進階搜尋


下載電子全文  
系統識別號 U0026-0507201616310900
論文名稱(中文) 都市地表不透水率空間型態與影響因素研究
論文名稱(英文) The spatial patterns and influenced factors of urban impervious surface ratio
校院名稱 成功大學
系所名稱(中) 都市計劃學系
系所名稱(英) Department of Urban Planning
學年度 104
學期 2
出版年 105
研究生(中文) 廖晉賢
研究生(英文) Chin-Hsien Liao
學號 P28981037
學位類別 博士
語文別 中文
論文頁數 169頁
口試委員 召集委員-陳亮全
口試委員-游保杉
口試委員-孔憲法
口試委員-洪鴻智
口試委員-詹士樑
指導教授-張學聖
中文關鍵字 與水共存  地表不透水率  空間型態  地理加權迴歸  雨洪管理模式 
英文關鍵字 Living with water  impervious surface ratio  spatial pattern  geographically weighted regression model  storm water management model 
學科別分類
中文摘要 在人類傾力與自然環境共處之際,極端氣候事件仍造成全球重大災害與損失,與水共存空間規劃途徑為空間規劃重要對策之一。如何控制都市地表不透水率為回應與水共存空間規劃途徑的關鍵指標。由於都市化造成地表不透水率增加,直接影響水循環更造成都市水災問題。但目前仍缺乏因地制宜的都市地表不透水率量測方法。這樣結果不僅造成推估水利工程規模產生資源浪費,更無法從源頭控管反映所應負擔零增逕流責任。有鑑於此,本研究建立回應其問題的量測模式,包含針對地表不透水率空間型態、影響變數與空間異質性問題,輔以地表不透水率量測法、地域型空間自相關分析、地理加權迴歸分析、A-C-B模式等方法,建構都市地表不透水率空間型態模式。本研究以台南市玉井區為實證地區,經研究發現,1.過去地表不透水率勘查方式,的確忽略對於空間型態影響;2. 建立以建蔽率、公告地價與基地面積的不透水表面率推估模式;3.提供未來掌握不同區位土地使用地表不透水率結構差異,以及因地制宜分類建議參考。最後運用雨洪管理模式(SWMM)結合基本地文與水文資料,透過不同地表不透水率強度,模擬四種地表不透水率情境包含自然地表情況、都市化情況、滯洪情況與不透水管制情況,進行洪峰流量分析。結果顯示,透過都市不透水控制與設置滯洪池情境有相似的減洪效果。本研究之成果有助於提供未來都市規劃者在考量土地使用規劃時,可依據不同都市地表不透水率空間型態,作為土地使用在考量都市不透水管制之研究基礎。
英文摘要 In a time where humanity increasingly must make an effort to live harmoniously in the natural world, the global toll from extreme natural events has become an important issue of living with water will become a new stratgies of spatial planning. Controling impervious surface ratio has been recognized as a key indicator in assessing living with water. Increased impervious surface area is a consequence of urbanization, with correspondent and significant effects on the hydrologic cycle and urban planning. However, there has been no urban impervious surface measures into an overall evaluation by urban planners. The consequence is not only exceeding the designed drainage systems but also ignoring the responsibility of decreased runoff by land use planning. The framework consists of integrated urban impervious surface models spatial pattern and variables, that, based on the spatial heterogeneity, are integrated as a framework for measuring the relative spatial pattern in urban impervious surface. This study is presented as impervious surface measures, local indicators of spatial association, geographically weighted regression model and A-C-B model. This research builds up an investigation method by sampling from different land use type of Tainan Yujing District. The results show spatial heterogeneity urban spatial development that affects urban impervious surface. The variables of area, land price and building coverage ratio associated with different land use impervious surface location types affect the impervious surface ratio. On the other hand, this studies integrated storm water management model(SWMM) to simulation different percentage of impervious area by several simulation scenarios. This integrated model could be a useful reference to help urban planners analyze, investigate, and adjust the percentage of impervious area by land use planning.
論文目次 第一章 緒論 1
第一節 研究動機與目的 1
第二節 研究範圍與範疇 3
第三節 研究內容與流程 6
第二章 文獻回顧與理論方法 9
第一節 都市地表不透水率對水文影響 9
第二節 都市地表不透水率空間型態理論 24
第三節 都市地表不透水率量測方法 36
第三章 研究架構與方法 47
第一節 研究問題設計 47
第二節 量測問題 49
第三節 空間型態分類問題 59
第四節 空間不穩定特性問題 64
第四章 實證研究 72
第一節 都市地表不透水率資料分析 72
第二節 都市地表不透水率空間型態分析 79
第三節 都市地表不透水率影響變數分析 83
第四節 都市地表不透水率空間型態模式績效分析92
第五章 研究成果與政策意涵 113
第一節 都市地表不透水率空間分布概況 113
第二節 都市地表不透水率空間規劃政策意涵 136
第三節 都市地表不透水率空間型態量測檢討與省思 144
第六章 結論與建議 146
第一節 結論 146
第二節 建議 150
參考文獻 151
參考文獻 英文文獻
1. Acharya, G., & Bennett, L. L. (2001). Valuing open space and land-use patterns in urban watersheds. The Journal of Real Estate Finance and Economics, 22(2-3), 221-237.
2. Ahiablame, L. M., Engel, B. A., & Chaubey, I. (2012). Effectiveness of low impact development practices: literature review and suggestions for future research. Water, Air, & Soil Pollution, 223(7), 4253-4273.
3. Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical Analysis, 27(2), 93-115.
4. Anselin, L., & Bera, A. K. (1998). Spatial dependence in linear regression models with an introduction to spatial econometrics. Statistics Textbooks and Monographs, 155, 237-290.
5. Arnold Jr, C. L., & Gibbons, C. J. (1996). Impervious surface coverage: the emergence of a key environmental indicator. Journal of the American planning Association, 62(2), 243-258.
6. Asner, G. P., & Warner, A. S. (2003). Canopy shadow in IKONOS satellite observations of tropical forests and savannas. Remote Sensing of Environment, 87(4), 521-533.
7. Bari, M., Smettem, K., & Sivapalan, M. (2005). Understanding changes in annual runoff following land use changes: a systematic data‐based approach. Hydrological Processes, 19(13), 2463-2479.
8. Barnes, K. B., Morgan, J., & Roberge, M. (2001). Impervious surfaces and the quality of natural and built environments. Baltimore: Department of Geography and Environmental Planning, Towson University.
9. Bhaduri, B. L. (1998). A geographic information system-based model of the long-term impact of land use change on nonpoint-source pollution at a watershed scale, PhD Thesis, Purdue University.
10. Biehl, L., & Landgrebe, D. (2002). MultiSpec—a tool for multispectral–hyperspectral image data analysis. Computers & Geosciences, 28(10), 1153-1159.
11. Bierwagen, B. G., Theobald, D. M., Pyke, C. R., Choate, A., Groth, P., Thomas, J. V., & Morefield, P. (2010). National housing and impervious surface scenarios for integrated climate impact assessments. Proceedings of the National Academy of Sciences, 107(49), 20887-20892.
12. Brabec, E., Schulte, S., & Richards, P. L. (2002). Impervious surfaces and water quality: a review of current literature and its implications for watershed planning. Journal of planning literature, 16(4), 499-514.
13. Brabec, E. A. (2009). Imperviousness and land-use policy: Toward an effective approach to watershed planning. Journal of Hydrologic Engineering, 14(4), 425-433.
14. Bruijnzeel, L. (2002). Tropical forests and environmental services: not seeing the soil for the trees. Agriculture, Ecology and Environment.
15. Brun, S., & Band, L. (2000). Simulating runoff behavior in an urbanizing watershed. Computers, Environment and Urban Systems, 24(1), 5-22.
16. Brunsdon, C., Fotheringham, S., & Charlton, M. (1998). Geographically weighted regression. Journal of the Royal Statistical Society: Series D (The Statistician), 47(3), 431-443.
17. Burke, I. C., Lauenroth, W. K., Riggle, R., Brannen, P., Madigan, B., & Beard, S. (1999). Spatial variability of soil properties in the shortgrass steppe: the relative importance of topography, grazing, microsite, and plant species in controlling spatial patterns. Ecosystems, 2(5), 422-438.
18. Buyantuyev, A., & Wu, J. (2010). Urban heat islands and landscape heterogeneity: linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landscape Ecology, 25(1), 17-33.
19. Casetti, E., & Jones III, J. P. (2003). Applications of the expansion method: Routledge.
20. Cliff, A., & Ord, J. K. (1973). Spatial autocorrelation. Retrieved from
21. Comber, A., Fisher, P., Brunsdon, C., & Khmag, A. (2012). Spatial analysis of remote sensing image classification accuracy. Remote Sensing of Environment, 127, 237-246.
22. Congalton, R., & Mead, R. A. (1983). A quantitative method to test for consistency and correctness in photointerpretation. Photogrammetric Engineering & Remote Sensing, 49(1), 69-74.
23. Conzen, M. R. G. (1960). Alnwick, Northumberland: a study in town-plan analysis. Transactions and Papers (Institute of British Geographers)(27), iii-122.
24. County, P. G. s. (1999). Low-impact development design strategies: an integrated design approach. Department of Environmental Resources, Programs and Planning Division, Prince George’s County, Maryland.
25. Crawford, N. H., & Linsley, R. K. (1966). Digital Simulation in Hydrology'Stanford Watershed Model 4.
26. Cressie, N. (2015). Statistics for spatial data: John Wiley & Sons.
27. Daniels, T. (2001). Smart growth: A new American approach to regional planning. Planning practice and research, 16(3-4), 271-279.
28. Davis, A. P., & McCuen, R. H. (2005). Stormwater management for smart growth: Springer Science & Business Media.
29. de Freitas, M. W. D., dos Santos, J. R., & Alves, D. S. (2013). Land-use and land-cover change processes in the Upper Uruguay Basin: linking environmental and socioeconomic variables. Landscape Ecology, 28(2), 311-327.
30. DeFries, R., & Eshleman, K. N. (2004). Land‐use change and hydrologic processes: A major focus for the future. Hydrological Processes, 18(11), 2183-2186.
31. Deng, C., & Wu, C. (2013). A spatially adaptive spectral mixture analysis for mapping subpixel urban impervious surface distribution. Remote Sensing of Environment, 133, 62-70.
32. Dietz, M. E. (2007). Low impact development practices: A review of current research and recommendations for future directions. Water, air, and soil pollution, 186(1-4), 351-363.
33. Doll, B. A., Wise‐Frederick, D. E., Buckner, C. M., Wilkerson, S. D., Harman, W. A., Smith, R. E., & Spooner, J. (2002). Hydraulic geometry relationships for urban streams throughout the piedmont of north carolina1: Wiley Online Library.
34. Dodman, D., Bicknell, J., & Satterthwaite, D. (2012). Adapting Cities to Climate Change: Understanding and addressing the development challenges: Routledge.
35. Ebrahimian, A., Gulliver, J. S., & Wilson, B. N. (2016). Effective Impervious Area for Runoff in Urban Watersheds. Hydrological Processes.
36. Elliott, A., & Trowsdale, S. (2007). A review of models for low impact urban stormwater drainage. Environmental modelling & software, 22(3), 394-405.
37. Elvidge, C. D., Tuttle, B. T., Sutton, P. C., Baugh, K. E., Howard, A. T., Milesi, C., . . . Nemani, R. (2007). Global distribution and density of constructed impervious surfaces. Sensors, 7(9), 1962-1979.
38. Ettema, C. H., & Wardle, D. A. (2002). Spatial soil ecology. Trends in ecology & evolution, 17(4), 177-183.
39. Evett, J. B., Love, M. A., & Gordon, J. M. (1994). Effects of Urbanization and Land-Use Changes on Low Stream Flow.
40. Finkenbine, J. K., Atwater, J. W., & Mavinic, D. S. (2000). Stream health after urbanization1. JAWRA Journal of the American Water Resources Association, 36(5), 1149-1160.
41. FISRWG. (1998). Stream Corridor Restoration: Principles, Processes, and Practices. Published USA government, October.
42. Fletcher, T. D., Shuster, W., Hunt, W. F., Ashley, R., Butler, D., Arthur, S., . . . Viklander, M. (2015). SUDS, LID, BMPs, WSUD and more – The evolution and application of terminology surrounding urban drainage. Urban Water Journal, 12(7), 525-542.
43. Fongers, D., & Fulcher, J. (2001). Hydrologic Impacts Due to Development: The Need for Adequate Runoff Detention and Stream Protection: Citeseer.
44. Foody, G. (2003). Geographical weighting as a further refinement to regression modelling: an example focused on the NDVI–rainfall relationship. Remote Sensing of Environment, 88(3), 283-293.
45. Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(1), 185-201.
46. Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2003). Geographically weighted regression: the analysis of spatially varying relationships: John Wiley & Sons.
47. Gaines, J. M. (2016). Flooding: Water potential. Nature, 531(7594), S54-S55. doi:10.1038/531S54a
48. Gao, C., Liu, J., Zhu, J., & Wang, Z. (2013). Review of current research on urban low-impact development practices. Res J Chem Environ, 17(S1), 209-214.
49. Gao, J., & Li, S. (2011). Detecting spatially non-stationary and scale-dependent relationships between urban landscape fragmentation and related factors using Geographically Weighted Regression. Applied geography, 31, 292-302.
50. Getis, A., & Ord, J. K. (1992). The analysis of spatial association by use of distance statistics. Geographical Analysis, 24(3), 189-206.
51. Goetz, S. J., Wright, R. K., Smith, A. J., Zinecker, E., & Schaub, E. (2003). IKONOS imagery for resource management: Tree cover, impervious surfaces, and riparian buffer analyses in the mid-Atlantic region. Remote Sensing of Environment, 88(1), 195-208.
52. Gorr, W. L., & Olligschlaeger, A. M. (1994). Weighted spatial adaptive filtering: Monte Carlo studies and application to illicit drug market modeling. Geographical Analysis, 26(1), 67-87.
53. Granato, G. E. (2010). Methods for development of planning-level estimates of stormflow at unmonitored stream sites in the conterminous United States. Methods.
54. Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., & Briggs, J. M. (2008). Global change and the ecology of cities. science, 319(5864), 756-760.
55. Group, N. S. W. (2004). Interim Code of Practice for Sustainable Drainage Systems.
56. Guo, J. C. (2008). Volume-based imperviousness for storm water designs. Journal of irrigation and drainage engineering, 134(2), 193-196.
57. Guo, J. C. (2014). Green Concept in Storm Water Management. Irrigation & Drainage Systems Engineering, 2013.
58. Guo, J. C., Blackler, G. E., Earles, T. A., & MacKenzie, K. (2010). Incentive index developed to evaluate storm-water low-impact designs. Journal of Environmental Engineering, 136(12), 1341-1346.
59. Haase, D. (2009). Effects of urbanisation on the water balance–A long-term trajectory. Environmental impact assessment review, 29(4), 211-219.
60. Hale, R. L., Turnbull, L., Earl, S. R., Childers, D. L., & Grimm, N. B. (2015). Stormwater infrastructure controls runoff and dissolved material export from arid urban watersheds. Ecosystems, 18(1), 62-75.
61. Homer, C., Dewitz, J., Fry, J., Coan, M., Hossain, N., Larson, C., . . . Wickham, J. (2007). Completion of the 2001 national land cover database for the counterminous United States. Photogrammetric engineering and remote sensing, 73(4), 337.
62. Hopkins, L. D. (1977). Land-use plan design—quadratic assignment and central-facility models. Environment and Planning A, 9(6), 625-642.
63. Huang, H. j., Cheng, S. j., Wen, J. c., & Lee, J. h. (2008). Effect of growing watershed imperviousness on hydrograph parameters and peak discharge. Hydrological Processes, 22(13), 2075-2085.
64. Kabat, P., Van Vierssen, W., Veraart, J., Vellinga, P., & Aerts, J. (2005). Climate proofing the Netherlands. Nature, 438(7066), 283-284.
65. Kuichling, E. (1889). The relation between the rainfall and the discharge of sewers in populous districts. Transactions of the American Society of Civil Engineers, 20(1), 1-56.
66. Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. biometrics, 159-174.
67. Leandro, J., Schumann, A., & Pfister, A. (2016). A step towards considering the spatial heterogeneity of urban key features in urban hydrology flood modelling. Journal of Hydrology, 535, 356-365.
68. Leavesley, G. H. (1994). Modeling the effects of climate change on water resources-a review. Climatic Change, 28(1-2), 159-177.
69. Lee, S., & Lathrop, R. (2005). Sub-pixel estimation of urban land cover components with linear mixture model analysis and Landsat Thematic Mapper imagery. International Journal of Remote Sensing, 26(22), 4885-4905.
70. Legendre, P. (1993). Spatial autocorrelation: trouble or new paradigm? Ecology, 74(6), 1659-1673.
71. Leopold, L. B. (1968). Hydrology for urban land planning: A guidebook on the hydrologic effects of urban land use: US Government Printing Office Washington, DC, USA.
72. Liu, Y., Gebremeskel, S., De Smedt, F., Hoffmann, L., & Pfister, L. (2006). Predicting storm runoff from different land‐use classes using a geographical information system‐based distributed model. Hydrological Processes, 20(3), 533-548.
73. Liu, J., Zhang, Z., Xu, X., Kuang, W., Zhou, W., Zhang, S., . . . Wu, S. (2010). Spatial patterns and driving forces of land use change in China during the early 21st century. Journal of Geographical Sciences, 20(4), 483-494.
74. Lloyd, S. D., Wong, T. H., & Chesterfield, C. J. (2002). Water sensitive urban design: a stormwater management perspective.
75. Lu, D., & Weng, Q. (2009). Extraction of urban impervious surfaces from an IKONOS image. International Journal of Remote Sensing, 30(5), 1297-1311.
76. MacRae, C. (1997). Experience from morphological research on Canadian streams: Is control of the two-year frequency runoff event the best basis for stream channel protection? Paper presented at the Effects of watershed development and management on aquatic ecosystems.
77. Mather, P. M., & Koch, M. (2011). Computer processing of remotely-sensed images: an introduction: John Wiley & Sons.
78. Meierdiercks, K. L., Smith, J. A., Baeck, M. L., & Miller, A. J. (2010). Heterogeneity of hydrologic response in urban watersheds1: Wiley Online Library.
79. Mell, I. (2015). 6 Green infrastructure planning: policy and objectives. Handbook on Green Infrastructure: Planning, Design and Implementation, 105.
80. Mellino, S., & Ulgiati, S. (2015). Mapping the evolution of impervious surfaces to investigate landscape metabolism: An Emergy–GIS monitoring application. Ecological Informatics, 26, 50-59.
81. Mondal, B., Das, D. N., & Dolui, G. (2015). Modeling spatial variation of explanatory factors of urban expansion of Kolkata: a geographically weighted regression approach. Modeling Earth Systems and Environment, 1(4), 1-13.
82. Moran, E. F. (2010). Land cover classification in a complex urban-rural landscape with QuickBird imagery. Photogrammetric engineering and remote sensing, 76(10), 1159.
83. Mu, X., Wang, W., & Xu, X. (1999). The influence of the soil and water conservation on the surface runoff in the watersheds in the gully plateau region of Loess Plateau. Journal of Hydraulic Engineering, 2, 71-75.
84. Neller, R. (1988). A comparison of channel erosion in small urban and rural catchments, Armidale, New South Wales. Earth Surface Processes and Landforms, 13(1), 1-7.
85. Nelson, A. C., & Duncan, J. B. (1995). Growth management principles and practices: American Planning Association.
86. Onstad, C., & Jamieson, D. (1970). Modeling the effect of land use modifications on runoff. Water Resources Research, 6(5), 1287-1295.
87. Openshaw, S. (1984). Ecological fallacies and the analysis of areal census data. Environment and Planning A, 16(1), 17-31.
88. Overmars, K. P., & Verburg, P. H. (2006). Multilevel modelling of land use from field to village level in the Philippines. Agricultural Systems, 89(2), 435-456.
89. Payne, S., & Barker, A. (2015). 20 Implementing green infrastructure through residential development in the UK. Handbook on Green Infrastructure: Planning, Design and Implementation, 375.
90. Poleto, C., & Tassi, R. (2012). Sustainable urban drainage systems: INTECH Open Access Publisher.
91. Poor, P. J., Pessagno, K. L., & Paul, R. W. (2007). Exploring the hedonic value of ambient water quality: A local watershed-based study. Ecological Economics, 60(4), 797-806.
92. Qin, H.-p., Li, Z.-x., & Fu, G. (2013). The effects of low impact development on urban flooding under different rainfall characteristics. Journal of environmental management, 129, 577-585.
93. Randolph, J. (2004). Environmental land use planning and management: Island Press.
94. Ridd, M. K. (1995). Exploring a VIS (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: comparative anatomy for cities. International Journal of Remote Sensing, 16(12), 2165-2185.
95. Rossman, L. A. (2010). Storm water management model user's manual, version 5.0: National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency Cincinnati.
96. Sánchez-Rodríguez, R. (2005). Science plan: urbanization and global environmental change: International Human Dimensions Programme on Global Environmental Change.
97. Sander, H., Polasky, S., & Haight, R. G. (2010). The value of urban tree cover: A hedonic property price model in Ramsey and Dakota Counties, Minnesota, USA. Ecological Economics, 69(8), 1646-1656.
98. Sauer, Vernon B., et al. Flood characteristics of urban watersheds in the United States. No. 2207. USGPO,, 1983.
99. Savini, J., & Kammerer, J. C. (1961). Urban growth and the water regimen. Retrieved from
100. Schueler, T. R. (1987). Controlling urban runoff: A practical manual for planning and designing urban BMPs: Water Resources Publications.
101. Schueler, T. R. (1994). The importance of imperviousness. Watershed protection techniques, 1(3), 100-111.
102. Schueler, T. R., Fraley-McNeal, L., & Cappiella, K. (2009). Is impervious cover still important? Review of recent research. Journal of Hydrologic Engineering, 14(4), 309-315.
103. Shuster, W., Bonta, J., Thurston, H., Warnemuende, E., & Smith, D. (2005). Impacts of impervious surface on watershed hydrology: a review. Urban Water Journal, 2(4), 263-275.
104. Simmons, D. L., & Reynolds, R. J. (1982). Effects of urbanization on base flow of selected south‐shore streams, long island, new york1. Journal of the American Water Resources Association, 18(5), 797-805.
105. Southard, R. E. (1986). An alternative basin characteristic for use in estimating impervious area in urban Missouri basins.
106. Stone, B. (2004). Paving over paradise: how land use regulations promote residential imperviousness. Landscape and Urban Planning, 69(1), 101-113.
107. Sugumaran, R., Zerr, D., & Prato, T. (2002). Improved urban land cover mapping using multi-temporal IKONOS images for local government planning. Canadian Journal of Remote Sensing, 28(1), 90-95.
108. Tang, Z., Engel, B., Pijanowski, B., & Lim, K. (2005). Forecasting land use change and its environmental impact at a watershed scale. Journal of environmental management, 76(1), 35-45.
109. Tu, J., & Xia, Z.-G. (2008). Examining spatially varying relationships between land use and water quality using geographically weighted regression I: model design and evaluation. Science of the total environment, 407(1), 358-378.
110. Urbonas, B., & Stahre, P. (1993). Stormwater: best management practices and detention for water quality, drainage, and CSO management.
111. Valtanen, M., Sillanpää, N., & Setälä, H. (2014). Effects of land use intensity on stormwater runoff and its temporal occurrence in cold climates. Hydrological Processes, 28(4), 2639-2650.
112. Van der Weert, R. (1994). Hydrological conditions in Indonesia. Delft Hydraulics, Jakarta, Indonesia, 72.
113. Van der Linden, S., & Hostert, P. (2009). The influence of urban structures on impervious surface maps from airborne hyperspectral data. Remote Sensing of Environment, 113(11), 2298-2305.
114. Vivian, G. (1997). Microtopographic heterogeneity and floristic diversity in experimental wetland communities. Journal of Ecology, 71-82.
115. Vojinovic, Z., Seyoum, S., Mwalwaka, J., & Price, R. (2011). Effects of model schematisation, geometry and parameter values on urban flood modelling. Water Science & Technology, 63(3).
116. Wang, J., Qingming, Z., Guo, H., & Jin, Z. (2016). Characterizing the spatial dynamics of land surface temperature–impervious surface fraction relationship. International Journal of Applied Earth Observations and Geoinformation, 45(Part A), 55-65.
117. Wang, L., Lyons, J., Kanehl, P., & Bannerman, R. (2001). Impacts of urbanization on stream habitat and fish across multiple spatial scales. Environmental Management, 28(2), 255-266.
118. Wang, L., Sousa, W. P., Gong, P., & Biging, G. S. (2004). Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama. Remote Sensing of Environment, 91(3), 432-440.
119. Williamson, K. S. (2003). Growing with green infrastructure: Heritage Conservancy Doylestown,, PA.
120. Wong, T., & Brown, R. (2009). The water sensitive city: principles for practice. Water Science and Technology, 60(3), 673.
121. Wu, F., & Webster, C. J. (1998). Simulation of natural land use zoning under free-market and incremental development control regimes. Computers, Environment and Urban Systems, 22(3), 241-256.
122. XIAO, R.-b., OUYANG, Z.-y., ZHENG, H., LI, W.-f., Schienke, E. W., & WANG, X.-k. (2007). Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China. Journal of Environmental Sciences, 19(2), 250-256.
123. Xian, G., & Homer, C. (2010). Updating the 2001 National Land Cover Database impervious surface products to 2006 using Landsat imagery change detection methods. Remote Sensing of Environment, 114(8), 1676-1686.
124. Zhang, L., & Weng, Q. (2016). Annual dynamics of impervious surface in the Pearl River Delta, China, from 1988 to 2013, using time series Landsat imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 113, 86-96.
125. Zhang, L.-n., & LI, X.-b. (2004). Assessing hydrological effects of human activities by hydrological characteristic parameters: A case study in the Yunzhou Reservoir basin. Resources Science, 2, 009.
126. Zhao, C., Fu, G., Liu, X., & Fu, F. (2011). Urban planning indicators, morphology and climate indicators: A case study for a north-south transect of Beijing, China. Building and Environment, 46(5), 1174-1183.
127. Zhou, Q. (2014). A review of sustainable urban drainage systems considering the climate change and urbanization impacts. Water, 6(4), 976-992.
中文文獻
1. 內政部營建署. (2010). 雨水下水道系統規劃原則檢討.
2. 呂罡銘, 林憲德, 孫振義, 劉正千, & 陳瑞鈴. (2011). 都市人造表面覆蓋率之解析、預測與控制. 都市與計劃, 38(2), 171-195.
3. 沈昌懋, & 謝英雄. (2006). 空間自相關在人口分布資料之應用研究. Journal of Data Analysis, 1(6), 123-137.
4. 周筱儒. (2012). 利用3S技術推估都市不透水率及逕流係數-以新北市公園為例. (碩士論文).
5. 林子平, 何友鋒, & 楊鴻銘. (2005). 都市地表不透水率之預估與分析:以台中市為例. 都市與計劃, 32(3), 333-354.
6. 林憲德, 呂罡銘, 孫振義, 劉正千, & 何明錦. (2008). 應用衛星遙測與影像分類技術估算台南市地表不透水率. 都市與計劃, 35(2), 123-139.
7. 邱祈榮, 梁玉琦, 賴彥任, & 黃名媛. (2004). 臺灣地區氣候分區與應用之研究. 臺灣地理資訊學刊(1), 41-62.
8. 張學聖, & 廖晉賢. (2013). 臺南市土地使用計畫之水災風險分析. 都市與計劃, 40(1), 59-79.
9. 張學聖, & 廖晉賢. (2014). 複合性災害評估架構研究: 莫拉克風災為例. 都市與計劃, 41(3), 305-327.
10. 張學聖, & 廖晉賢. (2015). 與水共生的空間規劃途徑-以曾文溪流域為例. 建築與規劃學報(2&3), 183.
11. 張梅英, & 施昱年. (2004). 台灣大量估價問題分析及其改進方法之研究. 土地問題研究季刊, 3(3), 89-105.
12. 郭子文, & 棗厥庸. (2007). 以決策樹之迴歸樹建構住宅價格模型--臺灣地區之實證分析. 住宅學報, 16(1), 1-20.
13. 游保杉. (2004). 水文循環與洪水. 科學發展, 374, 6-13.
14. 黃書禮. (1984). 整合土地使用規劃與都市雨水管理方法之探討. 都市與計劃, 11, 105-133.
15. 賴進貴, 葉高華, & 王韋力. (2004). 土地利用變遷與空間相依性之探討-以臺北盆地聚落變遷為例. 臺灣地理資訊學刊, 1:, 29-40.
16. 經濟部水利署. (2013). 曾文溪流域因應氣候變遷防洪及土砂研究計劃.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-08-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw