進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0507202015540700
論文名稱(中文) Rich essential properties of boron-/carbon-/nitrogen-substituted silicenes
論文名稱(英文) Rich essential properties of boron-/carbon-/nitrogen-substituted silicenes
校院名稱 成功大學
系所名稱(中) 物理學系
系所名稱(英) Department of Physics
學年度 108
學期 2
出版年 109
研究生(中文) 范海洋
研究生(英文) Duong Pham Hai
學號 L28047018
學位類別 博士
語文別 英文
論文頁數 111頁
口試委員 指導教授-林明發
口試委員-張書銓
口試委員-溫清榕
口試委員-楊志開
口試委員-邱裕煌
口試委員-陳榮斌
中文關鍵字 none 
英文關鍵字 geometric structure  electronic properties  magnetic properties  substitution  silicene  first-principle 
學科別分類
中文摘要 None
英文摘要 This dissertation presents a systematic study of the essential properties of boron- /carbon-/nitrogen-substituted silicenes using first-principle calculations. Four types of typical guest atom substitution configurations are performed to investigate the geometric, magnetic, and electronic properties which are very sensitive to the kind, concentration, and configuration of guest atoms. After the thorough analyses, the multi or single-orbital hybridization and magnetic features can be explained by the buckling/planar honeycomb lattices, the atom-dominated energy bands, the spatial charge density, the spin density distribution, and the atom- & orbital-projected density of states. While boron-substituted silicene compounds exhibit the p-type phenomena, all the carbon cases belong to the finite- or zero gap-semiconductors. Especially, compared with the carbon- and boron-related ones, only the nitrogen-substituted silicene systems demonstrate the ferromagnetic spin configurations. The comparisons among boron-, carbon-, and nitrogen-substituted silicenes are very useful to fully understand the diverse properties and the relation between VASP and the tight-binding model is worthy of detailed discussions. Furthermore, based on a similar manner, a thorough study of full B-/C-/N-substituted germanenes has also discussed in detailed results in appendix section.
論文目次 1 Introduction 1
2 Diverse properties of carbon-substituted silicones 6
2.1 Introduction 6
2.2 Computational details 8
2.3 Results and discussions 9
2.3.1 Geometric structures 9
2.3.2 Band structure tailoring of carbon-substituted silicene systems 12
2.3.3 Spatial charge density distributions 20
2.3.4 Density of states 23
2.4 Concluding 26
3 Unusual features of nitrogen substitutions in silicene 29
3.1 Introduction 29
3.2 Computational details 31
3.3 Results and Discussion 32
3.3.1 Geometric structures 32
3.3.2 Electronic band structures 33
3.3.3 Spatial charge density and spin density distributions 39
3.3.4 Density of states 45
3.4 Concluding Remarks 48
4 Rich p-type-doping phenomena in boron-substituted silicene systems 50
4.1 Introduction 50
4.2 Method of calculations 52
4.3 Results and Discussion 53
4.3.1 Geometric structures and electronic band structures 53
4.3.2 Spatial distribution of charge density 62
4.3.3 Density of states 64
4.4 Concluding Remarks 68
5 Summary 69
6 Appendix 73
6.1 Rich essential properties of boron, carbon, and nitrogen substituted germanenes 73
References 86
參考文獻 Chapter 1
[1] C. M. Wen et al, Electronic properties and carrier transport properties of low-dimensional aluminium doped silicene nanostructure Physica E: Low-dimensional Systems and Nanostructures, 116, 113731, 2020.
[2] Q. Zheng, J. Jiang, C. Chen, J. Yu, X. Li, L. Tang, and S. Li, Nanoengineering Microstructure of Hybrid C–S–H/Silicene Gel ACS Appl. Mater. Interfaces, 1215, 2020.
[3] H. Guo et al, Sizable Band Gap in Epitaxial Bilayer Graphene Induced by Silicene Intercalation Nano Lett., 204, 2674-2680, 2020.
[4] A. Y. Galashev and K. A. Ivanichkina, Sizable Silicene Anodes for LithiumIon Batteries on Metal Substrates Journal of The Electrochemical Society, 167, 050510, 2020.
[5] H. Oughaddou et al, Review: Silicene, a promising new 2D material Progress in Surface Science, 904, 46-83, 2015.
[6] M. Terrones, N. Grobert, H. Terrones, Synthetic routes to nanoscale BxCyNz architectures, Carbon, 40, 1665-1684, 2002.
[7] X. Deng, H. Kousaka, T. Tokoroyama, N. Umehara, Deposition and tribological behaviours of ternary BCN coatings at elevated temperatures, Surface & Coatings Technology, 259, 2-6, 2014.
[8] Y, Qiu and L, Gao, Chemical synthesis of turbostratic carbon nitride, containing C–N crystallites at atmospheric pressure, Chem. Commun, 2378-2379, 2003.
[9] M. J Bojdys, J. O. Muller, M. Antonietti, and A. Thomas, Ionothermal Synthesis of Crystalline, Condensed, Graphitic Carbon Nitride, Chemistry-A European Journal, 14 8177-8182, 2008.
[10] Y. Wang, J. Zhang, X. Wang, M. Antonietti, and H. Li, Boron- and FluorineContaining Mesoporous Carbon Nitride Polymers: Metal-Free Catalysts for Cyclohexane Oxidation, Angewandte Chemie, 49, 3356-3359, 2010.
[11] A. Prakash, K. B. Sundaram, A. D. Campiglia, Photoluminescence studies on BCN thin films synthesized by RF magnetron sputtering, Materials Letters, 183, 355–358, 2016.
[12] D. Kester, K. Ailey, R. Davis and K. More, Phase evolution in boron nitride thin films, Journal of Materials Research, 8, 1213-1216, 1993.
[13] P. B. Mirkarimi, K. F. McCarty and Medlin, Review of advances in cubic boron nitride film synthesis, Materials Science and Engineering, 21 47-100, 1997.
[14] M. Terrones, A. M. Benito, C. M. Diego, W. K. Hsu, O. I. Osman and J. P. Hare et al, Pyrolytically grown BxCyNz nanomaterials: nanofibres and nanotubes, Chemical Physics Letters, 257, 576-582, 1996.
[15] W. Han, Y. Bando, K. Kurashima and T. Sato, Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction, Appl. Phys. Lett., 73, 3085, 1998.
[16] O. R Lourie, C. R. Jones, B. M. Bartlett, P. C. Gibbons, R. S. Ruoff and W. E. Buhro, CVD Growth of Boron Nitride Nanotubes, Chem. Mater., 12, 1808-1810, 2000.
[17] K. J. Erickson et al, Longitudinal Splitting of Boron Nitride Nanotubes for the Facile Synthesis of High-Quality Boron Nitride Nanoribbons, Nano Lett., 11, 3221–3226, 2011.
[18] W. Chen et al, Hydrogenation: A Simple Approach To Realize SemiconductorHalf-Metal-Metal Transition in Boron Nitride Nanoribbons, J. Am. Chem. Soc., 132, 1699-1705, 2010.
[19] X, Wei, M, S. Wang, Y. Bando, and D. Golberg, Electron-Beam-Induced Substitutional Carbon Doping of Boron Nitride Nanosheets, Nanoribbons, and Nanotubes, American Chemical Society, 5, 2916-2922, 2011.
[20] L. Zhang, Z. Y. Zhang, R. P. Liang, Y. H. Li, and J. D. Qiu, Boron-Doped Graphene Quantum Dots for Selective Glucose Sensing Based on the ”Abnormal” Aggregation-Induced Photoluminescence Enhancement Anal. Chem., 86, 44234430, 2014.
[21] H. Fei, R. Ye, G. Ye, Y. Gong, Z. Peng, X. Fan et al, Boron- and Nitrogen-Doped Graphene Quantum Dots/Graphene Hybrid Nanoplatelets as Efficient Electrocatalysts for Oxygen Reduction, American Chemical Society, 8, 10837-10843, 2014.
[22] M. Zhu and G. Diao, Review on the progress in synthesis and application of magnetic carbon nanocomposites, Nanoscale, 3, 2748, 2011.
[23] L. F. Chen, X. D. Zhang, H. W. Liang, M. Kong, Q. F Guan, P. Chen, Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for Supercapacitors, American Chemical Society, 6 7092–7102, 2012.
[24] H. F. Zhang, A. C. Dohnalkova, C. M. Wang, J. S. Young, E. C. Buck and L. S. Wang, Lithium-Assisted Self-Assembly of Aluminum Carbide Nanowires and Nanoribbons, American Chemical Society, 2, 105-108, 2001.
[25] A. O. Osikoya, D. Wankasi, R. M. K. Vala, A. S. Afolabi and E. D. Dikio, Synthesis, Characterization And Adsorption Studies Of Fluorine-Doped Carbon Nanotubes Journal of Nanomaterials and Biostructures, 9, 1187-1197, 2014.
[26] S. Chabi, H. Chang, Y. Xia and Y. Zhu, From graphene to silicon carbide: ultrathin silicon carbide flakes, Nanotechnology, 7, 075602, 2016.
[27] H, Zheng and W, Duley, First-principles study of edge chemical modifications in graphene nanodots, Phys. Rev. B, 78, 045421, 2008.
[28] D. W. Boukhvalov, A. N. Rudenko, D. A. Prishchenko, V. G. Mazurenkoc and M. I. Katsnelson, Chemical modifications and stability of phosphorene with impurities: a first-principles study, Physical Chemistry Chemical Physics, 17, 15209, 2015.
[29] E. Bekaroglu, M. Topsakal, S. Cahangirov and S. Ciraci, First-principles study of defects and adatoms in silicon carbide honeycomb structures, Physics Review B, 81, 075433, 2010.
[30] N. T. T. Tran, D. Dahal, G. Gumbs, M. F. Lin, Adatom doping-enriched geometric and electronic properties of pristine graphene: a method to modify the band gap, Struct Chem., 28, 1311–1318, 2017.
[31] D. K. Nguyen, N. T. T. Tran, Y. H. Chiu and M. F. Lin, Concentration-Diversified Magnetic and Electronic Properties of Halogen-Adsorbed Silicene, Scientific Reports, 9, 13746, 2017.
[32] D. Jose And A. Datta, Structures and Chemical Properties of Silicene: Unlike Graphene, Acc. Chem. Res., 47, 593-602, 2014.
[33] D. H. Kim, E. Byon, S. Lee, J. K. Kim and H. Ruh, Characterization of ternary boron carbon nitride films synthesized by RF magnetron sputtering, Thin Solid Films, 447-448, 192-196, 2004.
[34] A. Mannan, H. Noguchi, T. Kida, M. Nagano, N. Hirao and Y. Baba, Growth and characterization of stoichiometric BCN films on highly oriented pyrolytic graphite by radio frequency plasma enhanced chemical vapor deposition, Thin Solid Films, 518, 4163-4169, 2010.
[35] T. A. Souza, M. R. A. Silva, A. C. M. Carvalho, Theoretical study of atomic arrangement in BxCyNz nanotubular structures, Physics Procedia, 28, 84-89, 2010.
[36] M. S. C. Mazzoni, R. W. Nunes, S. Azevedo, H. Chacham, Electronic structure and energetics of BxCyNz layered structures, Physics Review B, 73, 073108, 2006.
[37] J. L. Xiao, C. B. Wang, Q. Shen, L. M. Zhang, Influence of nitrogen pressure on bonding structure and mechanical properties of pulsed laser deposited BCN thin films, Surface & Coatings Technology, 215, 141-144, 2015.
[38] X. Xiao, H. Li, J. Tie, J. Lu, Half Metallic Behavior in H-Terminated Zigzag BC2N
Nanoribbons, Applied Mechanics and Materials, 864, 30-35, 2017.
[39] K. Venu, S. Kanuri, K. Raidongia, K. P. S. S. Hembram, U. V. Waghmare, and R.
Datta, Band gap and chemically ordered domain structure of a graphene analogue BxCyNz, Solid State Communications, 150, 2262-2265, 2010.
[40] X. Blase, J. C. Charlier, A. De Vita, R. Car, Structural and electronic properties of composite BxCyNz nanotubes and heterojunctions, Appl. Phys. A, 68, 293-300, 2017.
[41] S. J. Han, J. Tang, B. Kumar, A. Falk and D. Farmer et al, High-speed logic integrated circuits with solution processed self assembled carbon nanotubes, Nature Nanotechnology, 12, 861-865, 2017.
[42] R. Chowdhury and S. Adhikari, Boron-Nitride Nanotubes as Zeptogram-Scale Bionanosensors: Theoretical Investigations, IEEE Transactions on Nanotechnology, 10, 659-667, 2011.
[43] E. Songfeng, R. Geng, Z. Zhu, L. Xie, W. Lu, and C. Li, Large-scale fabrication of boron nitride nanotubes and their application in thermoplastic polyurethane based composite for improved thermal conductivity, Ceramics International, 44, 22794-22799, 2018.
[44] D. K. Wickenden, K. R. Faulkner and R. W. Brander, Growth of epitaxial layers of gallium nitride on silicon carbide and corundum substrates, Journal of Crystal Growth, 9, 158-164, 1971.
[45] Abhatnagar and Dlang, Military and law enforcement applications of lightweight ballistic materials, Lightweight Ballistic Composites, 364-397, 2006.
[46] J. A. Edmond, Blue Light Emitting Diode Formed In Silicon Carbide, United States Patent US4,918,497, 1990.
[47] B. J. Baliga and M. Bhatnagar, Silicon Carbide Field Effect Transistor, United States patent US5, 338, 945, 1990.
[48] N. T. T. Tran, D. K. Nguyen, O. E. Glukhova, M. F. Lin, Coverage-dependent essential properties of halogenated graphene: A DFT study, Scientific Reports, 7, 17858, 2017.
[49] N. T. T. Tran, D. Dahal, G. Gumbs, M. F. Lin, Adatom doping-enriched geometric and electronic properties of pristine graphene: a method to modify the band gap, Struct Chem., 28, 1311-1318, 2017.
[50] N. Thanh T. Tran, S. Y. Lin, C. Y. Lin, M. F. Lin 2017 Geometric and Electronic Properties of Graphene-Related Systems, CRC Press, ISBN:9780367892043, 2019.
[51] T. Hussain, T.t Kaewmaraya, S. Chakraborty, and R. Ahuja, Defect and Substitution-Induced Silicene Sensor to Probe Toxic Gases, J. Phys. Chem. C, 120, 25256-25262, 2016.
[52] N. Yin, Y. Dai, W. Wei, B. Huang, Electronic structure engineering in silicene via atom substitution and a new two-dimensional Dirac structure Si3C, Physica E: Low-dimensional Systems and Nanostructures, 98, 39-44, 2018.
[53] S. Li, J. C. Ren, Z. Ao, W. Liu, Enhanced stability and induced magnetic moments of silicene by substitutional doping of nickel, Chemical Physics Letters, 706, 202207, 2018.
[54] S. Chabi, H. Chang, Y. Xia and Y. Zhu, From graphene to silicon carbide: ultrathin silicon carbide flakes, Nanotechnology, 27, 075602, 2016.
[55] A. Manjanath, V. Kumarcd and A. K. Singh, Mechanical and electronic properties of pristine and Ni-doped Si, Ge, and Sn sheets, Phys.Chem.Chem.Phys., 16, 1667, 2014.
[56] J. Sivek, H. Sahin, B. Partoens and F. M. Peeters, Adsorption and absorption of boron, nitrogen, aluminium, and phosphorus on silicene: Stability and electronic and phonon properties, Physical Review B, 87, 085444, 2013.
[57] A. Mathur, D. Pal, A. Singh, R. Singh, S. Zollner, and S. Chattopadhyay, Low-temperature growth of @-Sic on Si by gas-source MBE, Journal of Vacuum Science & Technology B, 37, 041802, 2019.
[58] T. Sugii, T. Aoyama, and T. Ito, Low-temperature growth of β-Sic on Si by gas source MBE J. Electrochem. Soc., 137, 989-992, 1990.
[59] R. Lv, M. C. dos Santos, C. Antonelli, S. Feng, K. Fujisawa, A. Berkdemir, LargeArea Si-Doped Graphene: Controllable Synthesis and Enhanced Molecular Sensing, Adv. Mater., 26, 7593-7599, 2014.
[60] L. Sun, C. Han, N. Wu, B. Wang, and Y. Wang, High temperature gas sensing performances of silicon carbide nanosheets with an n–p conductivity transition, RSC Adv, 8, 13697, 2018.
[61] H. Tang and S. I. Beigi, Novel Precursors for Boron Nanotubes: The Competition of Two-Center and Three-Center Bonding in Boron Sheets, Physical Review Letters, 99, 115501, 2007.
[62] Sawides, Four-fold to three-fold transition in diamond-like amorphous carbon films: A study of optical and electrical properties, J. Appl. Phys., 58, 518, 1985.
[63] S. Jalili, and R. Vaziri, Study of the electronic properties of Li-intercalated nitrogen doped graphite, Molecular Physics, 109, 687-694, 2011.
Chapter 2
[64] G. Kresse, J. Furthmu¨ller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 1996.
[65] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 1999.
[66] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 1996.
[67] P. E. Blochl, Projector augmented-wave method, Phys. Rev. B , 50, 17953, 1994.
[68] C. C. Liu, H. Jiang, and Y. Yao, Low-energy effective Hamiltonian involving spin orbit coupling in silicene and two-dimensional germanium and tin, Phys. Rev. B, 84, 195430, 2011.
[69] A. Badzian, Stability of Silicon Carbonitride Phases, J. Am. Ceram. Soc., 85(1), 16-20, 2002.
[70] C. Elias, P. Valvin, T. Pelini, A. Summerfield, C. J. Mellor, T. S. Cheng et al, Direct band-gap crossover in epitaxial monolayer boron nitride, Nature Communications 10 2639, 2019.
[71] H. Sahin and F. M. Peeters, Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene, Phys. Rev. B , 87, 085423, 2013.
[72] P. R. Wallace, The Band Theory of Graphite, Phys. Rev., 71, 622, 1947.
[73] C. P. Chang, C. L. Lu, F. L. Shyu, R. B. Chen, Y. C. Huang, and M. F. Lin, Magnetoelectronic properties of the AB-stacked graphite, Carbon, 437, 1424-1431, 2005.
[74] C. L. Lu, C. P. Chang, Y. C. Huang, J. H. Ho, C. C. Hwang, M. F. Lin, Electronic Properties of AA- and ABC-Stacked Few-Layer Graphites, J. Phys. Soc. Jpn., 76, 024701, 2007.
[75] C. P. Chang, C. W. Chiu, F. L. Shyu, R. B. Chen, and M. F. Lin, Magnetoband structures of AB-stacked zigzag nano graphite ribbons, Physics Letters A, 306, 137-143, 2002.
[76] S. C. Chen, T. S. Wang, C. H. Lee, and M. F. Lin, Magneto-electronic properties of graphene nanoribbons in the spatially modulated electric field, Physics Letters A, 372, 5999-6002, 2008.
[77] W. A. Harrison and J. Tersoff, Tight binding theory of heterojunction band lineups and interface dipoles, Journal of Vacuum Science & Technology B, 4, 1068, 1986.
[78] P. H. Shih, T. N. Do, G. Gumbs, H. D. Pham, and M. F. Lin, Electric-field-diversified optical properties of bilayer silicene, Optics Letters, 44(19), 4721-4724, 2019.
[79] P. H. Shih, T. N. Do, G. Gumbs, D. Huang, H. D. Pham and M. F. Lin, Rich Magnetic Quantization Phenomena in AA Bilayer Silicene, Scientific Reports, 9, 14799, 2019.
[80] J. C. Slater and G. F. Koster, Simplified LCAO Method for the Periodic Potential Problem, Physical Review, 94, 1498, 1954.
[81] Y. H. Chiu, J. H. Ho, Y. H. Ho, D. S. Chuu, and M. F. Lin, Effects of a Modulated Electric Field on the Optical Absorption Spectra in a Single-Layer Graphene, Journal of Nanoscience and Nanotechnology, 9(11), 6579-6586, 2009.
[82] T. N. Do, C. Y. Lin, Y. P. Lin, P. H. Shih, and M. F. Lin, Configuration-enriched magneto-electronic spectra of AAB-stacked trilayer graphene, Carbon, 94 619-632, 2015.
[83] D. K. Nguyen, N. T. Thuy Tran, T. T. Nguyen, M. F. Lin, Diverse Electronic and Magnetic Properties of Chlorination-Related Graphene Nanoribbons, Scientific Reports, 8, 17859, 2018.
[84] C. Y. Lin, J. Y. Wu, C. P. Chang, M. F. Lin, Magneto-optical selection rules of curved graphene nanoribbons and carbon nanotubes, Carbon, 69 151-161, 2014.
[85] C. W. Chiu, S. H. Lee, S. C. Chen, and M. F. Lin, Electronic excitations in doped monolayer graphenes, Journal Of Applied Physics, 106, 113711, 2009.
[86] M. Sun, W. Tang, Q. Ren, S. Wang, Y. Du, and Y. Zhang, First-principles study of the alkali earth metal atoms adsorption on graphene, Applied Surface Science, 356, 2015.
[87] C. W. Chiu, Y. C. Huang, F. L. Shyu, and M. F. Lin, Influence of anisotropic dipole matrix element on optical response of AB-stacked graphene superlattice,
Optics letters, 36(16), 3136-3138, 2011.
[88] C. W. Chiu, Y. C. Huang, F. L. Shyu, and M. F. Lin, Excitation spectra of ABC-stacked graphene superlattice, Appl. Phys. Lett., 98, 261920, 2011.
[89] Y. H. Ho, Y. H. Chiu, W.P. Su, and M. F Lin, Magneto-absorption spectra of Bernal graphite, Appl. Phys. Lett., 99, 011914, 2011.
[90] X. Chen, and B. Chen, Macroscopic and Spectroscopic Investigations of the Adsorption of Nitroaromatic Compounds on Graphene Oxide, Reduced Graphene Oxide, and Graphene Nanosheets, Environ. Sci. Technol., 49 6181-6189, 2015.
[91] G. Li, A. Luican, J. M. B. L. dos Santos, A. H. C. Neto, A. Reina, J. Kong and E. Y. Andrei, Observation of Van Hove singularities in twisted graphene layers, Nature Physics, 6, 109-113, 2010.
Chapter 3
[92] K. S. Novoselov at al, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438, 197, (2005).
[93] R. Arafune et al, Structural transition of silicene on Ag(111), Surface Science 608, 297-300, (2013).
[94] L. Meng at al, Buckled Silicene Formation on Ir(111), textitNano Lett., 13, 685-690, (2013).
[95] A. Fleurence at al, Experimental Evidence for Epitaxial Silicene on Diboride Thin Films, Phys. Rev. Lett., 108, 245501, (2012).
[96] L. Li at al, Buckled Germanene Formation on Pt(111), Adv. Mater., 26, 4820-4824, (2014).
[97] M. E. Davila, L. Xian, S. Cahangirov, A. Rubio & L. G. Le, Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene, New J. Phys., 16, 095002, (2014).
[98] Derivaz at al, Continuous Germanene Layer on Al(111), Nano Lett., 15, 2510-2516, (2015).
[99] P. H. Shih, T. N. Do, G. Gumbs, H. D. Pham, M. F. Lin, Electric-field-diversified optical properties of bilayer silicene, Optics Letters, 44, 4721-4724, (2019).
[100] N. T. T. Tran, D. K. Nguyen, G. Gumbs, & M. F. Lin, Fundamental Properties of Transition Metals Adsorbed Graphene, ChemPhysChem., 2019, 2473-2481, (2019).
[101] Y. H. Ho at al, Optical transitions between Landau levels: AA-stacked bilayer graphene, Appl. Phys. Lett., 97(10), 101905, (2010).
[102] S. H. Lee, Y. H. Ho, C. W. Chiu, and M. F. Lin, Optical properties of deformed few-layer graphenes with AB stacking, J. Appl. Phys., 108(4), 043509, (2010).
[103] G. G. Guzmn-Verri, and L. C. L. Y. Voon, Band structure of hydrogenated Si nanosheets and nanotubes, J. Phys. Condens. Matter, 23(11), 145502, (2011).
[104] D. K. Nguyen at al, Concentration-Diversified Magnetic and Electronic Properties of Halogen-Adsorbed Silicene, Scientific reports, 9(1), 1-15, (2019).
[105] S. Y. Lin at al, H-Si bonding-induced unusual electronic properties of silicene: a method to identify hydrogen concentration, Phys. Chem. Chem. Phys., 17, 26443, (2015).
[106] H. C. Huang, S. Y. Lin, C. L. Wu, and M. F. Lin, Configuration- and
concentration-dependent electronic properties of hydrogenated graphene, Carbon, 103, 84-83, (2016).
[107] H. T. Wang at al, Doping Monolayer Graphene with Single Atom Substitutions, Nano Lett., 12(1), 141-144, (2012).
[108] B. Huang, F. Liu, J. Wu, B. L. Gu, and W. Duan, Suppression of spin polarization in graphene nanoribbons by edge defects and impurities, Phys. Rev. B, 77, 153411, (2008).
[109] B. J. Feng at al, Structure and quantum well states in silicene nanoribbons on Ag(110), Surface Science, 645, 74-79, (2016).
[110] Y. Li at al, Strain-controlled valley and spin separation in silicene heterojunctions, Phys. Rev. B, 97, 085427, (2018).
[111] L. Tao at al, Silicene field-effect transistors operating at room temperature, Nature Nanotech, 10, 227–231, (2015).
[112] P. H. Shih at al, Magneto-transport properties of B-, Si-and N-doped graphene, Carbon, 160, 211-218, (2020).
[113] H. Xie at al, Large tunability of lattice thermal conductivity of monolayer silicene via mechanical strain, Phys. Rev. B, 93, 075404, (2016).
[114] H. Sahin, and F. M. Peeters, Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene, Phys. Rev. B, 87, 085423, (2013).
[115] F. B. Zheng, C. N. Zhanga, P. J. Wang, and S. S. Li, Novel half-metal and spin gapless semiconductor properties in N-doped silicene nanoribbons, J. Appl. Phys., 113, 154302, (2013).
[116] N. T. T. Tran, D. Dahal, G. Gumbs, and M. F. Lin, Adatom doping-enriched geometric and electronic properties of pristine graphene: a method to modify the band gap, Structural Chemistry, 28, 1311-1318, (2017).
[117] K. Kakaei, A. Balavandi, Synthesis of halogen-doped reduced graphene oxide nanosheets as highly efficient metal-free electrocatalyst for oxygen reduction reaction, Journal of Colloid and Interface Science, 463, 46-54, (2016).
[118] Y. Li at al, Synthesis of partially hydrogenated graphene and brominated graphene, J. Mater. Chem., 22, 15021-15024, (2012).
[119] I. Y. Jeon at al, Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction, Scientific Reports, 3, 1810, (2013).
[120] R. Krishna at al, Facile synthesis of hydrogenated reduced graphene oxide via hydrogen spillover mechanism, J. Mater. Chem, 22, 10457-10459, (2012).
[121] B. Vertruyen et al, Magnetic and electronic ground states of B-site-substituted LaMnO3: from antiferromagnetism to ferromagnetism, Journal of Magnetism and Magnetic Materials 280(1), 75-83, (2004).
[122] J. Sivek, H. Sahin, B. Partoens, and F. M. Peeters, Adsorption and absorption of boron, nitrogen, aluminium, and phosphorus on silicene: Stability and electronic and phonon properties, Phys. Rev. B, 87, 085444, (2013).
[123] M. M. Monshi, S. M. Aghaei, I. Calizo, Doping and defect-induced germanene: A superior media for sensing H2S, SO2, and CO2 gas molecules, Surface Science, 665, 96-102, (2017).
[124] L. Ci at al, Atomic layers of hybridized boron nitride and graphene domains, Nature Mater, 9, 430-435, (2010).
[125] C. Xiao and Y. Zhang, Design-atom approach for the quantum mechanical/molecular mechanical covalent boundary: A design-carbon atom with five valence electrons, J. Chem. Phys., 127, 124102, (2007).
[126] S. Granjeaud at al, STM/TEM comparative study of Pd clusters epitaxially grown on highly oriented pyrolytic graphite, Microsc. Microanal. Microstruct., 4, 409-418, (1993).
[127] A. Damascelli, Probing the Electronic Structure of Complex Systems by ARPES, Physica Scripta, 109, (2004).
[128] D. D. D. Ma, C. S. Lee, and S. T. Lee, Scanning tunnelling microscopic study of boron-doped silicon nanowires, Appl. Phys. Lett., 79, 2468, (2001).
[129] J. P. Cleuziou, W. Wernsdorfer, V. Bouchiat, T. Ondarcuhu, and M. Monthioux, Carbon nanotube superconducting quantum interference device, Nature Nanotech, 1, 53-59, (2006).
[130] S. C. Chen, J. Y. Wu, and M. F. Lin, Feature-rich magneto-electronic properties of bismuthene, New J. Phys., 20, 062001, (2018).
[131] S. J. Barraza, and S. E. Denmark, Synthesis, Reactivity, Functionalization, and ADMET Properties of Silicon-Containing Nitrogen Heterocycles, J. Am. Chem. Soc., 140, 6668-6684, (2018).
[132] Y. H. Chiu, J. H. Ho, C. P. Chang, D. S. Chuu, and M. F. Lin, Low-frequency magneto-optical excitations of a graphene monolayer: Peierls tight-binding model and gradient approximation calculation, Phys. Rev. B, 78, 245411, (2018).
[133] A. L. Rakhmanov, A. V. Rozhkov, A. O. Sboychakov, and F. Nori, Instabilities of the AA-Stacked Graphene Bilayer, Phys. Rev. Lett., 109, 206801, (2012).
[134] V. Paul-Boncour at al, Investigation of the electronic properties of substituted LaNi5 compounds used as material for batteries, J. Mater. Chem., 10, 2741-2747, (2002).
[135] A. Ruegg and G. A. Fiete, Topological insulators from complex orbital order in transition-metal oxides heterostructures, Phys. Rev. B, 84, 201103, (2011).
[136] B. Partoens and F. M. Peeters, From graphene to graphite: Electronic structure around the K point, Phys. Rev. B, 74, 075404, (2006).
[137] P. H. Shih et al, Magneto-electronic and optical properties of Si-doped graphene, Carbon, 144, 608-614, (2019).
[138] S. L. Chang, S. Y. Lin, S. K. Lin, C. H. Lee, and M. F. Lin, Geometric and Electronic Properties of Edge-decorated Graphene Nanoribbons, Scientific Reports, 4, 6038, (2014).
[139] S. Y. Lin et al, Substrate-induced structures of bismuth adsorption on graphene: a first principles study, Phys. Chem. Chem. Phys, 18, 18978, (2016).
[140] S. V. Eremeev et al, Atom-specific spin mapping and buried topological states in a homologous series of topological insulators, Nat Commun., 3, 635, (2012).
[141] L. Chen, B. Feng, and K. Wu, Observation of a possible superconducting gap in silicene on Ag(111) surface, Appl. Phys. Lett., 102, 081602, (2013).
[142] J. Y. Wu, S. C. Chen, G. Gumbs, and M. F. Lin, Feature-rich electronic excitations of silicene in external fields, Phys. Rev. B, 94, 205427, (2016).
[143] J. Y. Wu, C. Y. Lin, G. Gumbs, and M. F. Lin, The effect of perpendicular electric field on temperature-induced plasmon excitations for intrinsic silicene, RSC Adv, 5, 51912, (2015).
[144] S. C. Chen, C. L. Wu, J. Y. Wu, and M. F. Lin, Magnetic quantization of sp3 bonding in monolayer gray tin, Phys. Rev. B, 94, 045410, (2016).
[145] T. J. Giese, and D. M. York, Improvement of semiempirical response properties with charge-dependent response density, J. Chem. Phys., 123, 164108, (2005).
[146] H. H. Chen et al, Long-range interactions of bismuth growth on monolayer epitaxial graphene at room temperature, Carbon, 93, 180-186, (2015).
[147] Y. C. Chuang, J. Y. Wu, and M. F. Lin, Electric Field Dependence of Excitation Spectra in AB-Stacked Bilayer Graphene, Scientific Reports, 3, 1368, (2015).
[148] J. F. Dodaro et al, Phases of a phenomenological model of twisted bilayer graphene, Phys. Rev. B, 98, 075154, (2018).
[149] C. Y. Lin, M. H. Lee, and M. F. Lin, Coulomb excitations in ABC-stacked trilayer graphene, Phys. Rev. B, 98, 041408, (2018).
[150] C. Y. Lin et al, Geometry-diversified Coulomb excitations in trilayer AAB stacking graphene, Phys. Rev. B, 98, 195442, (2018).
[151] C. Chen, N. Hayazawa, and S. Kawata, A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient, Nat Commun., 5, 3312, (2014).
[152] I. Felner, U. Asaf, Y. Levi, O. Millo, Tuning of the superconducting and ferromagnetic behavior by oxygen and hydrogen in Eu1.5Ce0.5RuSr2Cu2010−δ, Physica C, 334, 141-151, (2000).
[153] H. W. Cui, D. S. Li, and Q. Fan, Using Nano Hexagonal Boron Nitride Particles and Nano Cubic Silicon Carbide Particles to Improve the Thermal Conductivity of Electrically Conductive Adhesives, Electron. Mater. Lett., 9, 1-5, (2013).
[154] J. Y. Wu, S. C. Chen, G. Gumbs, and M. F. Lin, Field-induced diverse quantizations in monolayer and bilayer black phosphorus, Phys. Rev. B, 95, 115411, (2017).
[155] T. N. Do, G. Gumbs, P. H. Shih, D. Huang, and M. F. Lin, Valley- and spin-dependent quantum Hall states in bilayer silicene, Phys. Rev. B, 100, 155403, (2017).
[156] G. Gumbs et al, Plasmon Excitations of Multilayer Graphene on a Conducting Substrate, Phys. Rev. B, 100, 155403, (2016).
[157] J. C. Axtell et al, Synthesis and Applications of Perfunctionalized Boron Clusters, Inorg. Chem, 57, 2333-2350, (2018).
[158] C. C. Liu, W. Feng, and Y. Yao, Quantum Spin Hall Effect in Silicene and Two-Dimensional Germanium, Phys. Rev. Lett., 107, 076802, (2011).
Chapter 4
[159] D. Bagayoko, Understanding density functional theory (DFT) and completing it in practice, AIP Advances, 4, 127104, 2014.
[160] A. Hospital, J. Ramon Goni, M. Orozco, and J. L. Gelpi, Molecular dynamics simulations: advances and applications, Adv Appl Bioinform Chem., 8, 37-47, 2015.
[161] D. M. Benov, The Manhattan Project, the first electronic computer and the Monte Carlo method, Monte Carlo Methods and Applications, 22,1, 73-79, 2016.
[162] E. Tiras et al, Effective mass of electron in monolayer graphene: Electron-phonon interaction, Journal of Applied Physics, 113, 043708, 2013.
[163] D. Bohm and T. Staver, Application of collective treatment of electron and ion vibrations to theories of conductivity and superconductivity, Phys. Rev., 84, 836, 1951.
[164] J. Jung, A. Raoux, Z. Qiao, and A. H. MacDonald, Ab initio theory of moire superlattice bands in layered two-dimensional materials, Phys. Rev. B, 89, 205414, 2014.
[165] B. Bishnoi and B. Ghosh, Spin transport in silicene and germanene, RSC Adv., 3, 26153-26159, 2013.
[166] Y. Li et al, Strain-controlled valley and spin separation in silicene heterojunctions, Phys. Rev. B, 97, 085427, 2018.
[167] T. N. Do, P. H. Shih, C. P. Chang, C. Y. Lin and M. F. Lin, Rich magnetoabsorption spectra of AAB-stacked trilayer graphene, Phys. Chem. Chem. Phys., 18, 17597-17605, 2016.
[168] J. Y. Wu, S. C. Chen, T. N. Do, W. P. Su, G. Gumbs, and M. F. Lin, The diverse magneto-optical selection rules in bilayer black phosphorus, Scientific Reports, 8, 13303, 2018.
[169] A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, and Y. Y. Takamura, Experimental Evidence for Epitaxial Silicene on Diboride Thin Films, Phys. Rev. Lett., 108, 245501, 2012.
[170] R. Yadav and C. K. Dixit, Synthesis, characterization and prospective applications of nitrogen-doped graphene: a short review, Journal of Science: Advanced Materials and Devices, 2,2, 141-149, 2017.
[171] Y. Zhu et al, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater, 22, 3906-3924, 2010.
[172] N. Gao, G. Y. Lu, Z. Wen, and Q. Jiang, Electronic structure of silicene: effects of the organic molecular adsorption and substrate,J. Mater. Chem. C,, 5, 627-633, 2017.
[173] A. Pendashteh, J. Palma, M. Anderson, and R. Marcilla, NiCoMnO4 nanoparticles on N-doped graphene: Highly efficient bifunctional electrocatalyst for oxygen reduction/evolution reactions, Applied Catalysis B: Environmental, 201, 241-252, 2017.
[174] N. T. T. Tran, D. K. Nguyen, S. Y. Lin, G. Gumbs, and M. F. Lin, Fundamental Properties of TransitionMetalsAdsorbed Graphene, ChemPhysChem, 20,19, 24732481, 2019.
[175] P. Li, Z. You, G. Haugstad, and T. Cui, Graphene fixed-end beam arrays based on mechanical exfoliation, Appl. Phys. Lett., 98, 253105, 2011.
[176] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties, Nano Lett., 9,5, 1752-1758, 2009.
[177] D. Chiappe, C. Grazianetti, G. Tallarida, M. Fanciulli, and A. Molle, Local Electronic Properties of Corrugated Silicene Phases,Advanced Materials, 24,37, 1752-1758, 2012.
[178] H. Sahin, J. Sivek, S. Li, B. Partoens, and F. M. Peeters, Stone-Wales defects in silicene: Formation, stability, and reactivity of defect sites, Phys. Rev. B, 88, 045434, 2013.
[179] C. Kamal, A. Chakrabarti, A. Banerjee, and S. K. Deb, Silicene beyond monolayers-different stacking configurations and their properties, J. Phys.: Condens. Matter, 25, 085508, 2013.
[180] T. Yokoyama, Controllable valley and spin transport in ferromagnetic silicene junctions,Phys. Rev. B, 87, 241409(R), 2013.
[181] H. C. Chung, Y, T. Lin, S. Y. Lin, C. H. Ho, C. P. Chang, M. F. Lin, Magnetoelectronic and optical properties of nonuniform graphene nanoribbons, Carbon, 109, 883-895, 2016.
[182] Q. X. Pei, Z. D. Sha, Y. Y. Zhang, and Y. W. Zhang, Effects of temperature and strain rate on the mechanical properties of silicene, J. Appl. Phys., 115, 023519, 2013.
[183] G. R. Berdiyorov and F. M. Peeters, Influence of vacancy defects on the thermal stability of silicene: a reactive molecular dynamics study, RSC Adv., 4, 1133-1137, 2014.
[184] M. Elahi, K. Khaliji, S. M. Tabatabaei, M. Pourfath, and R. Asgari, Modulation of electronic and mechanical properties of phosphorene through strain, Phys. Rev. B, 91, 115412, 2015.
[185] S. Li, Z. Ao, J. Zhu, J. Ren, J. Yi, G. Wang, and W. Liu, Strain controlled ferromagnetic-antiferromagnetic transformation in Mn-doped silicene for information transformation devices, J. Phys. Chem. Lett., 8,7, 1484-1488, 2017.
[186] S. Y. Lin, Y. T. Lin, N. T. T. Tran, W. P. Su, and M. F. Lin, Feature-rich electronic properties of aluminium-adsorbed graphenes, Carbon, 120, 209-218, 2017.
[187] X. Yu, H. and J. Zhou, Phonon thermal conductivity reduction in silicene nanotubes with isotope substitution, RSC Adv., 10, 10752-10757, 2020.
[188] S. Y.Lin, S. L. Chang, F. L. Shyu, J. M. Lu, and M. F. Lin, Feature-rich electronic properties in graphene ripples, Carbon, 86, 207-216, 2015.
[189] Y. Li, H. Chen, L. Y. Voo, J. Ji, G. Zhang, G. Zhang, F. Zhang, and X. Fan, Synthesis of partially hydrogenated graphene and brominated graphene, J. Mater. Chem., 22, 15021-15024, 2012.
[190] I. Y. Jeon et al, Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction, Scientific Reports, 3, 1810, 2013.
[191] F. Z. Song, Q. L. Zhu, and Q. Xu, Monodispersed PtNi nanoparticles deposited on diamine-alkalized graphene for highly efficient dehydrogenation of hydrous hydrazine at room temperature, J. Mater. Chem. A, 3, 23090-23094, 2015.
[192] A. S. Childress, P. Parajuli, J. Zhu, R. Podila, A. M. Rao, A Raman spectroscopic study of graphene cathodes in high-performance aluminium ion batteries, Nano Energy, 39, 69-76, 2017.
[193] R. Wang, X. Pi, Z. Ni, Y. Liu, S. Lin, M. X, and D. Yang, Silicene oxides: formation, structures and electronic properties, Scientific Reports, 3, 3507, 2013.
[194] A. S. Dybala, P. Dyniec, M. Kopciuszyski, R. Zdyb, M. Jatochowski, and M. Krawiec, Planar silicene: a new silicon allotrope epitaxially grown by segregation,Advanced Functional Materials, 29,50, 1906053, 2019.
[195] M. C. Hanf, A. Marjaoui, R. Stephan, M. Zanouni, M. Diani, and P. Sonnet, Undulated silicene and germanene freestanding layers: why not?, J. Phys.: Condens. Matter, 32, 195503, 2020.
[196] O. E. Parfenov et al, Layer-controlled laws of electron transport in two-dimensional ferromagnets, Materials Today, 29, 20-25, 2020.
[197] C. W. Chiu F. L. Shyu, C. P. Chang, R. B. Chen, M. F. Lin, Magnetoelectronic and optical properties of carbon nanotubes, Phys. Rev. B, 67, 045405(9), 2003.
[198] M. A. Chibisova and A. N. Chibisov, Effect of B–Si bond charge density on the structural and elastic properties of silicene, Mater. Res. Express, 6, 045017, 2019.
[199] H. H. Cocoletzia and J. E. C. Aguila, DFT studies on the Al, B, and P doping´ of silicene, Superlattices and Microstructures, 114, 242-250, 2018.
[200] J. M. Wills, and B. R. Cooper, First-principles calculations for a model Hamiltonian treatment of hybridizing light actinide compounds, Phys. Rev. B, 42, 4682, 1990.
[201] X. Tan, C. R. Cabrera, and Z. Chen, Metallic BSi3 Silicene: A Promising High Capacity Anode Material for Lithium-Ion Batteries, J. Phys. Chem. C, 118, 25836-25843, 2014.
[202] X. Kong, Q. Chen, and Z. Sun, Enhanced oxygen reduction reactions in fuel cells on Hdecorated and Bsubstituted graphene, ChemPhysChem, 14, 514-519, 2013.
[203] M. D. Esrafili, and H. Behzadi, A comparative study on carbon, boron-nitride, boron-phosphide and silicon-carbide nanotubes based on surface electrostatic potentials and average local ionization energies, Journal of Molecular Modeling, 19, 2375-2382, 2013.
[204] S. Reich, J. Maultzsch, and C. Thomsen, Tight-binding description of graphene, Phys. Rev. B, 66, 035412, 2002.
[205] T. N. Do, P. H. Shih, G. Gumbs, D. Huang, C. W. Chiu, M. F. Lin, Diverse magnetic quantization in bilayer silicene, Phys. Rev. B, 97,12, 125416, 2018.
[206] C. W. Chiu, Y. C. Huang, S. C. Chen, M. F. Lin, and F. L. Shyu, Low-frequency electronic and optical properties of rhombohedral graphite, Phys. Chem. Chem. Phys, 13, 6036-6042, 2011.
[207] C. W. Chiu, C. P. Chang, F. L. Shyu, R. B. Chen, M. F. Lin, Magnetoelectronic excitations in single-walled carbon nanotubes, Phys. Rev. B, 6716, 165421, 2003.
[208] T. S. Li, and M. F. Lin, Transport properties of finite carbon nanotubes under electric and magnetic fields, J. Phys. Condens. Matter, 18, 10693-10703, 2006.
[209] T. Lin, F. Huang, J. Liang, and Y. Wang, A facile preparation route for boron-doped graphene, and its CdTe solar cell application, Energy Environ. Sci., 4, 862-865, 2011.
[210] M. Sahoo, K. P. Sreena, B. P. Vinayan, and S. Ramaprabhu, Green synthesis of boron doped graphene and its application as high performance anode material in Li-ion battery, Materials Research Bulletin, 61, 383-390, 2015.
[211] C. C. Liu, H. Jiang, and Y. Yao, Low-energy effective Hamiltonian involving spin orbit coupling in silicene and two-dimensional germanium and tin, Phys. Rev. B, 84, 195430, 2011.
[212] R. Bistritzer and A. H. MacDonald, Moire bands in twisted double-layer graphene, PNAS, 108, 12233-12237, 2011.
[213] L. Didukh, Y. Skorenkyy, Y. Dovhopyaty, and V. Hankevych, Metal-insulator transition in a doubly orbitally degenerate model with correlated hopping, Phys. Rev. B, 61, 7893, 2000.
[214] T. Eelbo, M. Wasniowska, M. Gyamfi, S. Forti, U. Starke, and R. Wiesendanger, Influence of the degree of decoupling of graphene on the properties of transition metal adatoms, Phys. Rev. B, 87, 205443, 2013.
[215] K. Szatowski, Graphene nanoflakes in external electric and magnetic in-plane fields, Journal of Magnetism and Magnetic Materials, 382, 318-327, 2015.
[216] Y. H. Ho, C. W. Chiu, W. P. Su, and M. F. Lin, Magneto-optical spectra of transition metal dichalcogenides: A comparative study, Appl. Phys. Lett., 2014, 105, 222411.
[217] S. Y. Lin, S. L. Chang, H. H. Chen, S. H. Su, J. C. Huang, and M. F. Lin, Substrate-induced structures of bismuth adsorption on graphene: a first principles study, Phys. Chem. Chem. Phys., 18, 18978-18984, 2016.
[218] J. Y. Wu, S. C. Chen and M. F. Lin, Temperature-dependent Coulomb excitations in silicene, New J. Phys., 16, 125002, 2016.
Summary
[219] S. Ravindran, S. Chaudhary, B. Colburn, M. Ozkan, and C. S. Ozkan, Covalent Coupling of Quantum Dots to Multiwalled Carbon Nanotubes for Electronic Device Applications, Nano Letters, 4, 447-453, 2003.
[220] G. Vogg, M. S. Brandt, and M. Stutzmann, Polygermyne—a prototype system for layered germanium polymers, Adv. Mater., 12, 1278, 2000.
[221] N. Liu, G. Bo, Y. Liu, X. Xu, Y. Du, and S. X. Dou, Recent progress on germanene and functionalized Germanene: preparation, characterizations, applications, and challenges, Small, 15, 1805147, 2019.
[222] W. Xia, W. Hu, Z. Li, and J. Yang, A first-principles study of gas adsorption on germanene, Phys. Chem. Chem. Phys., 16, 22495, 2014.
[223] M. M. Monshi, S. M. Aghaei, and I.Calizo, Doping and defect-induced germanene: A superior media for sensing H2S, SO2, and CO2 gas molecules, Surface Science, 665, 96-102, 2017.
[224] R. Chandiramouli and V. Nagarajan, Adsorption studies of NH3 molecules on functionalized germanene nanosheet–a DFT study, Chemical Physics Letters, 665, 22-30, 2016.
[225] Z. Liu et al, GeH: a novel material as a visible-light driven photocatalyst for hydrogen evolution, Chem. Commun., 50, 11046-11048, 2014.
[226] N. D. Cultrara et al, Group-13 and group-15 doping of germanane, Nanotechnol., 8, 1642-1648, 2017.
[227] S. Jiang, S. Butler, E. Bianco, O. D. Restrepo, W. Windl, and J. E. Goldberger, Improving the stability and optical properties of germanane via one-step covalent methyl-termination, Nat. Commun. 5, 3389, 2014.
[228] M. Sun, Q. Ren, S. Wang, Y. Zhang, Y. Du, J. Yu, and W .Tang, Magnetism in transition-metal-doped germanene: a first-principles study, Computational Materials Science, 118, 112-116, 2016.
[229] Y. C. Huang C. P. Chang, C. L. Lu, F. L. Shyu, R. B. Chen, M. F. Lin, Carbon, 43, 1424-1431, 2005.
[230] Y. C. Ou, Y. H. Chiu, J. M. Lu, W. P. Su, M. F. Lin, Computer Physics Communications, 184, 1821-1826 (2013).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-12-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-12-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw