進階搜尋


 
系統識別號 U0026-0508201316071600
論文名稱(中文) 利用基因演算法進行3D堆疊晶片TSV構裝體可靠度之區間式最佳化設計
論文名稱(英文) Interval Optimal Design of 3D Stacking Chip TSV Package Reliability by Using Genetic Algorithm Method
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 101
學期 2
出版年 102
研究生(中文) 翁念慶
研究生(英文) Nian-Ching Weng
學號 N96001266
學位類別 碩士
語文別 中文
論文頁數 99頁
口試委員 指導教授-陳榮盛
口試委員-陳蓉珊
口試委員-黃登淵
口試委員-楊秉豐
中文關鍵字 TSV  可靠度  區間式基因遺傳演算法 
英文關鍵字 TSV  Reliability  Interval Genetic Algorithm Method 
學科別分類
中文摘要 隨著消費者對電子產品的重量,體積,功能性,耗電率之要求越來越高,使得電子封裝逐漸朝3D系統級封裝發展,讓封裝體在有限的體積上可以容納更多晶片及元件,進而達到高效率以及多功能整合之目的。本文主要以基因演算法及區間式基因遺傳演算法來探討3D堆疊晶片TSV構裝體可靠度之設計參數最佳化組合及允許目標誤差區間範圍。
文中採用ANSYS12版有限元素軟體進行分析,根據JEDEC規範施予3D堆疊晶片TSV構裝體-40℃~125℃的溫度循環負載,進行收斂分析並搭配全域/局部模型可提升74.4%模擬效率。其中錫球為黏塑性材料,銅為彈塑性材料,其餘皆為彈性材料,並以銅柱累積等效塑性應變為判斷構裝體可靠度指標。其次以部分因子設計法選出對構裝體可靠度影響較顯著之因子,分別為基板熱膨脹係數、晶片熱膨脹係數、銅熱膨脹係數、晶片厚度以及銅凸塊半徑,進而建立設計參數之正規化迴歸模型,並透過基因演算法找出設計參數最佳化組合,可知原始設計參數組合與最佳化參數組合其累積等效塑性應變各為0.0927與0.052481,可靠度提升43.38%。
最後,因製程上的需要,故以區間式設計法找出允許目標誤差1%及5%內各設計參數區間範圍,並可得知設計因子之敏感度順序大小為晶片厚度<晶片熱膨脹係數<銅凸塊半徑<銅熱膨脹係數<基板熱膨脹係數,藉此找出精準度要求最高之設計因子。
英文摘要 As consumers’ higher requirement on weight, volume, functionality and power consumption, the Electronic Packaging has been developed towards 3D SIP(System In Package) to ensure the package for accommodating more chips and components in a limited volume. As a result, the goals for high efficiency and the integration of multi-function can be achieved. In this paper, the GA method and the IGA method are applied to investigate the reliability of 3D Stacking Chip TSV Package so as to obtain the optimal combination of the parameters and the allowable error range.
This paper adopts the finite element of ANSYS 12 software for analysis. Based on the JEDEC code, the 3D stacked chip TSV package is subjected by a thermal cycle of -40℃~125℃.The finite-regional convergence method and the global/local method are jointly adopted to improve 74.4% of the efficiency of simulation.The solder ball is assumed to be viscoplastic, the copper is assumed to be elastoplastic, and others are assumed to be elastic. The equivalent plastic strain accumulated in Cu pillars is treated as the index for the reliability of packages. Then the factor with more significant effect for relibablity of package, such as CTE of substrate,chip and copper, the thickness of chip and the radius of copper bump, are chosen by the fractional factorial design method respectively to set up the normal regression model of response surface. Subsequently, the genetic algorithm combined with the response surface method is applied to obtain the optimal design. It shows that the equivalent plastic strain accumulated in Cu pillars is 0.0927 obtained by the original parameter combination and 0.051481 obtained by the optimal parameter combination, in which the reliability improves 43.38%.
Due to the requirement of the manufacturing process, the interval genetic algorithm is applied to find the range of the paremeter with the allowable error range of 1% and 5%. Accordingly, the sensitivety of all factors can be ranked from the largest to the small as the CTE of substrate, the CTE of copper, the radius of copper bump, the CTE of chip and the thickness of chip.
論文目次 中文摘要 …………………………………………………………………I
英文摘要 …………………………………………………………………Ⅲ
致謝 ………………………………………………………………………Ⅴ
目錄 ……………………………………………………………………Ⅵ
表目錄 ……………………………………………………………………Ⅹ
圖目錄 …………………………………………………………………XII
第一章 緒論 ………………………………………………………………1
1-1 前言 …………………………………………………………………1
1-2 研究動機與目的 ……………………………………………………2
1-3 文獻回顧………………………………………………………………2
1-4 研究方法 ……………………………………………………………4
1-5 章節提要 ……………………………………………………………5
第二章 理論基礎 ………………………………………………………6
2-1 TSV相關製程技術 ……………………………………………………6
2-1-1導孔的形成 ……………………………………………………6
2-1-2導孔填充 ………………………………………………………6
2-1-3晶圓接合 ………………………………………………………7
2-1-4晶圓薄化 ………………………………………………………7
2-1-5 TSV製作流程 …………………………………………………7
2-2彈塑性理論 ……………………………………………………………8
2-2-1 Tresca準則…………………………………………………………9
2-2-2 Von Mises準則 …………………………………………………10
2-2-3 多線性等向硬化法則(Multilinear Isotropic Hardening)..11
2-3全域/局部模組分析法 ………………………………………………11
2-4 部分因子設計法之分析 ……………………………………………13
2-5反應曲面法之分析……………………………………………………15
2-5-1 實驗配置 …………………………………………………………16
2-5-2 迴歸模型 …………………………………………………………16
2-5-3 殘差分析 …………………………………………………………17
2-6基因演算法之分析……………………………………………………18
2-7區間式遺傳演算法之分析……………………………………………20
第三章 3D堆疊晶片TSV構裝體模型描述與成果之簡述 ………………30
3-1 3D堆疊晶片TSV構裝體模型建構分析………………………………30
3-1-1 構裝體模型之描述 ………………………………………………30
3-1-2 構裝體模型之基本假設 …………………………………………30
3-2 3D堆疊晶片TSV構裝體之分析流程步驟……………………………31
3-2-1 模型建構方式之選擇 ……………………………………………31
3-2-2模型之網格切割方式 ……………………………………………31
3-2-3模型之邊界條件與負載施加 ……………………………………32
3-2-4模型之收斂分析……………………………………………………32
3-2-5模型之溫度循環穩定收斂分析……………………………………33
3-3 3D堆疊晶片TSV構裝體模擬之處理工作……………………………33
3-3-1 3D堆疊晶片TSV構裝體之前處理…………………………………33
3-3-2 3D堆疊晶片TSV構裝體之求解……………………………………34
3-3-3 3D堆疊晶片TSV構裝體之後處理…………………………………35
3-4 3D堆疊晶片TSV構裝體模擬之實力成果簡述………………………36
3-4-1 3D堆疊晶片TSV構裝體之模型收斂成果…………………………36
3-4-2 3D堆疊晶片TSV構裝體之全域精細與全域/局部模型比較 ……37
3-4-3 3D堆疊晶片TSV構裝體之溫度循環穩定分析……………………37
第四章 3D堆疊晶片TSV構裝體之區間式最佳化 ………………………61
4-1部分因子………………………………………………………………61
4-1-1部分因子設計法實驗配置與模擬成果……………………………61
4-1-2部分因子設計法之變異分析與結論………………………………62
4-2反應曲面法分析………………………………………………………62
4-2-1反應曲面之建立……………………………………………………62
4-2-2反應曲面之變異分析與殘差分析…………………………………64
4-2-3反應曲面之參數間交互作用………………………………………64
4-2-4反應曲面法與單一因子實驗法之比較……………………………69
4-3基因演算法及區間式最佳化設計……………………………………71
4-3-1最佳化設計之工作要領……………………………………………71
4-3-2基因遺傳演算法……………………………………………………72
4-3-3區間式最佳化設計求得之區間值…………………………………73
第五章 結論與未來方向…………………………………………………93
5-1結論……………………………………………………………………93
5-2未來方向………………………………………………………………95
參考文獻 …………………………………………………………………97
參考文獻 [1] M. C. Hsieh and W. Lee, “FEA Modeling and DOE Analysis
for Design Optimization of 3D-WLP,” IEEE Electronics
Systemintegration Technology Conference, pp. 707-712,
2008.
[2] T. Y. Kuo, S. M. Chang, Y. C. Shih, C. W. Chiang, C. K.
Hsu, C. K. Lee,C.T. Lin, Y. H. Chen, W. C. Lo,
“Reliability Tests for a Three Dimensional Chip Stacking
Structure with Through Silicon Via Connections and Low
Cost,” IEEE Electronic Components and Technology
Conference,pp.853-858, 2008.
[3] M. C. Hsieh, C. K. Yu, and W. Lee, “Effects of Geometry
and Material Properties for Stacked IC Package with
Spacer Structure,” 10th. Int. Conf on Thermal,
Mechanical and Multiphysics Simulation and Experiments in
Micro-Electronics and Micro-Systems, EuroSimE 2009,
pp.1-6, 2009.
[4] H. Kitada, N. Maeda, K. Fujimoto, K. Suzuki, A. Kawia,
K. Arai,T.Suzuki,T. Nakamura, T. Ohba, “Stress
Sensitivity Analysis on TSV Structure of Wafer-
on-a-Wafer (WOW) by the Finite Element Method (FEM),”
IEEE, pp. 107-109, 2009.
[5] 吳仲融, “界面強度模擬於三維晶片堆疊電子封裝與四點彎折界
面強度測試之應用” ,清華大學動力機械工程學系, 2010。
[6] S. H. Choa, C. G. Song and H. S. Lee, “Investigation of
Durability of TSV Interconnect by Numerical Thermal
Fatigue Analysis”INTERNATIONAL JOURNAL OF PRECISION
ENGINEERING AND MANUFACTURING Vol. 12, No. 4, pp.
589-596, 2011.
[7] X.Liu, Q.Chen, V.Sundaram, M.Simmons-Matthews,
K.P.Wachtler,R.R.Tummala,S.K.Sitaraman, “Reliability
Assessment Of Through-Silicon Vias In Multi-Die Stack
Packages ”. IEEE, pp. 263-271, 2012.
[8] C.W Kuo, H.Y Tsai, “thermal stress analysis and failure
mechanisms for through silicon via array”.IEEE, pp.
202-206, 2012
[9] Bagley J. D. “The Behavior of Adaptive Systems Which
Employ Genetic and Correlative Algorithms ”.
In:PhD thesis, University of Michigan, Ann Arbor, 1967
[10] Hiau T.N. S;Kang C.H.;Liu D.S. “ Interval
optimization of rotor-bearing systems with dynamic
behavior constraints using an interval genetic
algorithm”. In:Structural and Multidisciplinary
Optimization,Vol.36(6) ,pp 623-631, 2008
[11] 羅盛沐「以區間式遺傳演算法進行堆疊晶片QFN構裝體疲勞壽命
之區間最佳化設計」,國立成功大學工程科學系碩士畢業論
文,2009年
[12] 黃奎元「基因遺傳演算法進行覆晶載板接合封裝疲勞壽命之區間
最佳化設計」,國立成功大學工程科學系碩士畢業論文,2012年
[13] 姜宏昇「應用田口法於3D堆疊晶片TSV構裝體可靠度之最佳化設
計」,國立成功大學工程科學系碩士畢業論文,2012年
[14] 許明哲, 「先進為電子3D-IC構裝」,五南圖書出版股份有限公
司,2011。
[15] 張良漢,「應用田口法於精細覆晶構裝之最佳化設計」,成功大學
工程科學系, 2009。
[16] G. E. P. Box, J. S. Hunter, J. S. “The 2n-p Fractional
Factorial Designs Part I,” Technometrics, vol.3,
pp.311-352, 1961。
[17] W. C. Lo, Y. H. Chen, C. T. Ko, M. G. Kao, “TSV and 3D
wafer bonding technologies for advanced stacking system
and application at ITRI,”Symposium on VLSI Technology
Digest of Technical Papers, pp.70-71,2009.
[18] M. C. Hsieh, C. K. Yu, and S. T. Wu, “Thermo-
Mechanical Simulative Study for 3D Vertical Stacked IC
Packages with Spacer Structures,”
IEEE, 26th IEEE SEMI-THERM Symposium, pp.47-54, 2010.
[19] R. Iannuzzelli, “Predicting Plated-Through-Hole
Reliability in High Temperature Manufacturing
Processes, ” IEEE 41st Electronic Components and
Technology Conference (ECTC),pp. 410-421, 1991.
[20]梁馨科,” Applying Neural Network and Scatter Search for
The Propagation System Evaluation ofIndoor Wireless
LAN”,交通大學工業工程與管理系, 運籌研究集刊 第九期
2006 年6 月 頁1~11
[21] 葉怡成,「實驗設計法-製程與產品最佳化」,五南圖書出版股
份有限公司, 2001。
[22] 周鵬程,「遺傳演算法原理與應用-活用Matlab」,全華圖書版
股份有限公司, 2001。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-15起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-15起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw