進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0507201313214800
論文名稱(中文) 回收TFT-LCD廢棄物之導電玻璃應用於DSSC電極
論文名稱(英文) Recovery of conducting glasses from TFT-LCD wastes for DSSC electrodes
校院名稱 成功大學
系所名稱(中) 環境工程學系碩博士班
系所名稱(英) Department of Environmental Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 陳貞均
研究生(英文) Chen-Chun Chen
學號 P56004013
學位類別 碩士
語文別 英文
論文頁數 133頁
口試委員 指導教授-王鴻博
口試委員-方一匡
口試委員-林唯耕
口試委員-周志儒
中文關鍵字 薄膜電晶體液晶顯示面板  染料敏化太陽能電池  鎳鐵核殼奈米粒子  小角度X光散射儀  穿透式電子顯微鏡  X光吸收近邊緣結構 
英文關鍵字 TFT-LCD  DSSC  NiFe@C  SAXS  TEM  XANES  ITO  recycling 
學科別分類
中文摘要 薄膜電晶體液晶顯示面板(Tin film transistor liquid crystal display, TFT-LCD)大幅應用於個人電腦、電視及顯示器,約85,100噸/年廢棄面板需要妥善處理或回收,其中含透明導電氧化銦錫(indium tin oxide, ITO)之廢棄玻璃約20,400 噸/年,可回收或提升其再利用價值。因此,本研究重點是回收導電玻璃,並用於染料敏化太陽能電池(dye-sensitized solar cell, DSSC)之電極,另外,也以奈米鎳鐵核殼材料(NiFe@C)取代DSSC對電極(counter electrode)之鉑金(Pt)觸媒。
利用簡單分離方法將廢棄TFT-LCD之導電玻璃(TFT array與color filter)回收,回收之TFT array之電阻值與透光率分別為97-100 ohm及95.7%。以回收之TFT array取代DSSC之光電極,結果顯示其光電轉換效率(η)為2.48%。以醣化合物(β-cyclodextrin, CD)螯合形成Ni2+-Fe3+-CD錯合物,塗佈於ITO玻璃,碳化後生成奈米NiFe@C核殼(core-shell)材料,成為對電極。實驗結果顯示,在Ni2+/Fe3+及(Ni+Fe)/CD之比例分別為2.0及4.5時,其光電轉換效率可達5.71%,優於以Pt為對電極之DSSC (3.94%)。另外以回收之TFT array為光電極搭配NiFe@C對電極時,光電轉換效率為1.55%。
利用小角度X光散射儀(SAXS)分析NiFe@C奈米顆粒之主要粒徑約17 nm。NiFe@C中之主要物種為FeNi3與NiFe2O4,TEM分析顯示雙晶結構之鎳鐵合金,由同步輻射光源XANES譜分析發現NiFe@C中含Fe2O3、Fe3O4、FeO及Ni,循環伏安測試顯示NiFe@C對I-/I3-電解液的氧化還原能力較Pt差,但NiFe@C對電極之電阻值為26 ohm低於Pt之169 ohm,顯示前者之電子傳送速度較佳。本研究以回收物質組裝之DSSC之材料成本可降低至少46%,可大幅提升商業之價值。
英文摘要 Thin film transistor liquid crystal displays (TFT-LCD) are widely used in personal computers, televisions, and displays. About 85,100 ton/y of TFT-LCD wastes are to be treated or recycled in Taiwan. Of which, the transparent conducting materials containing valuable-indium tin oxide (ITO) are found in the glass wastes (20,400 ton/y). To gain additional value of the ITO containing glass from the TFT-LCD waste, they are utilized in the photoanode of the dye-sensitized solar cells (DSSC). In addition, nanostructured nickel and iron encapsulated in carbon-shell (NiFe@C) was prepared to replace the relatively expensive platinum (Pt) in the counter electrode of a DSSC.
By the simple separation method, the TFT array and color filter are recovered from the TFT-LCD wastes. The resistivity and optical transmittance of the TFT array is 97-100 ohm and 95.7%, respectively which are better than those of the color filter. The recovered TFT array can replace the much more expensive ITO for the photoanode of the DSSC, which has the conversion efficiency (η) of 2.48%. The Ni2+-Fe3+-β-cyclodextrin (CD) complex (Ni2+/Fe3+=2 and (Ni+Fe)/CD=4.5) deposited on the conducting glass was carbonized at 673 K to form NiFe@C nanoparticles as the counter electrode. Notably, the DSSC with the NiFe@C counter electrode has the η of 5.71%, which is much better than that of the Pt electrode (3.94%). However, the DSSC assembled with the recovered TFT array and NiFe@C used for the photoanode and counter electrode, respectively, has the η of 1.55%.
The most probable particle size of the NiFe@C is about 17 nm in diameter, which can be obtained by small angle X-ray scattering (SAXS) spectroscopy. The existence of FeNi3 and NiFe2O4 in the NiFe@C nanoparticles is confirmed by XRD. By TEM, it is clear that the NiFe@C nanoparticles have the twin crystal structure. Mainly, Fe2O3, Fe3O4, FeO and Ni are found in the NiFe@C nanoparticles by component-fitted X-ray absorption near edge structure spectroscopy. The cyclic voltammetry measurements indicates that the redox capability of the I-/I3- electrolyte for NiFe@C is not as good as than that of the Pt counter electrodes. However, the resistivity of the NiFe@C is 26 ohm, which is less than that of Pt (169 ohm). The cost of the DSSC can be reduced by at least 46%.
論文目次 摘要 I
ABSTRACT II
誌謝 IV
CONTENT V
LIST OF TABLES VII
LIST OF FIGURES VIII
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 LITTERATURE STUDIES 3
2.1 TFT-LCD 3
2.1.1 TFT array 3
2.1.2 Color filter array 6
2.1.3 TFT-LCD cell processes and module assembly 6
2.1.4 The TFT-LCD working principle 7
2.2 TFT-LCD wastes recycling and reutilization 11
2.2.1 Recovery of indium from ITO glass 11
2.2.2 Reuse of TFT-LCD wastes 15
2.3 Photovoltaic cells 16
2.3.1 Silicon-based photovoltaic cells 16
2.3.2 Thin film photovoltaic cells 19
2.4 Dye-sensitized solar cells (DSSCs) 23
2.4.1 The DSSC working principles 23
2.4.2 Substrates 25
2.4.3 Photoanodes 25
2.4.4 Counter electrodes 27
2.4.5 Electrolytes 29
2.4.6 Dyes 30
2.4.7 Conversion efficiency 33
CHAPTER 3 EXPERIMENT METHODS 35
3.1 Experimental procedures 35
3.2 Recover of TCO glasses from TFT-LCD wastes 37
3.3 Preparation of DSSCs 37
3.4 Preparation of Cu@C foils 38
3.5 Preparation of NiFe@C nanoparticles and counter electrodes 38
3.6 Material characterization 42
CHAPTURE 4 RESULTS AND DISCUSSION 52
4.1 Conducting glasses recovered from TFT-LCD wastes for DSSC electrodes 52
4.2 Nanostructured materials coated counter electrodes for the DSSC 70
4.2.1 The Cu@C nanoparticles for the DSSC counter electrodes 70
4.2.2 Preparation of NiFe@C nanoparticles for the DSSC counter electrode 88
CHAPTER 5 CONCLUSIONS 118
REFERENCES 119
APPENDIX A 128
參考文獻 Ambashta, R.D, Sillanpaa, M. (2011) Experimental design of application of nanoscale iron-nickel under sonication and static magnetic field for mixed waste remediation. J. Hazard. Mater. 189, 167-172.
Assuncao,V., Fortunato, E., Marques, A., Goncalves, A., Ferreira, I., Aguas, H., Martins, R. (2004) New challenges on gallium-doped zinc oxide films prepared by r.f. magnetron sputtering. Thin Solid Films, 442, 102-106.
Archer, M.D., Nozik, A.J. (2006) Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion. Series on photoconversion of solar energy-vol 3. Imperial College Press. SBN-13: 978-1-86094-255-6.
Benagli, S., Borrello, D., Vallat-Sauvain, E., Meier J., Kroll, U., Hötzel J., Spitznagel, J., Steinhauser, J., Castens, L., Djeridane, Y. (2009) High-efficiency amorphous silicon devices on LPCVD-ZNO TCO prepared in industrial KAI-M R&D Reactor. 24th European Photovoltaic Solar Energy Conference, Hamburg September.
Boer, W. (2005) Active matrix liquid crystal displays: fundamentals and applications, Amsterdam, Boston: Elsevier/Newnes. ISBN-13: 978-0-7506-7813-1.
Buffoni, I.N., Pompeo, F., Santori, G.F., Nichio, N.N. (2009) Nickel catalyst appied in steam reforming of glycerol for hydrogen production. Catal. Commun. 10, 1656-1660.
Carcia, P.F., McLean, R.S., Reilly, M.H., Li, Z.G. (2003) Resistivity and microstructure issues in indium-oxide based films grown by RF magnetron sputtering on flexible polyester substrates. Society of Vacuum Coaters, 46th Annual Technical Conference Proceedings 195-199.
Chen, C.H., Lin, K.C. (2010) Green wood plastic composites composed of the recycled LCD. Industrial Processes Cleaner Production and Green technoloy information network 84.
Chen, C.M., Hsu, Y.C., Cherng, S.J. (2011) Effects of annealing conditions on the properties of TiO2/ITO-based photoanode and the photovoltaic performance of dye-sensitized solar cells. J. Alloy. Compd. 509, 827-877.
Chen, F.L., Letortu, A., Liao, C.Y., Tsai, C.K,. Huang, H.L., Sun, I.W., Wei, Y.L., Wang, H.P. (2010) Cu@C nanoparticles dispersed RTILs used in the DSSC electrolyte. Nucl. Instr. Meth. Phys. Res. A 619, 112-114.
Chiu, Y.M., Huang, C.H., Chang, F.C., Kang, H.Y. Wang, H.P. (2011) Recovery of copper from a wastewater for preparation of Cu@C nanoparticles. Sustain. Environ. Res. 21, 279-282.
Choi, S.K., Lee, J.I. (2001) Effect of film density on electrical properties of indium tin oxide films deposited by dc magnetron reactive sputtering. J. Vac. Sci. Technol. A, 19, 2043-2047.
Chung, I., Lee, B., He, J., Chang R.P.H., Kanatzidis M,G. (2012) All-solid-state dye-sensitized solar cells with high efficiency. Nature 485, 486-450.
Doman, L.E., Smith, K.A., O’Sullivan, J., Vincent, K.R., Barden, J.L., Martin, P.D., Barden, J.L., Budzik, P., Fawzi, A., Mellish, M.L., Kearney, D.R., Murphy, B.T., Slater-Thompson, N., Gross, P., Zaretskaya, V.V., Jacobs, G., Kearney, D.R. (2011) International Energy Outlook. U.S. Energy Information Administration (EIA).
Edelstein, D.L. (2012) Copper. U.S. Geological Survey Minerals Yearbook 20, 1-30.
Environmental Protection Administration Executive Yuan, ROC (Taiwan) of Industrial Waste Control Center Report System (2011).
Fortes, M.C.B., Benedetto J.S. (1998) Separation of indium and iron by solvent extraction. Miner. Eng. 11, 447-451.
Gaillet, M., Yan, L. and Teboul, E. (2007) Optical characterizations of complete TFT–LCD display devices by phase modulated spectroscopic ellipsometry. Thin Solid Films 516, 170-174.
Calogero, G., Calandra, P., Irrera, A., Alessandro, S., Citro, I., Marco, G.D. (2011) A new type of transparent and low cost counter-electrode based on platinum nanoparticles for dye-sensitized solar cells. Energy Environ. Sci. 4, 1838-18444.
Granqvist, C.C., Hultaker, A. (2002) Transparent and conducting flims: new developments and applications. Thin solid film 411, 1-5.
Grätzel, M. (2001) Photoelectrochemical cells. Nature 414, 338-344.
Grätzel M. (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. and Photobio. A: Chem. 164, 3-14.
Grätzel, M. (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 44, 6841-6851.
Grätzel, M. (2003) Review dye-sensitized solar cells. J. Photochem. Photobiol. C-Photochem. Rev. 4, 145-153.
Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D. (2013) Solar cell efficiency tables (version 41). Prog. Photovolt: Res. Appl. 21, 1-11.
Guan, G., Chen, G., Kasai, Y., Lim, E.W.C., Hao, X., Kaewpanhan, M., Abuliti, A., Fushimi, C., Tsutsumi, A. (2012) Catalytic steam reforming of biomass tar over iron-or nickel-based catalyst supported on calcined scallop shell. Appl. Catal. B-Environ. 115-116, 159-168.
Guha S. (2004) Thin film silicon solar cells grown near the edge of amorphous to microcrystalline transition. Sol. Energy 77, 887-892.
Hagfeldt, A., Boshloo, G., Sun, L., Kloo, L., Pettersson, H. (2010) Dye-sensitized solar cells. Chem. Rev. 110, 6595-6663.
Hagfeldt, A., Grätzel M. (1995) Light Induced Redox Reactions in Nanocrystalline Systems. Chem. Rev. 95, 49-68.
Hill, J. J., Banks, N., Haller, K., Orazem, M.E,. Ziegler, K.J. (2011) An Interfacial and bulk charge transport model for dye-Sensitized solar cells based on photoanodes consisting of coreshell nanowire arrays. J. Am. Chme. Soc. 133, 18663-18672.
Hong, C.I., Kang H.Y., Wang, H.P., Lin, W.K., Jeng, U.S., Su, C.H. (2011) Cu-ZnO@C nanoreactors studied by in situ synchrotron SAXS spectroscopy, J. Electron Spectrosc. Relat. Phenom. 184, 301-303.
Huang, C.H., Wang, H.P., Liao, C.Y. (2010) Nanosize copper encapsulated carbon thin films on a dye-sensitized solar cell cathode. J. Nanosci. Nanotechnol. 10, 4782-4785.
Huang, C.H., Wang, H.P., Chang, J.E., Eyring, E.M. (2009) Synthesis of nanosize-controllable copper and its alloys in carbon shells. Chem Commun 4663-4665.
Industrial Development Bureau, Ministry of Economic Affairs. (2003) ISBN: 951-01-5898-0.
Jahagirdar, A.H., Kadam, A.A., Dhere, N.G. (2006) Role of i-ZnO in optimizing open circuit voltage of CIGS2 and CIGS thin film solar cells. Proc. of IEEE 4th World Conf. on Photovoltaic Energy Conversion, IEEEXplore, Waikoloa, HI, 557-559.
Kang, H.Y., Wang, H.P. (2010) Cu@C dispersed TiO2 for dye-sensitized solar cell photoanodes. Appl. Energy 100, 144-147.
Kang, H.Y., Schoenung, J.M. (2006) Estimation of future ouflows abd infrastricture need to recycled personal computer systems in California. J. Hazard. Mater. 137, 1165-1174.
Kalowekamo, J., Baker, E. (2009) Estimating the manufacturing cost of purely organic solar cells. Sol. Energy 83, 1224-1231.
Kawashima, T., Ezure, T., Okada, K., Mastsui, H., Goto., K., Tanabe, N. (2004) FTO/ITO double-layered transparent conductive oxide for dye-sensitized solar cells. J. Photochem. Photobiol. A-Chem. 164, 199-202.
Kavan, L., Yum, J.H., Gratzel, M. (2011) Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets. ACS Nano 5, 165-172.
Kim, Y.U., Carraway, E.R. (2000) Dechlorination of pentachloropenol by zero valent iron and modified zero valents irons. Environ. Sci. Technol. 34, 2014-1017.
Koo, H.S., Chen, M., Pan, P.C., Chou, L.T., Wu, F.M., Chang, S.J., Kawai, T. (2006) Fabrication and chromatic characteristics of the greenish LCD colour-filter layer with nano-particle ink using inkjet printing technique. Displays 27, 124-129.
Kroon, J.M., Bakker, N.J., Smit, H.J.P., Liska, P., Thampi, K.R., Wang, P., Zakeeruddin, S,M,, Gratzel, M., Hinsch, A., Hore, S., Wurfel, U., Sastrawan, R., Durrant, J.R., Palomares, E., Pettersson, H., Gruszecki, T., Walter, J., Skupien, K., Tulloch, G.E. (2007) Nanocrystalline dye-sensitized solar cells having maximum performance. Prog. Photovolt: Res. Appl. 15, 1-18.
Kuribayashi, K., Matsumoto, H., Uda, H., Komatsu, Y., Nakano, A., Ikegami, S. (1983) Preparation of low resistance contact electrode in screen printed CdS/CdTe solar cell. Jpn. J. Appl. Phys. 22, 1828-1831.
Law, M., Green, L.E., Johnson, J.C., Saykally R., Yang P. (2005) Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455-459.
Li, J., Gao, S., Duan, H. and Liu, L. (2009) Recovery of valuable materials from waste liquid crystal display panel. Waste Manag. 29, 2033-2039.
Li, J., Sun, M.X., Zhang, X.Y., Cui, X.L. (2011) Counter electrodes for dye-Sensitized solar cells. Acta Phys. -Chim. Sin. 27, 2255-2268.
Li, P., Zhang, W.P., Han, X.W., Bao, X.H. (2010) Conversion of methanol to hydrocarbons over phosphorus-modified ZSM-5/ZSM-11 intergrowth zeolites. Catal. Lett. 134, 124-130.
Liao, Y. (2007) Practical Electron Microscopy and Database - An Online Book. http://www.globalsino.com/EM/
Lin, J.T., Wang, F.K., Peng, C.C. (2008) Lot release times and dispatching rule for a TFT-LCD cell process. Robot. Comput.-Integr. Manuf. 24, 228-238.
Lin, K.L. (2003) Taiwan Patent 090100570.
Lin, K.L. (2004) Industrial Pollution Prevention and Control 91, 138-150.
Lin, K.L., Shiu, H.S., Shiea, J.L., Cheng, T.W.i, Hwang, C.L. (2012) Effect of composition on characteristics of thin film transistor liquid crystal display (TFf-LCD) waste glass-metakaolin-based geopolymers. Constr. Build. Mater. 36, 501-507.
Lin, K.L., Chang W.K., Chang, T.C., Lee C.H., Lin, C.H. (2009) Recycling thin film transistor liquid crystal display (TFT-LCD) waste glass produced as glass-ceramics. J. Clean Prod. 17, 1499-1503.
Lin, L.Y., Lee, C.P., Vittal, R., Hoa, K.C. (2010) Selective conditions for the fabrication of a flexible dye-sensitized solar cell with Ti/TiO2 photoanode. J. Power Sources 195, 4344-4349.
Loferski, P.J., Neely, P.R., Wallace, G.J. (2011) Platinum-group metals. U.S. Geological Survey Minerals Yearbook 57, 1-11.
Lu, H.M., Zheng, W.T., Jiang, Q. (2007) Saturation magnetization of ferromagnetic and ferrimagnetic nanocrystals at room temperature. J. Phys. D: Appl. Phys. 40, 320-325.
Luque, A., Hegedus, S. (2003), Handbook of photovoltaic science and engineering. Hoboken, NJ : Wiley. ISBN-10: 047-1491-96-9.
Marini, M., Toselli, M., Borsacchi, S., Mollica, G., Geppi, M., Pilati, F. (2008) Facile synthesis of core-shell organic-inorganic hybrid nanoparticles with amphiphilic polymer shell by one-step sol-gel reactions. J. Polym. Sci. Pol. Chem. 46, 1699-1709.
Murakami, T.N., Gratzel, M. (2008) Counter electrodes for DSC: Application of functional materials as catalysts. Inorg. Chim. Acta 361, 572-580.
Nagaveni, K., Hegde M.S., Ravishankar, N., Subbanna, G.N., Madras, G. (2004) Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir 20, 2900-2907.
Nazeeruddin, M.K., Kay, A., Rodicio, I., Baker, R.H., Miiller, E., Liska, P., Vlachopoulos, N., Grätzel, M. (1993) Conversion of light to electricity by cis-XzBis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium (11) charge-transfer sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes. J. Am. Chem. Soc. 115, 6382-6390.
Nazeeruddin, M.K., Angelis, F.D., Fantacci, S., Selloni, A., Viscardi, G., Liska P., Ito, S., Takeru, B., Grätzel, M. (2005) Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc.127, 16835-16847.
Nazeeruddin, M.K., Pechy, P., Renouard, T., Zakeeruddin, S.M., Humphry-Baker, R., Comte, P., Liska, P., Cevey, L., Costa, E., Shklover, V., Spiccia, L., Deacon, G.B., Bignozzi, C.A., Gratzel, M. (2001) Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 123, 1613-1624.
Niu, S.F, Li C.H., Cai, Y.P. (2012) Catalytic dechlorination of para-nitrochlorobenzne in wastewater through a nanoscale nickel-iron bimetallic catalyst. Advanced Materials Research 535-537, 2257-2263.
O’Regan, B., Grätzel, M. (1991) A low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737-740.
Park, J.C. (2011) The recovery of indium Metal from ITO-scrap using hydrothermal reaction in alkaline solution. Bull. Korean Chem. Soc. 32, 3796-3798.
Park, K.S., Sato, W., Grause, G., Kameda, T., Yoshioka, T. (2009) Recovery of indium from In2O3 and liquid crystal display powder via a chloride volatilization process using polyvinyl chloride. Thermochim. Acta 493, 105-108.
Park, S.H., Song I.Y., Lim J., Kwon, Y.S., Choi, J., Song, S., Lee, J.R., Park, T. (2013) A novel quasi-solid state dye-sensitized solar cell fabricated using a multifunctional network polymer membrane electrolyte. Energy Environ. Sci. DOI: 10.1039/c3ee24496b.
Ramasamy, E., Jo, C., Anthoysamy, A., Jeong, I., Kim, J.K., Lee, J. (2012) Soft-template simple synthesis of ordered mesoporous titanium nitride-carbon nanocomposite for high performance dye-sensitized solar cell. Chem. Mater. 24, 1575-1582.
Repins, I., Contreras, M.A., Egaas, B., DeHart, C., Scharf, J., Perkins, C.L., To, B., Noufi, R. (2008) 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog. Photovolt: Res. Appl. 16, 235-239.
Rittenberg, D.K., Sugiura, K., Sakata, Y., Mikami, S., Epstein A.J., Miller, J.S. (2000) Large coercivity and high remanent magnetization organic-based magnets. Adv. Mater. 12, 126-130.
Sabataityte, J., Oja, I., Lenzmann F., Volobujeva, O., Krunks M. (2006) Characterization of nanoporous TiO2 films prepared by sol–gel method. C. R. Chimie 9, 708-712.
Salhofer, S., Spitzbart, M., Maurer, K. (2011) Recycling of LCD screens in Europe-state of the art and challenges. End of Life Management-Selected Applications 454-458.
Sapp, S.A., Elliott, C.M., Contado, C., Caramori, S., Bignozzi, C.A. (2002) Substituted polypyridine complexes of cobalt(II/III) as efficient electron-tansfer mediators in dye-Sensitized solar cells. J. Am. Chem. Soc. 124, 11215-11222.
Sierros, K.A., Morris, N.J., Ramji, K., Cairns, D.R. (2009) Stress–corrosion cracking of indium tin oxide coated polyethylene terephthalate for flexible optoelectronic devices. Thin Solid Films 517, 2590-2595.
Sivula, K., Formal, L.F., Gratzel, M. (2009) WO3-Fe2O3 photoanodes for water splitting: A host scaffold, guset absorber approach. Chem. Mater. 21, 2862-2867.
Smestad, G., Bignozzi C., Argazzi, R. (1994) Testing of dye sensitized TiO2 solar cells I: Experimental photocurrent output and conversion efficiencies. Sol. Energy Mater. Sol. Cells 32, 259-272
Stergiopoulos, T., Arabatzis, I.M., Katsaros, G., Falaras, P. (2002) Binary polyethylene oxide/titania solid-state redox electrolyte for highly efficient nanocrystalline TiO2 photoelectrochemical cells. Nano Lett. 2, 1259-1261.
Sun, W.T. (2004). Introduction of LCD manufacturing technology. AUO Proprietary & Confidential.
Tan, B., Wu, Y. (2006) Dye-Sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. J. Phys. Chem. B 110, 15932-15938.
Takahashi, K., Sasaki A., Dodbiba, G., Sadaki, J., Sato, N., Fujita, T. (2009) Recovering indium from the liquid crystal display of discarded cellular phones by means of chloride-induced vaporization at relatively low temperature. Metall. Mater. Trans. A 40A, 891-900.
Tolcin, A.C. (2011) Indium. U.S. Geological Survey Minerals Yearbook 35, 1-5.
Tseng, M.C., Horng, R.H., Tsai, Y.L., Wuu, D.S., Yu, H.H. (2009) Farbrication and characterization of GaAs solar cells on copper substrates. IEEE Electron Device Lett. 30, 940-942.
Tuzen, M., Soylak, M. (2006) A solid phase extraction procedure for Indium prior to its graphite furnace atomic absorption spectrometric determination. J. Hazard. Mater. B129, 179-185.
Virolainen, S., Ibana, D., Paatero, E. (2011) Recovery of indium from indium tin oxide by solvent extraction. Hydrometallurgy 107, 56-61.
Wang, H.Y. (2011) The effect of the proportion of thin film transistor-liquid crystal display (TFT-LCD) optical waste glass as a partial substitute for cement in cement mortar. Constr. Build. Mater. 25, 791-797.
Wang, H.Y., Huang, W.L. (2010) Durability of self-consolidating concrete using waste LCD glass. Constr. Build. Mater. 24, 1008-1013.
Wang, P., Zakeeruddin, S.M., Moser, J.E., Humphry-Baker, R., Comte, P., Aranyos, V., Hagfeldt, A., Nazeeruddin, M.K., Gratzel, M. (2004) Stable new sensitizer with improved light harvesting for nanocrystalline dye-Sensitized solar cells. Adv Mater. 16, 1806-1811.
Wronski, C.R., Roedern, B.V., Ko"odziej, A. (2008) Thin-film Si:H-based solar cells. Vacuum 82, 1145-1150.
Wu, J.Y., Chen, W.S., Huang, L.F., Hsiao, T.C., Shen, Y.H., Tsa, M.S. (2010) Industrial Pollution Prevention and Control 113, 13-49.
Wu, J., Lan, S., Lin J., Huang, M., Hao, S., Sato, T., Yin, Shu. (2007) A novel thermosetting gel electrolyte for stable quasi-solid-state dye-sensitized solar cells. Adv. Mater. 19, 4006-4-11.
Wu, M., Lin, X., Hagfeldt, A., Ma, T. (2011) A novel catalyst of WO2 nanorod for the counter electrode of dye-sensitized solar cells. Chem. Commun. 47, 4535-4537.
Wu, M., Lin, X., Wang, T., Qiu, J., Ma, T. (2011) Low-cost dye-sensitized solar cell based on nine kinds of carbon counter electrodes. Energy Environ. Sci. 4, 2308-2315.
Wu, M., Lin, X., Hagfeldt, A., Ma, T. (2010) Low-cost molybdenum carbide and tungsten carbide counter electrodes for dye-sensitized solar cells. Angew. Chem. Int. Ed. 50,3520-3524.
Wu, T.A., Chu, C.H. Wen, S.B., Shen, Y.H. (2010) Preparation of foam glass from mixture recycling cullet and oyster powder. Mining & Metallurgy 53, 73-78.
Xiao, Y., Wu, J., Yue, G., Lin, J., Huang, M., Fan, L., Lan, Z. (2011) Fabrication of high performance Pt/Ti counter electrodes on Ti mesh for flexible large-area dye-sensitized solar cells. Electrochim. Acta 58, 621-627.
Xia, Ji., Yuan, C., Yanagida, S. (2011) Novel Counter Electrode V2O5/Al for solid dye-sensitized slar cells. ACS Appl. Mater. Interfaces 7, 2136-2139.
Xiao, Y., Wu, J., Yue, G., Xie, Gu., Lin, J., Huang, M. (2010) The preparation of titania nanotubes and its application in flexible dye-sensitized solar cells. Electrochim. Acta 55, 4573-4578.
Xin, X., He, M., Han, W., Jung, Jaehan, Lin, Z. (2011) Low-cost copper zinc tin sulfide counter electrodes for high-efficiency dye-sensitized solar cells. Angew. Chem. Int. Ed. 50, 11739-11742.
Yella, A., Lee H.Wei., Tsao H.N., Yi, C., Chandiran, A.K., Nazeeruddin M.K., Diau, E. W., Yeh, C.Y., Zakeeruddin, S.M., Grätzel, M. Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency (2011). Science 334, 629-634.
Yokoyama, D., Minegishi, T., Maeda K., Katayama, M., Kubota, J., Yamada, A., Konagai, M., Domen, K. (2010) Photoelectrochemical water splitting using a Cu(In,Ga)Se2 thin film. Electrochem. Commun. 12, 851-853.
Young, H.D. (1992) University Physics, 8th Ed., Addison-Wesley Pub. ISBN-10: 020-1526-90-5.
Zhang, J., Hreid, T., Li, X., Guo, W., Wang, L., Shi, X., Su, H., Yuan, Z. (2010) Nanostructured polyaniline counter electrode for dye-sensitised solar cells: Fabrication and investigation of its electrochemical formation mechanism. Electrochim. Acta 55, 3664-3668.
Zhibing, G. and Wu, S.T. (2010) Device concept of transflective liquid crystal displays. Transflective Liquid Crystal Displays.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-07-12起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw