M.; Sun, Z.; Huang, K.-W.; Webster, R. D.; López Navarrete, J. T.; Kim, D.; Osuka, A.; Casado, J.; Ding, J.; Wu, J. J. Am. Chem. Soc. 2012, 134, 14913.
(40) Fu, J.-m.; Snieckus, V. Can. J. Chem. 2000, 78, 905.
(41) Mei, T.-S.; Giri, R.; Maugel, N.; Yu, J.-Q. Angew. Chem. 2008, 120, 5293.
(42) Kumar, A.; Akula, H. K.; Lakshman, M. K. Eur. J. Org. Chem. 2010, 2010, 2709.
(43) Fryen, P. Synthetic Commun. 1995, 25, 959.
(44) Bandgar, B. P.; Bettigeri, S. V. Synthetic Commun. 2004, 34, 2917.
(45) Garcia, J.; Urpí, F.; Vilarrasa, J. Tetrahedron Lett. 1984, 25, 4841.
(46) Barstow, L. E.; Hruby, V. J. J. Org. Chem. 1971, 36, 1305.
(47) Yamada, S.-i.; Takeuchi, Y. Tetrahedron Lett. 1971, 12, 3595.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-15起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-15起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw