進階搜尋


 
系統識別號 U0026-0508201109402500
論文名稱(中文) 有機五環素場效電晶體負型傳導轉換機制之探討
論文名稱(英文) The study of n-type characteristics in pentacene-based organic field-effect transistors
校院名稱 成功大學
系所名稱(中) 光電科學與工程研究所
系所名稱(英) Institute of Electro-Optical Science and Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 張哲維
研究生(英文) Jer-Wei Chang
學號 L7894112
學位類別 博士
語文別 英文
論文頁數 106頁
口試委員 指導教授-郭宗枋
口試委員-蘇炎坤
口試委員-溫添進
口試委員-鄭弘隆
口試委員-陶雨臺
口試委員-吳孟奇
中文關鍵字 五環素  有機場效電晶體  雙載子特性  負型傳導 
英文關鍵字 pentacene  organic field-effect transistors  ambipolar  n-type conduction 
學科別分類
中文摘要 本論文專注於探討有機五環素場效電晶體其負型(n-type)傳導之運作機制,分別由載子傳導與載子注入兩方面討論負型操作的必要成因及限制。
在負型載子傳導方面,比較poly(vinyl alcohol) (PVA)、poly (4-vinyl phenol) (PVP)與polystyrene (PS)介電層的五環素場效電晶體其負型元件特性,其中只有PVP介電層的五環素場效電晶體不具負型傳導特性。實驗證實PVP上的羥基(-OH)會補捉電子,但是在PVA上的羥基(-OH)卻不會。兩者間最大的差異是氫離子解離常數(proton dissociation constant)。PVP的羥基(-OH)具高解離常數,屬弱酸性,而PVA羥基(-OH)具低解離常數,屬中性。因此,介電層羥基(-OH)的解離常數才是決定是否解離出氫離子及負型場效通道形成的條件。
在負型載子注入方面,釐清鋁電極有機五環素場效電晶體經過24小時後,電洞流下降低於起初的1/100,由雙載子(ambipolar)傳導轉變成負型載子傳導。經多項實驗證實鋁與五環素接觸面間發生界面反應,此反應後的界面會阻礙電洞。並採用鋁與五環素的混蒸鍍薄膜來深入研究其界面特性。混蒸鍍薄膜由吸收光譜得知能隙增加了約1.3 eV,及紫外光電子能譜(UPS)觀察到其最高佔有分子軌道(HOMO)的能帶下移。此結果解釋了,原本雙載子(ambipolar)傳導的五環素場效電晶體轉變成負型載子傳導是因為鋁與五環素界面上產生了電洞阻擋層其HOMO下移了1.3 eV。
由載子傳導及載子注入來考量,挑選PS當介電層及鋁當電極,經製程最佳化後,所製作的負型五環素場效電晶體的載子移動率可以達到0.1 cm2/V/s。
英文摘要 This thesis focuses on the n-type characteristics in pentacene-based organic field-effect transistors (OFETs) from the viewpoints of charge transport and charge injection respectively.
In the study of carrier transport, in comparison of poly(vinyl alcohol) (PVA), poly(4-vinyl phenol) (PVP) and polystyrene (PS) as the dielectric in pentacene-based OFETs, only PVP dielectric lacks n-type conduction characteristics. The experiments confirm that the hydroxyl groups on the PVP capture electrons, but the hydroxyl groups on PVA do not. The biggest difference of hydroxyl groups on PVP and on PVA is the proton dissociation constant, because PVP has a high dissociation constant. Therefore, the dissociation constant of hydroxyl groups determines the hydrogen ion dissociation and the electron channel formation.
In the study of carrier injection, the hole currents in ambipolar pentacene-based OFETs with aluminum (Al) electrodes are decreased by the magnitude of two orders in 24 hours, and the pentacene-based OFETs become n-type. The interfacial reaction of Al and pentacene causes the hole currents decreased. By UV-visible absorption spectroscopy and ultraviolet photoelectron spectroscopy (UPS), the band gap of the co-evaporated films of Al and pentacene is extended by 1.3 eV, and the states in the highest occupied molecular orbital (HOMO) region are shifted downward. This result explains the ambipolar pentacene-based OFETs of Al electrodes perform n-type output characteristic because a hole blocking layer with the HOMO lower than 1.3 eV is produced in the interface of Al and pentacene.
In the consideration of charge transport and charge injection, PS as the dielectric layer and Al as electrodes are chosen for n-type pentacene-based OFETs in which the field-effect electron mobility is up to 0.1 cm2/ V / s.
論文目次 Table of Contents
中文摘要 I
Abstract II
致謝 III
Table of Contents IV
List of Figures VIII
List of Tables XIV
Chapter 1 Introduction 1
1.1 Motivation of this research 1
1.2 Scope of this research 2
Chapter 2 Organic Semiconductors 5
2.1 Introduction 5
2.2 Conduction mechanism in conjugated molecules 6
2.3 Energy structures 7
2.3.1 HOMO and LUMO 7
2.3.2 Band gap 8
2.3.3 Density of states 9
2.4 Charge transport 10
2.4.1 Near hopping 11
2.4.2 Variable Range Hopping (VRH) 12
2.4.3 Multiple Trapping and Release (MTR) 12
2.5 OFET operation 13
2.5.1 Current-Voltage Characteristics 14
2.5.2 P-type, n-type, and ambipolar operation 16
2.6 Summary 20
Chapter 3 Experimental methods 21
3.1 Introduction 21
3.2 Device fabrication 21
3.2.1 Materials and device structure 21
3.2.2 Fabrication process 25
3.3 Electrical characteristic measurements 31
3.3.1 Current voltage (I-V) measurement 31
3.3.2 Capacitance voltage (C-V) measurement 32
3.4 Surface analysis 34
3.4.1 Ultraviolet photoelectron spectroscopy 34
3.4.2 Near Edge X-ray Absorption Fine Structure (NEXAFS) 36
3.5 Optical spectroscopy 36
3.5.1 Raman spectroscopy 36
3.5.2 UV-Vis absorption spectroscopy 37
3.6 Summary 38
Chapter 4 N-type characteristics of pentacene 39
4.1 Introduction 39
4.2 Energy structures of pentacene 39
4.3 Electric properties of polycrystalline pentacene films 41
4.3.1 Charge injections 42
4.3.2 Charge transports 45
4.4 Summary 48
Chapter 5 Influence of dielectrics to charge transport 50
5.1 Introduction 50
5.2 polymeric dielectrics 50
5.3 Hydroxyl groups on polymeric dielectrics 52
5.3.1 The elimination of n-type channel in organic OFETs 53
5.3.2 Surface analysis of the hydroxyl groups of dielectrics 59
5.3.3 pKa of the hydroxyl groups of dielectrics 61
5.4 Summary 63
Chapter 6 Influence of electrodes to charge injection 65
6.1 Introduction 65
6.2 The influence of work function of metal electrodes 66
6.3 The interaction of metals and organic semiconductors 68
6.3.1 The interaction of Al and pentacene 68
6.3.2 Thermal anneal effect 72
6.3.3 Effect of dielectrics and source-drain electrodes 74
6.3.4 Source-Drain electrode Contact 76
6.3.5 Near edge X-ray absorption fine structure (NEXAFS) 82
6.3.6 Raman spectrum 83
6.3.7 The shift of energy level in the mixture of pentacene and Al 85
6.3.8 The analysis of X-ray reflective diffraction (XRD) 88
6.4 Summary 90
Chapter 7 Conclusion 92
7.1 Current progress 92
7.1.1 Dielectrics for n-type pentacene-based OFETs 92
7.1.2 Al/pentacene electrodes for n-type pentacene-based OFETs 92
7.2 Future work 93
7.2.1 In-situ time dependent measurement 94
7.2.2 Metal/organic semiconductor complex 94
Reference 96
Curriculum Vitae 104
Publication Papers 105
Conference Papers 105
參考文獻 Reference
[1] B. Crone, A. Dodabalapur, Y.-Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, W. Li, Nature 2000, 403, 521.
[2] H. Klauk, U. Zschieschang, J. Pflaum, M. Halik, Nature 2007, 445, 745.
[3] A. Tsumura, H. Koezuka, T. Ando, Appl. Phys. Lett. 1986, 49, 1210.
[4] Y.-Y. Lin, D. J. Gundlach, S. F. Nelson, T. N. Jackson, IEEE Electron Device Lett. 1997, 18, 606.
[5] Y.-Y. Lin, D. J. Gundlach, S. F. Nelson, T. N. Jackson, IEEE Trans. Electron Devices 1997, 44, 1325.
[6] T. B. Singh, F. Meghdadi, S. Günes, N. Marjanović, G. Horowitz, P. Lang, S. Bauer, N. S. Sariciftci, Adv. Mater. 2005, 17, 2315.
[7] C.-Y. Yang, Dhananjay, S.-S. Cheng, C.-W. Ou, Y.-C. Chuang, M.-C. Wu, C.-W. Chu, Appl. Phys. Lett. 2008, 92, 253307.
[8] C.-Y. Yang, S.-S. Cheng, C.-W. Ou, Y.-C. Chuang, M.-C. Wu, Dhananjay, C.-W. Chu, J. Appl. Phys. 2008, 103, 094519.
[9] M. Ahles, R. Schmechel, H. von Seggern, Appl. Phys. Lett. 2004, 85, 4499.
[10] T.-F. Guo, Z.-J. Tsai, S.-Y. Chen, T.-C. Wen, C.-T. Chung, J. Appl. Phys. 2007, 101, 124505.
[11] J.-W. Chang, W.-L. Hsu, C.-Y. Wu, T.-F. Guo, T.-C. Wen, Org. Electron. 2010, 11, 1613.
[12] M. Ahles, R. Schmechel, H. von Seggern, Appl. Phys. Lett. 2005, 87, 113505.
[13] N. Benson, M. Schidleja, C. Melzer, R. Schmechel, H. von Seggern, Appl. Phys. Lett. 2006, 89, 182105.
[14] T. B. Singh, P. Senkarabacak, N. S. Sariciftci, A. Tanda, C. Lackner, R. Hagelauer, G. Horowitz, Appl. Phys. Lett. 2006, 89, 033512.
[15] T. D. Anthopoulos, B. Singh, N. Marjanovic, N. S. Sariciftci, A. Montaigne Ramil, H. Sitter, M. Cölle, D. M. de Leeuw, Appl. Phys. Lett. 2006, 89, 213504.
[16] T. D. Anthopoulos, S. Setayesh, E. Smits, M. Cölle, E. Cantatore, B. de Boer, P. W. M. Blom, D. M. de Leeuw, Adv. Mater. 2006, 18, 1900.
[17] A. Hepp, H. Heil, W. Weise, M. Ahles, R. Schmechel, H. von Seggern, Phys. Rev. Lett. 2003, 91, 157406.
[18] J. Zaumseil, C. L. Donley, J. S. Kim, R. H. Friend, H. Sirringhaus, Adv. Mater. 2006, 18, 2708.
[19] L.-L. Chua, J. Zaumseil, J.-F. Chang, E. C.-W. Ou, P. K.-H. Ho, H. Sirringhaus, R. H. Friend, Nature 2005, 434, 194.
[20] T. Yasuda, T. Goto, K. Fujita, T. Tsutsui, Appl. Phys. Lett. 2004, 85, 2098.
[21] C. K. Chiang, C. R. Fincher, Y. W. P. Jr., A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. MacDiarmid, Phys. Rev. Lett. 1977, 39, 1098.
[22] P. I. Djurovich, E. I. Mayo, S. R. Forrest, M. E. Thompson, Org. Electron. 2009, 10, 515.
[23] A. Völkel, R. Street, D. Knipp, Phys. Rev. B 2002, 66, 195336.
[24] D. V. Lang, X. Chi, T. Siegrist, A. M. Sergent, A. P. Ramirez, Phys. Rev. Lett. 2004, 93, 086802.
[25] D. Guo, T. Miyadera, S. Ikeda, T. Shimada, K. Saiki, J. Appl. Phys. 2007, 102, 023706.
[26] W. Kalb, F. Meier, K. Mattenberger, B. Batlogg, Phys. Rev. B 2007, 76, 184112.
[27] W. Kalb, S. Haas, K. Pernstich, T. Mathis, B. Batlogg, in APS March Meeting 2010, APS March Meeting 2010.
[28] J. Hirsch, J. Phys. C: Solid State Phys. 1979, 12, 321.
[29] L. Li, G. Meller, H. Kosina, Microelectron. J. 2007, 38, 47.
[30] D. R. Lenski, A. Southard, M. S. Fuhrer, Appl. Phys. Lett. 2009, 94, 232103.
[31] N. F. Mott, E. A. Davis, Electronic processes in non-crystalline materials, Clarendon Press, Oxford 1971.
[32] G. Horowitz, R. Hajlaoui, P. Delannoy, J. de Physique III 1995, 5, 355.
[33] G. Horowitz, Adv. Mater. 1998, 10, 365.
[34] A. Facchetti, M.-H. Yoon, T. J. Marks, Adv. Mater. 2005, 17, 1705.
[35] G. Horowitz, Adv. Polym. Sci. 2010, 223, 113.
[36] J. Zaumseil, H. Sirringhaus, Chem. Rev. 2007, 107, 1296.
[37] T. B. Singh, N. S. Sariciftci, Ann. Rev. Mater. Res. 2006, 36, 199.
[38] C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J.-L. Brédas, P. C. Ewbank, K. R. Mann, Chem. Mater. 2004, 16, 4436.
[39] A. L. Briseno, S. C. B. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, Z. Bao, Nature 2006, 444, 913.
[40] H. Klauk, M. Halik, U. Zschieschang, G. n. Schmid, W. Radlik, W. Weber, J. Appl. Phys. 2002, 92, 5259.
[41] J. Zhang, J. P. Rabe, N. Koch, Adv. Mater. 2008, 20, 3254.
[42] S. Liu, W. M. Wang, A. L. Briseno, S. C. B. Mannsfeld, Z. Bao, Adv. Mater. 2009, 21, 1217.
[43] T. Toccoli, A. Pallaoro, N. Coppedè, S. Iannotta, F. De Angelis, L. Mariucci, G. Fortunato, Appl. Phys. Lett. 2006, 88, 132106.
[44] P. Ribič, V. Kalihari, C. Frisbie, G. Bratina, Phys. Rev. B 2009, 80, 115307.
[45] H. S. Lee, D. H. Kim, J. H. Cho, Y. D. Park, J. S. Kim, K. Cho, Adv. Funct. Mater. 2006, 16, 1859.
[46] S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, John Wiley & Sons, Inc., Hoboken, New Jersey 2007.
[47] W. R. Salaneck, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 1997, 355, 789.
[48] H. Ishii, K. Sugiyama, E. Ito, K. Seki, Adv. Mater. 1999, 11, 605.
[49] P. G. Schroeder, C. B. France, J. B. Park, B. A. Parkinson, J. Appl. Phys. 2002, 91, 3010.
[50] S. Kang, Y. Yi, C. Kim, S. Cho, M. Noh, K. Jeong, C. Whang, Synth. Met. 2006, 156, 32.
[51] M. Popinciuc, H. T. Jonkman, B. J. van Wees, J. Appl. Phys. 2006, 100, 093714.
[52] S. Braun, W. R. Salaneck, M. Fahlman, Adv. Mater. 2009, 21, 1450.
[53] H. Fukagawa, H. Yamane, T. Kataoka, S. Kera, M. Nakamura, K. Kudo, N. Ueno, Phys. Rev. B 2006, 73, 245310.
[54] N. J. Watkins, Y. Gao, J. Appl. Phys. 2003, 94, 1289.
[55] T. Schwieger, X. Liu, D. Olligs, M. Knupfer, T. Schmidt, J. Appl. Phys. 2004, 96, 5596.
[56] F. Zheng, B.-N. Park, S. Seo, P. G. Evans, F. J. Himpsel, J. Chem. Phys. 2007, 126, 154702.
[57] W. S. Hu, Y. T. Tao, Y. J. Hsu, D. H. Wei, Y. S. Wu, Langmuir 2005, 21, 2260.
[58] A. Brillante, R. G. D. Valle, L. Farina, A. Girlando, M. Masino, E. Venuti, Chem. Phys. Lett. 2002, 357, 32.
[59] R. He, I. Dujovne, L. Chen, Q. Miao, C. F. Hirjibehedin, A. Pinczuk, C. Nuckolls, C. Kloc, A. Ron, Appl. Phys. Lett. 2004, 84, 987.
[60] Farina, L., Chem. Phys. Lett. 2003, 375, 490.
[61] Y. Hosoi, D. M. Deyra, K. Nakajima, Y. Furukawa, Mol. Cryst. Liquid Cryst. 2008, 491, 317.
[62] F. D. Angelis, G. Das, E. D. Fabrizio, Chem. Phys. Lett. 2008, 462, 234.
[63] M. Cazayous, A. Sacuto, G. Horowitz, P. Lang, A. Zimmers, R. Lobo, Phys. Rev. B 2004, 70, 081309.
[64] H.-L. Cheng, X.-W. Liang, W.-Y. Chou, Y.-S. Mai, C.-Y. Yang, L.-R. Chang, F.-C. Tang, Org. Electron. 2009, 10, 289.
[65] H.-L. Cheng, W.-Y. Chou, C.-W. Kuo, F. -C. Tang, Y.-W. Wang, Appl. Phys. Lett. 2006, 88, 161918.
[66] B. A. Paez S, Proc. of SPIE 2005, 59400F.
[67] H.-L. Cheng, W.-Y. Chou, C.-W. Kuo, Y.-W. Wang, Y.-S. Mai, F.-C. Tang, S.-W. Chu, Adv. Funct. Mater. 2008, 18, 285.
[68] S. Berkebile, P. Puschnig, G. Koller, M. Oehzelt, F. Netzer, C. Ambrosch-Draxl, M. Ramsey, Phys. Rev. B 2008, 77, 115312.
[69] C. C. Mattheus, G. A. de Wijs, R. A. de Groot, T. T. M. Palstra, J. Am. Chem. Soc. 2003, 125, 6323.
[70] A. Troisi, G. Orlandi, J. Phys. Chem. B 2005, 109, 1849.
[71] Y. C. Cheng, R. J. Silbey, D. A. da Silva Filho, J. P. Calbert, J. Cornil, J. L. Brédas, J. Chem. Phys. 2003, 118, 3764.
[72] K. Hummer, C. Ambrosch-Draxl, Phys. Rev. B 2005, 72, 205205.
[73] J. Cornil, J. L. Brédas, J. Zaumseil, H. Sirringhaus, Adv. Mater. 2007, 19, 1791.
[74] H. Klauk, Chem. Soc. Rev. 2010, 39, 2643.
[75] S. Yin, Y. Lv, Org. Electron. 2008, 9, 852.
[76] R. Schmechel, M. Ahles, H. von Seggern, J. Appl. Phys. 2005, 98, 084511.
[77] J. H. Schön, C. Kloc, Appl. Phys. Lett. 2001, 79, 4043.
[78] M. Schidleja, C. Melzer, H. von Seggern, Appl. Phys. Lett. 2009, 94, 123307.
[79] M. Schidleja, C. Melzer, M. Roth, T. Schwalm, C. Gawrisch, M. Rehahn, H. von Seggern, Appl. Phys. Lett. 2009, 95, 113303.
[80] A. Dodabalapur, L. Torsi, H. E. Katz, Science 1995, 268, 270.
[81] H. Sirringhaus, Science 2000, 290, 2123.
[82] M. Shtein, J. Mapel, J. B. Benziger, S. R. Forrest, Appl. Phys. Lett. 2002, 81, 268.
[83] V. Y. Butko, X. Chi, D. V. Lang, A. P. Ramirez, Appl. Phys. Lett. 2003, 83, 4773.
[84] J. Takeya, C. Goldmann, S. Haas, K. P. Pernstich, B. Ketterer, B. Batlogg, J. Appl. Phys. 2003, 94, 5800.
[85] O. D. Jurchescu, J. Baas, T. T. M. Palstra, Appl. Phys. Lett. 2005, 87, 052102.
[86] R. He, X. Chi, A. Pinczuk, D. V. Lang, A. P. Ramirez, Appl. Phys. Lett. 2005, 87, 211117.
[87] R. A. Street, D. Knipp, A. R. Völkel, Appl. Phys. Lett. 2002, 80, 1658.
[88] D. Knipp, R. A. Street, A. R. Völkel, Appl. Phys. Lett. 2003, 82, 3907.
[89] S. J. Kang, M. Noh, D. S. Park, H. J. Kim, C. N. Whang, C.-H. Chang, J. Appl. Phys. 2004, 95, 2293.
[90] M. C. J. M. Vissenberg, M. Matters, Phys. Rev. B 1998, 57, 12964.
[91] S. Pratontep, M. Brinkmann, F. Nüesch, L. Zuppiroli, Phys. Rev. B 2004, 69, 165201.
[92] S. Pratontep, F. Nüesch, L. Zuppiroli, M. Brinkmann, Phys. Rev. B 2005, 72, 085211.
[93] B. Stadlober, U. Haas, H. Maresch, A. Haase, Phys. Rev. B 2006, 74, 165302.
[94] C. Kim, A. Facchetti, T. J. Marks, Science 2007, 318, 76.
[95] A. Di Carlo, F. Piacenza, A. Bolognesi, B. Stadlober, H. Maresch, Appl. Phys. Lett. 2005, 86, 263501.
[96] S. D. Wang, T. Miyadera, T. Minari, Y. Aoyagi, K. Tsukagoshi, Appl. Phys. Lett. 2008, 93, 043311.
[97] S. Y. Yang, K. Shin, C. E. Park, Adv. Funct. Mater. 2005, 15, 1806.
[98] M.-H. Yoon, C. Kim, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2006, 128, 12851.
[99] E. Orgiu, S. Locci, B. Fraboni, E. Scavetta, P. Lugli, A. Bonfiglio, Org. Electron. 2011, 12, 477.
[100] G. Gu, M. G. Kane, J. E. Doty, A. H. Firester, Appl. Phys. Lett. 2005, 87, 243512.
[101] M. Tello, M. Chiesa, C. M. Duffy, H. Sirringhaus, Adv. Funct. Mater. 2008, 18, 3907.
[102] T. Minari, T. Nemoto, S. Isoda, J. Appl. Phys. 2006, 99, 034506.
[103] F. Garnier, G. Horowitz, X. Peng, D. Fishou, Adv. Mater. 1990, 2, 592.
[104] D. K. Hwang, C. S. Kim, J. M. Choi, K. Lee, J. H. Park, E. Kim, H. K. Baik, J. H. Kim, S. Im, Adv. Mater. 2006, 18, 2299.
[105] C. Kim, A. Facchetti, T. J. Marks, Adv. Mater. 2007, 19, 2561.
[106] K. J. Baeg, Y. Y. Noh, J. Ghim, S. J. Kang, H. Lee, D. Y. Kim, Adv. Mater. 2006, 18, 3179.
[107] W. H. Lee, J. A. Lim, D. Kwak, J. H. Cho, H. S. Lee, H. H. Choi, K. Cho, Adv. Mater. 2009, 21, 4243.
[108] T. Sakanoue, H. Sirringhaus, Nat. Mater. 2010, 9, 736.
[109] W. L. Kalb, T. Mathis, S. Haas, A. F. Stassen, B. Batlogg, Appl. Phys. Lett. 2007, 90, 092104.
[110] K. Fukuda, T. Sekitani, T. Someya, Appl. Phys. Lett. 2009, 95, 023302.
[111] W.-Y. Chou, H.-L. Cheng, Adv. Funct. Mater. 2004, 14, 811.
[112] Y. Kato, S. Iba, R. Teramoto, T. Sekitani, T. Someya, H. Kawaguchi, T. Sakurai, Appl. Phys. Lett. 2004, 84, 3789.
[113] H.-C. Lin, C.-F. Wang, S.-W. Kuo, P.-H. Tung, C.-F. Huang, C.-H. Lin, F.-C. Chang, J. Phys. Chem. B 2007, 111, 3404.
[114] O. Mitsunobu, M. Yamada, Bull. Chem. Soc. Jpn. 1967, 40, 2380.
[115] E. V. Anslyn, D. A. Dougherty, Modern physical organic chemistry, University Science, Sausalito, California 2006.
[116] T. G. Backlund, R. Osterbacka, H. Stubb, J. Bobacka, A. Ivaska, J. Appl. Phys. 2006, 98, 074504.
[117] C. Eaborn, W. A. Stańczyk, J. Chem. Soc. Perkin Trans. 2 1984, 11, 2099.
[118] A. D. Gunzbourg, J.-C. Favier, P. Hémery, Polym. Int. 1994, 35, 179.
[119] C. S. Kim, S. J. Jo, S. W. Lee, W. J. Kim, H. K. Baik, S. J. Lee, Adv. Funct. Mater. 2007, 17, 958.
[120] T. Sekitani, S. Iba, Y. Kato, Y. Noguchi, T. Someya, T. Sakurai, Appl. Phys. Lett. 2005, 87, 073505.
[121] D. Guo, S. Ikeda, K. Saiki, H. Miyazoe, K. Terashima, J. Appl. Phys. 2006, 99, 094502.
[122] T. Takenobu, K. Watanabe, Y. Yomogida, H. Shimotani, Y. Iwasa, Appl. Phys. Lett. 2008, 93, 073301.
[123] S. Luan, G. W. Neudeck, J. Appl. Phys. 1992, 72, 766.
[124] J. Zaumseil, K. W. Baldwin, J. A. Rogers, J. Appl. Phys. 2003, 93, 6117.
[125] P. V. Necliudov, M. S. Shur, D. J. Gundlach, T. N. Jackson, Solid-State Electron. 2003, 47, 259.
[126] C. Reese, Z. Bao, Adv. Funct. Mater. 2009, 19, 763.
[127] C.-W. Chu, S.-H. Li, C.-W. Chen, V. Shrotriya, Y. Yang, Appl. Phys. Lett. 2005, 87, 193508.
[128] L. S. Hung, C. W. Tang, M. G. Mason, Appl. Phys. Lett. 1997, 70, 152.
[129] I. D. Parker, J. Appl. Phys. 1994, 75, 1656
[130] R. H. Fowler, L. Nordheim, Proc. R. Soc. London 1928, 119, 173.
[131] M. Alagia, C. Baldacchini, M. G. Betti, F. Bussolotti, V. Carravetta, U. Ekström, C. Mariani, S. Stranges, J. Chem. Phys. 2005, 122, 124305.
[132] H. Ozaki, J. Chem. Phys. 2000, 113, 6361.
[133] N. G. Martinelli, M. Savini, L. Muccioli, Y. Olivier, F. Castet, C. Zannoni, D. Beljonne, J. Cornil, Adv. Funct. Mater. 2009, 19, 3254.
[134] B. Jaeckel, J. B. Sambur, B. A. Parkinson, J. Appl. Phys. 2008, 103, 063719.
[135] H. Yoshida, N. Sato, Appl. Phys. Lett. 2007, 91, 141915.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-08-18起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-08-18起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw