系統識別號 U0026-0506202011394700
論文名稱(中文) 增益奈米孔洞捕獲藍色能源:非對稱熱效應和酸鹼值效應
論文名稱(英文) Enhancing blue energy harvesting on nanopores: asymmetric thermal effect and pH effect
校院名稱 成功大學
系所名稱(中) 工程科學系
系所名稱(英) Department of Engineering Science
學年度 108
學期 2
出版年 109
研究生(中文) 梅文逢
研究生(英文) Van-Phung Mai
學號 P48067065
學位類別 博士
語文別 英文
論文頁數 112頁
口試委員 召集委員-苗君易
中文關鍵字 藍色能源  海水鹽差能  鹽差能  能量轉換  基於鹽度的能量  離子濃差極化  孔相互作用 
英文關鍵字 Blue energy  Energy conversion  Salinity based energy  Multipore membrane  Ion Concentration Polarization  Pore pore interaction 
中文摘要 再生能源之日益發展有助於解決全球暖化之挑戰、能源需求之增長以及其他環境問題。在多種可再生能源中,藍色能源的補獲可藉由海水鹽差能或鹽差能(海水和淡水之間或兩種含鹽濃度不同的海水之間的化學電位差能) 在可持續能源領域中發揮重要之作用。因此,產生鹽差能之過程越來越受到關注。在通常的鹽差能能量轉換中,獲得的能量高度依賴於離子通過奈米孔洞的傳輸。為了解決奈米孔洞的缺點(離子通量低、成本高),multipore膜是促進能量轉換的一種新方法。但是,增加孔洞數會增加膜中離子濃差極化效應(Ion Concentration Polarization – ICP)以及pore-pore interaction,導致離子傳輸阻力。本研究採用數值模擬和實驗方法來分析熱效應與pH效應對於增加離子通過奈米孔洞膜傳輸的影響。其中,實驗由蝕刻奈米孔洞膜上進行; COMSOL軟體數值解Poisson-Nernst-Planck(PNP)方程式、Navier-Stokes方程式和熱方程式。
第一,本研究在低濃度儲存槽層中設置較高溫度,結果表明,不對稱熱發電比等溫發電高約60%。通過考慮奈米孔洞膜和低濃度儲液器界面中的總離子濃度,在不對稱熱條件的作用下,離子富集(一種ICP效應之現象)顯著降低。此外,隨著pore-pore距離的減小,pore-pore interaction作用顯著增加。數值模擬和實驗結果均表明,在不對稱熱的作用下,可以減少存在的pore-pore interaction作用。總的來說,這項研究促進鹽差能捕獲藍色能源的未來實際應用,並介紹一種創新的策略,可以利用廢熱或太陽能來增強基於鹽度的發電。
第二,本研究監測溫度梯度與pH值對在單個二氧化矽奈米孔洞中擴散電壓以及最大發電量的綜合影響。在進行模擬時,將奈米孔洞表面的去質子化或質子化之反應添加到奈米孔洞表面,將pH值調節在pH 5〜11的範圍內,鹽濃度梯度分別為100倍和1000倍。三種不同的熱狀態,即(1)等溫室(298 K);(2)不對稱熱(低濃度儲層、高濃度儲層的溫度分別為323K、298 K);(3)等溫高(323 K)。結果表明,所產生的功率隨pH值和溫度條件的變化而顯著變化。特別地,不對稱熱狀態降低了低濃度端附近的奈米孔洞表面的表面電荷密度,因此抑制了離子濃差極化效應(ICP),從而改善了發電性能。在9〜10pH值的範圍內(比pH7大約高100%),能源採集明顯提高。 總體而言,研究結果證實採用控制溫度和pH值來提高具有濃度梯度的奈米孔洞系統發電性能的可行性,因此,可獲得較好之捕獲能量效率。
英文摘要 Renewable energy development is one of the promising approaches to tackle the challenge of global warming, as well as fulfill the ever-increasing energy demand, and manage other environmental impacts. Among various renewable sources, energy derived from salinity gradient, known as blue energy (i.e., salt concentration difference between seawater and river water), brings an important contribution to the field of sustainable clean energy. Therefore, the processes of generating this energy are obtaining more and more attention. Throughout a typical blue energy conversion, a power generation obtained in such a way strongly depends on ion transport through nanopore. To overcome the limits of single nanopore with low ion flux and high cost, multipore membrane is an emerging approach to promote energy conversion for practical application. However, the key bottleneck for increasing the number of pores is that Ion Concentration Polarization (ICP) and pore-pore interaction are increased in the membrane, resulting in more undesirable ion-transport resistance. This study aims to explore thermal and pH effects on enhancing ion transport through nanopore membranes using both numerical simulation and experimental methods. The experiment is conducted on track-etched membranes; the COMSOL simulation bases on Poisson-Nernst-Planck (PNP) equations, Navier-Stokes equations, and heat equation.
The contributions of this study are twofold. First, an asymmetric thermal is employed in multipore membrane with a higher temperature is set in low-concentration reservoir. Results show that power generation of asymmetric thermal is higher about 60% than that of isothermal cases. By considering total ion concentration in the interface of the nanopore membrane and low-concentration reservoir, ion enrichment (a phenomenon of ICP) is significantly diminished under effect of asymmetric thermal conditions. Besides, the pore-pore interaction significantly increases as the pore-pore distance reduces. The results of both simulations and experiments reveal that the existent pore-pore interaction can be diminished under the asymmetric thermal effect. This study facilitates the future practical application of osmotic energy and introduces an innovative strategy to enhance salinity-based power generation using waste heat or solar heat source.
Second, the present study examines the combined effects of the temperature gradient and pH level on the diffusion voltage and maximum power generation in single silica nanopores with lengths of 100 nm and 500 nm, respectively. In performing the simulations, deprotonation/protonation reactions of nanopore surface are added to the nanopore surface, the pH value is adjusted in the range of pH 5 ~ 11, the salinity concentration gradient is 100-fold and 1000-fold, respectively. Three different thermal conditions are considered, namely (1) isothermal-room temperature (298 K); (2) asymmetric thermal (temperature of low-concentration reservoir and high-concentration reservoir are 323 K and 298 K, respectively); and (3) isothermal-high temperature (323 K). The results show that the generated power varies significantly with both the pH level and the temperature conditions. In particular, the asymmetric thermal condition yields an effective improvement in the power generation performance since it reduces the surface charge density on the surface of the nanopore near the low-concentration end and therefore suppresses the ion concentration polarization (ICP) effect. The improvement in the energy harvesting performance is particularly apparent at pH levels in the range of 9 ~ 10 (about 100% higher than that of pH 7). Overall, the results confirm the feasibility of using active factors to enhance the power generation performance of salinity gradient-based nanopore systems.
Acknowledgements I
Abstract II
List of Tables IX
List of Figures X
Abbreviation XVI
Nomenclature XVII
Chapter 1: Introduction of blue energy 1
1.1 Blue energy-sustainable power generation from salinity gradient 1
1.1.1 Fundamental of harvesting blue energy: Salinity mixing process 2
1.1.2 Major methods for osmotic energy conversion from salinity gradient 3
1.1.3 Formation of Electrical Double Layer and Ion transport 7
1.2 Mechanistic classification of nanopore 10
1.2.1 One-dimensional nanopore 11
1.2.2 Two-dimensional membrane 13
1.2.3 Three-dimensional membrane 14
1.3 Active and passive controls of ion transport in nanofluidic 15
1.4 Scope of the dissertation 17
Chapter 2: Fundamental theory and governing equations 19
2.1 Ion concentration Polarization 19
2.2 General equations for NRED of non-equilibrium thermodynamic system 20
2.2.1 Heat equation and chemical potential 20
2.2.2 Nernst-Planck Equation 22
2.2.3 Poisson-Boltzmann equation 24
2.2.4. Navier-Stokes equation in the nanofluidic system 26
2.3 Salinity-based power generation 28
2.3.1 Onsager reciprocal relation in electrokinetic energy conversion 28
2.3.2 Diffusion osmotic power generation calculation in simulation 30
2.3.3 Diffusion osmotic power generation calculation in experiments 31
2.4 Finite Element Method for COMSOL solving 32
2.4.1 Governing Partial Different Equation 32
2.4.2 Finite Element Method for solving PDE 33
Chapter 3: Boosting power generation from salinity gradient on multipore membrane using thermal effect 37
3.1 Literature review 38
3.2 Material and methods 41
3.2.1 Theoretical model 43
3.2.2 Experimental Setup 45
3.2.3 Numerical modeling 46
3.3 Results and discussion 49
3.4 Chapter conclusion 61
Chapter 4: Active control of salinity-based power generation in nanopore using thermal and pH effects 63
4.1 Literature review 63
4.2 Related theory and numerical modeling 66
4.2.1 Theoretical model 66
4.2.2 Numerical modeling 69
4.3 Results and discussion 71
4.3.1 Comparison of power generation performance between isothermal and asymmetric thermal cases 71
4.3.2 Effect of thermal conditions and pH level on surface charge density 76
4.3.3 Effect of thermal conditions on flow field 81
4.3.4 Effects of asymmetric thermal conditions on power generation 82
4.4 Chapter conclusion 85
Chapter 5: Summary and proposed future work 86
5.1 Overview of accomplishment 86
5.2 Proposed extensions of current work 88
Appendix 90
A.1 Maximum conversion efficiency 90
A.2 Redox voltage in experiments 90
A.3 Nanopore density on PCTE membrane 92
A.4 Mesh independence check 92
A.5 Experimental verification of simulation method 94
A.6 Verification of simulation method based on coupled PNP-NS and heat transfer equations 95
References 96
Curriculum vitae 111

參考文獻 References
[1] Z. Jia, B. Wang, S. Song, Y. Fan, Blue energy: Current technologies for sustainable power generation from water salinity gradient, Renewable and Sustainable Energy Reviews, 31 (2014) 91-100.
[2] T.B.H. Schroeder, A. Guha, A. Lamoureux, G. VanRenterghem, D. Sept, M. Shtein, J. Yang, M. Mayer, An electric-eel-inspired soft power source from stacked hydrogels, Nature, 552 (2017) 214-218.
[3] W. Sparreboom, A. van den Berg, J.C.T. Eijkel, Principles and applications of nanofluidic transport, Nature Nanotechnology, 4 (2009) 713-720.
[4] X. Guo, F. Zhai, J. Fang, M.F. Laguna, M. López-González, E. Riande, Permselectivity and Conductivity of Membranes Based on Sulfonated Naphthalenic Copolyimides, The Journal of Physical Chemistry B, 111 (2007) 13694-13702.
[5] J. Han, C. Bae, S. Chae, D. Choi, S. Lee, Y. Nam, C. Lee, High-efficiency power generation in hyper-saline environment using conventional nanoporous membrane, Electrochimica Acta, 319 (2019) 366-374.
[6] B.E. Logan, M. Elimelech, Membrane-based processes for sustainable power generation using water, Nature, 488 (2012) 313-319.
[7] S. Marbach, L. Bocquet, Osmosis, from molecular insights to large-scale applications, Chemical Society Reviews, 48 (2019) 3102-3144.
[8] P. Masih Das, J.P. Thiruraman, Y.-C. Chou, G. Danda, M. Drndić, Centimeter-Scale Nanoporous 2D Membranes and Ion Transport: Porous MoS2 Monolayers in a Few-Layer Matrix, Nano Letters, 19 (2019) 392-399.
[9] B.B. Sales, M. Saakes, J.W. Post, C.J.N. Buisman, P.M. Biesheuvel, H.V.M. Hamelers, Direct Power Production from a Water Salinity Difference in a Membrane-Modified Supercapacitor Flow Cell, Environmental Science & Technology, 44 (2010) 5661-5665.
[10] J. Veerman, R.M. de Jong, M. Saakes, S.J. Metz, G.J. Harmsen, Reverse electrodialysis: Comparison of six commercial membrane pairs on the thermodynamic efficiency and power density, Journal of Membrane Science, 343 (2009) 7-15.
[11] W. Xin, Z. Zhang, X. Huang, Y. Hu, T. Zhou, C. Zhu, X.-Y. Kong, L. Jiang, L. Wen, High-performance silk-based hybrid membranes employed for osmotic energy conversion, Nature Communications, 10 (2019) 3876.
[12] L. Bocquet, E. Charlaix, Nanofluidics, from bulk to interfaces, Chemical Society Reviews, 39 (2010) 1073-1095.
[13] A. Siria, P. Poncharal, A.-L. Biance, R. Fulcrand, X. Blase, S.T. Purcell, L. Bocquet, Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube, Nature, 494 (2013) 455.
[14] J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N.R. Aluru, A. Kis, A. Radenovic, Single-layer MoS2 nanopores as nanopower generators, Nature, 536 (2016) 197.
[15] A. Siria, M.-L. Bocquet, L. Bocquet, New avenues for the large-scale harvesting of blue energy, Nature Reviews Chemistry, 1 (2017) 0091.
[16] C. Moreno, M. Vilas-Varela, B. Kretz, A. Garcia-Lekue, M.V. Costache, M. Paradinas, M. Panighel, G. Ceballos, S.O. Valenzuela, D. Peña, A. Mugarza, Bottom-up synthesis of multifunctional nanoporous graphene, Science, 360 (2018) 199.
[17] K. Dill, S. Bromberg, Molecular driving forces: statistical thermodynamics in biology, chemistry, physics, and nanoscience, Garland Science 2012.
[18] Y. Demirel, S. Sieniutycz, Nonequilibrium Thermodynamics: Transport and Rate Processes in Physical and Biological Systems, American Society of Mechanical Engineers Digital Collection 2003.
[19] S. Loeb, Production of energy from concentrated brines by pressure-retarded osmosis: I. Preliminary technical and economic correlations, Journal of Membrane Science, 1 (1976) 49-63.
[20] Z. Zhou, M. Benbouzid, J. Frédéric Charpentier, F. Scuiller, T. Tang, A review of energy storage technologies for marine current energy systems, Renewable and Sustainable Energy Reviews, 18 (2013) 390-400.
[21] J.W. Post, J. Veerman, H.V.M. Hamelers, G.J.W. Euverink, S.J. Metz, K. Nymeijer, C.J.N. Buisman, Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis, Journal of Membrane Science, 288 (2007) 218-230.
[22] S. van der Zwan, I.W.M. Pothof, B. Blankert, J.I. Bara, Feasibility of osmotic power from a hydrodynamic analysis at module and plant scale, Journal of Membrane Science, 389 (2012) 324-333.
[23] D.A. Vermaas, E. Guler, M. Saakes, K. Nijmeijer, Theoretical power density from salinity gradients using reverse electrodialysis, Energy Procedia, 20 (2012) 170-184.
[24] T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis: Principles, applications, and recent developments, Journal of Membrane Science, 281 (2006) 70-87.
[25] N.Y. Yip, A. Tiraferri, W.A. Phillip, J.D. Schiffman, M. Elimelech, High Performance Thin-Film Composite Forward Osmosis Membrane, Environmental Science & Technology, 44 (2010) 3812-3818.
[26] N.L. Le, S.P. Nunes, Materials and membrane technologies for water and energy sustainability, Sustainable Materials and Technologies, 7 (2016) 1-28.
[27] M. Elimelech, W.A. Phillip, The Future of Seawater Desalination: Energy, Technology, and the Environment, Science, 333 (2011) 712.
[28] T.-C. Tsai, C.-W. Liu, R.-J. Yang, Power generation by reverse electrodialysis in a microfluidic device with a nafion ion-selective membrane, Micromachines, 7 (2016) 205.
[29] H.-C. Yeh, C.-C. Chang, R.-J. Yang, Reverse electrodialysis in conical-shaped nanopores: salinity gradient-driven power generation, RSC Advances, 4 (2014) 2705-2714.
[30] W. Guo, L. Cao, J. Xia, F.-Q. Nie, W. Ma, J. Xue, Y. Song, D. Zhu, Y. Wang, L. Jiang, Energy Harvesting with Single-Ion-Selective Nanopores: A Concentration-Gradient-Driven Nanofluidic Power Source, Advanced Functional Materials, 20 (2010) 1339-1344.
[31] F. Yan, L. Yao, K. Chen, Q. Yang, B. Su, An ultrathin and highly porous silica nanochannel membrane: toward highly efficient salinity energy conversion, Journal of Materials Chemistry A, 7 (2019) 2385-2391.
[32] K. Kwon, S.J. Lee, L. Li, C. Han, D. Kim, Energy harvesting system using reverse electrodialysis with nanoporous polycarbonate track‐etch membranes, International Journal of Energy Research, 38 (2014) 530-537.
[33] H.-K. Chang, E. Choi, J. Park, Paper-based energy harvesting from salinity gradients, Lab on a Chip, 16 (2016) 700-708.
[34] J. Ji, Q. Kang, Y. Zhou, Y. Feng, X. Chen, J. Yuan, W. Guo, Y. Wei, L. Jiang, Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs, Advanced Functional Materials, 27 (2017) 1603623.
[35] J. Gao, W. Guo, D. Feng, H. Wang, D. Zhao, L. Jiang, High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation, Journal of the American Chemical Society, 136 (2014) 12265-12272.
[36] Z. Zhang, X.-Y. Kong, K. Xiao, Q. Liu, G. Xie, P. Li, J. Ma, Y. Tian, L. Wen, L. Jiang, Engineered asymmetric heterogeneous membrane: A concentration-gradient-driven energy harvesting device, Journal of the American Chemical Society, 137 (2015) 14765-14772.
[37] X. Liu, M. He, D. Calvani, H. Qi, K.B.S.S. Gupta, H.J.M. de Groot, G.J.A. Sevink, F. Buda, U. Kaiser, G.F. Schneider, Power generation by reverse electrodialysis in a single-layer nanoporous membrane made from core–rim polycyclic aromatic hydrocarbons, Nature Nanotechnology, (2020).
[38] Z. Zhang, L. He, C. Zhu, Y. Qian, L. Wen, L. Jiang, Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface, Nature Communications, 11 (2020) 875.
[39] J.-P. Hsu, T.-C. Su, P.-H. Peng, S.-C. Hsu, M.-J. Zheng, L.-H. Yeh, Unraveling the Anomalous Surface-Charge-Dependent Osmotic Power Using a Single Funnel-Shaped Nanochannel, ACS Nano, 13 (2019) 13374-13381.
[40] M.M. Kohonen, M.E. Karaman, R.M. Pashley, Debye Length in Multivalent Electrolyte Solutions, Langmuir, 16 (2000) 5749-5753.
[41] C.-C. Chang, R.-J. Yang, Electrokinetic energy conversion efficiency in ion-selective nanopores, Applied Physics Letters, 99 (2011) 083102.
[42] R.J. Hunter, Zeta potential in colloid science: principles and applications, Academic press 2013.
[43] Y. Ma, Y.-S. Su, S. Qian, L.-H. Yeh, Analytical model for surface-charge-governed nanochannel conductance, Sensors and Actuators B: Chemical, 247 (2017) 697-705.
[44] P. Dutta, A. Beskok, Analytical Solution of Combined Electroosmotic/Pressure Driven Flows in Two-Dimensional Straight Channels:  Finite Debye Layer Effects, Analytical Chemistry, 73 (2001) 1979-1986.
[45] W. Qu, D. Li, A model for overlapped EDL fields, Journal of Colloid and Interface Science, 224 (2000) 397-407.
[46] R.C. Rollings, A.T. Kuan, J.A. Golovchenko, Ion selectivity of graphene nanopores, Nature Communications, 7 (2016) 11408.
[47] J. Li, M. Gershow, D. Stein, E. Brandin, J.A. Golovchenko, DNA molecules and configurations in a solid-state nanopore microscope, Nature Materials, 2 (2003) 611-615.
[48] S.M. Iqbal, D. Akin, R. Bashir, Solid-state nanopore channels with DNA selectivity, Nature Nanotechnology, 2 (2007) 243-248.
[49] D. Fologea, J. Uplinger, B. Thomas, D.S. McNabb, J. Li, Slowing DNA Translocation in a Solid-State Nanopore, Nano Letters, 5 (2005) 1734-1737.
[50] Z. Zhang, X. Sui, P. Li, G. Xie, X.-Y. Kong, K. Xiao, L. Gao, L. Wen, L. Jiang, Ultrathin and ion-selective Janus membranes for high-performance osmotic energy conversion, Journal of the American Chemical Society, 139 (2017) 8905-8914.
[51] S. Balme, T. Ma, E. Balanzat, J.-M. Janot, Large osmotic energy harvesting from functionalized conical nanopore suitable for membrane applications, Journal of Membrane Science, 544 (2017) 18-24.
[52] M. Macha, S. Marion, V.V. Nandigana, A. Radenovic, 2D materials as an emerging platform for nanopore-based power generation, Nature Reviews Materials, 4 (2019) 588-605.
[53] J. Gao, X. Liu, Y. Jiang, L. Ding, L. Jiang, W. Guo, Understanding the Giant Gap between Single‐Pore‐and Membrane‐Based Nanofluidic Osmotic Power Generators, Small, 15 (2019) 1804279.
[54] H. Kwok, K. Briggs, V. Tabard-Cossa, Nanopore fabrication by controlled dielectric breakdown, PloS one, 9 (2014) e92880-e92880.
[55] K. Xiao, P. Giusto, L. Wen, L. Jiang, M. Antonietti, Nanofluidic Ion Transport and Energy Conversion through Ultrathin Free-Standing Polymeric Carbon Nitride Membranes, Angewandte Chemie International Edition, 57 (2018) 10123-10126.
[56] C. Chen, D. Liu, L. He, S. Qin, J. Wang, J.M. Razal, N.A. Kotov, W. Lei, Bio-inspired Nanocomposite Membranes for Osmotic Energy Harvesting, Joule, 4 (2020) 247-261.
[57] S. Hong, F. Ming, Y. Shi, R. Li, I.S. Kim, C.Y. Tang, H.N. Alshareef, P. Wang, Two-Dimensional Ti3C2T x MXene Membranes as Nanofluidic Osmotic Power Generators, ACS Nano, 13 (2019) 8917-8925.
[58] M. Nau, N. Herzog, J. Schmidt, T. Meckel, A. Andrieu-Brunsen, M. Biesalski, Janus-Type Hybrid Paper Membranes, Advanced Materials Interfaces, 6 (2019) 1900892.
[59] J. Jung, J. Kim, H.S. Lee, I.-S. Kang, K. Choi, Multi-Asymmetric Ion-Diode Membranes with Superior Selectivity and Zero Concentration Polarization Effect, ACS Nano, 13 (2019) 10761-10767.
[60] X. Huang, Z. Zhang, X.-Y. Kong, Y. Sun, C. Zhu, P. Liu, J. Pang, L. Jiang, L. Wen, Engineered PES/SPES nanochannel membrane for salinity gradient power generation, Nano Energy, 59 (2019) 354-362.
[61] P. Zuo, Y. Li, A. Wang, R. Tan, Y. Liu, X. Liang, F. Sheng, G. Tang, L. Ge, L. Wu, Q. Song, N.B. McKeown, Z. Yang, T. Xu, Sulfonated microporous polymer membranes with fast and selective ion transport for electrochemical energy conversion and storage, Angewandte Chemie International Edition, 59 (2020) 9564-9573.
[62] L. Cao, F. Xiao, Y. Feng, W. Zhu, W. Geng, J. Yang, X. Zhang, N. Li, W. Guo, L. Jiang, Anomalous channel‐length dependence in nanofluidic osmotic energy conversion, Advanced Functional Materials, 27 (2017) 1604302.
[63] J.-P. Hsu, Y.-C. Chen, Y.-M. Chen, S. Tseng, Influence of temperature and electroosmotic flow on the rectification behavior of conical nanochannels, Journal of the Taiwan Institute of Chemical Engineers, 93 (2018) 142-149.
[64] S. Tseng, Y.-M. Li, C.-Y. Lin, J.-P. Hsu, Salinity gradient power: influences of temperature and nanopore size, Nanoscale, 8 (2016) 2350-2357.
[65] L.-H. Yeh, M. Zhang, S. Qian, Ion Transport in a pH-Regulated Nanopore, Analytical Chemistry, 85 (2013) 7527-7534.
[66] L. Cao, W. Guo, Y. Wang, L. Jiang, Concentration-gradient-dependent ion current rectification in charged conical nanopores, Langmuir, 28 (2011) 2194-2199.
[67] Z. Zhu, D. Wang, Y. Tian, L. Jiang, Ion/Molecule Transportation in Nanopores and Nanochannels: From Critical Principles to Diverse Functions, Journal of the American Chemical Society, 141 (2019) 8658-8669.
[68] C.-Y. Lin, F. Chen, L.-H. Yeh, J.-P. Hsu, Salt gradient driven ion transport in solid-state nanopores: the crucial role of reservoir geometry and size, Physical Chemistry Chemical Physics, 18 (2016) 30160-30165.
[69] L.-H. Yeh, F. Chen, Y.-T. Chiou, Y.-S. Su, Anomalous pH-Dependent Nanofluidic Salinity Gradient Power, Small, 13 (2017) 1702691.
[70] M. Graf, M. Lihter, D. Unuchek, A. Sarathy, J.-P. Leburton, A. Kis, A. Radenovic, Light-Enhanced Blue Energy Generation Using MoS2 Nanopores, Joule, 3 (2019) 1549-1564.
[71] J. Hwang, T. Sekimoto, W.-L. Hsu, S. Kataoka, A. Endo, H. Daiguji, Thermal dependence of nanofluidic energy conversion by reverse electrodialysis, Nanoscale, 9 (2017) 12068-12076.
[72] T. Li, X. Zhang, S.D. Lacey, R. Mi, X. Zhao, F. Jiang, J. Song, Z. Liu, G. Chen, J. Dai, Y. Yao, S. Das, R. Yang, R.M. Briber, L. Hu, Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting, Nature Materials, 18 (2019) 608-613.
[73] J. Kim, I. Cho, H. Lee, S.J. Kim, Ion Concentration Polarization by Bifurcated Current Path, Scientific Reports, 7 (2017) 5091.
[74] C.C. Chang, C.P. Yeh, R.J. Yang, Ion concentration polarization near microchannel–nanochannel interfaces: Effect of pH value, Electrophoresis, 33 (2012) 758-764.
[75] R.-J. Yang, H.-H. Pu, H.-L. Wang, Ion concentration polarization on paper-based microfluidic devices and its application to preconcentrate dilute sample solutions, Biomicrofluidics, 9 (2015) 014122.
[76] K.-D. Huang, R.-J. Yang, A nanochannel-based concentrator utilizing the concentration polarization effect, Electrophoresis, 29 (2008) 4862-4870.
[77] H.-C. Yeh, C.-C. Chang, R.-J. Yang, Electro-osmotic pumping and ion-concentration polarization based on conical nanopores, Physical Review E, 91 (2015) 062302.
[78] W. Han, X. Chen, A review: applications of ion transport in micro-nanofluidic systems based on ion concentration polarization, Journal of Chemical Technology & Biotechnology, 95 (2020) 1622-1631.
[79] C. Lee, L. Joly, A. Siria, A.-L. Biance, R. Fulcrand, L. Bocquet, Large apparent electric size of solid-state nanopores due to spatially extended surface conduction, Nano Letters, 12 (2012) 4037-4044.
[80] C.-Y. Lin, C. Combs, Y.-S. Su, L.-H. Yeh, Z.S. Siwy, Rectification of Concentration Polarization in Mesopores Leads To High Conductance Ionic Diodes and High Performance Osmotic Power, Journal of the American Chemical Society, 141 (2019) 3691-3698.
[81] H. Li, F. Xiao, G. Hong, J. Su, N. Li, L. Cao, Q. Wen, W. Guo, On the Role of Heterogeneous Nanopore Junction in Osmotic Power Generation, Chinese Journal of Chemistry, 37 (2019) 469-473.
[82] K. Chen, L. Yao, B. Su, Bionic thermoelectric response with nanochannels, Journal of the American Chemical Society, 141 (2019) 8608-8615.
[83] K. Chen, L. Yao, F. Yan, S. Liu, R. Yang, B. Su, Thermo-osmotic energy conversion and storage by nanochannels, Journal of Materials Chemistry A, 7 (2019) 25258-25261.
[84] A.J. Bard, L.R. Faulkner, J. Leddy, C.G. Zoski, Electrochemical methods: fundamentals and applications, Wiley, New York, 1980.
[85] P.K. Das, Effect of thermodiffusion on pH-regulated surface charge properties of nanoparticle, Electrophoresis, 37 (2016) 347-355.
[86] T. Ghonge, J. Chakraborty, R. Dey, S. Chakraborty, Electrohydrodynamics within the electrical double layer in the presence of finite temperature gradients, Physical Review E, 88 (2013) 053020.
[87] A. Würger, Transport in Charged Colloids Driven by Thermoelectricity, Physical Review Letters, 101 (2008) 108302.
[88] J. Janek, J. Sann, B. Mogwitz, M. Rohnke, M. Kleine-Boymann, Degradation of Functional Materials in Temperature Gradients - Thermodiffusion and the Soret Effect, Journal of the Korean Ceramic Society, 49 (2012) 56-65.
[89] J. Kim, C.K. Choi, Y.T. Kang, M.G. Kim, Effects of Thermodiffusion and Nanoparticles on Convective Instabilities in Binary Nanofluids, Nanoscale and Microscale Thermophysical Engineering, 10 (2006) 29-39.
[90] S.K. Ratkje, E. Sauar, E.M. Hansen, K.M. Lien, B. Hafskjold, Analysis of entropy production rates for design of distillation columns, Industrial & Engineering Chemistry Research, 34 (1995) 3001-3007.
[91] M. Eslamian, F. Sabzi, M.Z. Saghir, Modeling of thermodiffusion in liquid metal alloys, Physical Chemistry Chemical Physics, 12 (2010) 13835-13848.
[92] D. Vigolo, S. Buzzaccaro, R. Piazza, Thermophoresis and thermoelectricity in surfactant solutions, Langmuir, 26 (2010) 7792-7801.
[93] B.J. Kirby, Micro-and nanoscale fluid mechanics: transport in microfluidic devices, Cambridge University Press 2010.
[94] D. Saville, Electrohydrodynamics: the Taylor-Melcher leaky dielectric model, Annual Review of Fluid Mechanics, 29 (1997) 27-64.
[95] S. Schmid, C. Hierold, A. Boisen, Modeling the Kelvin polarization force actuation of micro-and nanomechanical systems, Journal of Applied Physics, 107 (2010) 054510.
[96] W. Zhang, Q. Wang, M. Zeng, C. Zhao, Temperature-gradient-induced electrokinetic flow and thermoelectricity of electrolyte solutions in a capillary, arXiv preprint arXiv:1805.03462, (2018).
[97] J.H. Masliyah, S. Bhattacharjee, Electrokinetic and colloid transport phenomena, John Wiley & Sons 2006.
[98] J. Osterle, Electrokinetic energy conversion, Journal of Applied Mechanics, 31 (1964) 161-164.
[99] C.-C. Chang, R.-J. Yang, Electrokinetic energy conversion in micrometer-length nanofluidic channels, Microfluidics and Nanofluidics, 9 (2010) 225-241.
[100] S.R. De Groot, P. Mazur, Non-equilibrium thermodynamics, Courier Corporation 2013.
[101] X. Xuan, D. Li, Thermodynamic analysis of electrokinetic energy conversion, Journal of Power Sources, 156 (2006) 677-684.
[102] H.-C. Yeh, C.-C. Chang, R.-J. Yang, Ion-size effect on electrokinetic energy conversion in nanofluidic channels, International Journal of Green Energy, 13 (2016) 1050-1058.
[103] F. Xiao, D. Ji, H. Li, J. Tang, Y. Feng, L. Ding, L. Cao, N. Li, L. Jiang, W. Guo, A general strategy to simulate osmotic energy conversion in multi-pore nanofluidic systems, Materials Chemistry Frontiers, 2 (2018) 935-941.
[104] T.J. Hughes, The finite element method: linear static and dynamic finite element analysis, Courier Corporation 2012.
[105] https://www.comsol.com/multiphysics/finite-element-method [Acessed 18 March 2020]
[106] J. Dolbow, T. Belytschko, Numerical integration of the Galerkin weak form in meshfree methods, Computational Mechanics, 23 (1999) 219-230.
[107] T. Belytschko, D. Organ, Y. Krongauz, A coupled finite element-element-free Galerkin method, Computational Mechanics, 17 (1995) 186-195.
[108] H.P. Langtangen, K.-A. Mardal, Introduction to Numerical Methods for Variational Problems, Springer Nature 2019.
[109] C. Johnson, Numerical solution of partial differential equations by the finite element method, Courier Corporation 2012.
[110] Z. Huang, Y. Zhang, T. Hayashida, Z. Ji, Y. He, M. Tsutsui, X.S. Miao, M. Taniguchi, The impact of membrane surface charges on the ion transport in MoS2 nanopore power generators, Applied Physics Letters, 111 (2017) 263104.
[111] D.V. Melnikov, Z.K. Hulings, M.E. Gracheva, Electro-osmotic flow through nanopores in thin and ultrathin membranes, Physical Review E, 95 (2017) 063105.
[112] T.Q. Bui, V.D. Cao, N.B.D. Do, T.E. Christoffersen, W. Wang, A.-L. Kjøniksen, Salinity Gradient Energy from Expansion and Contraction of Poly (allylamine hydrochloride) Hydrogels, ACS Applied Materials & Interfaces, 10 (2018) 22218-22225.
[113] K. Xiao, L. Jiang, M. Antonietti, Ion Transport in Nanofluidic Devices for Energy Harvesting, Joule, 3 (2019) 2364-2380.
[114] D.H. Kim, B.H. Park, K. Kwon, L. Li, D. Kim, Modeling of power generation with thermolytic reverse electrodialysis for low-grade waste heat recovery, Applied Energy, 189 (2017) 201-210.
[115] H. Tian, Y. Wang, Y. Pei, J.C. Crittenden, Unique applications and improvements of reverse electrodialysis: A review and outlook, Applied Energy, 262 (2020) 114482.
[116] J.G. Hong, W. Zhang, J. Luo, Y. Chen, Modeling of power generation from the mixing of simulated saline and freshwater with a reverse electrodialysis system: The effect of monovalent and multivalent ions, Applied Energy, 110 (2013) 244-251.
[117] X. Li, T.-S. Chung, Thin-film composite P84 co-polyimide hollow fiber membranes for osmotic power generation, Applied Energy, 114 (2014) 600-610.
[118] F. Xiao, D. Ji, H. Li, J. Tang, Y. Feng, L. Ding, L. Cao, N. Li, L. Jiang, W. Guo, Simulation of osmotic energy conversion in nanoporous materials: a concise single-pore model, Inorganic Chemistry Frontiers, 5 (2018) 1677-1682.
[119] L. Wang, M.S. Boutilier, P.R. Kidambi, D. Jang, N.G. Hadjiconstantinou, R. Karnik, Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes, Nature Nanotechnology, 12 (2017) 509.
[120] D. Pakulski, W. Czepa, S.D. Buffa, A. Ciesielski, P. Samorì, Atom‐Thick Membranes for Water Purification and Blue Energy Harvesting, Advanced Functional Materials, (2019) 1902394.
[121] Y.-Y. Sun, V.-P. Mai, R.-J. Yang, Effects of electrode placement position and tilt angles of a platform on voltage induced by NaCl electrolyte flowing over graphene wafer, Applied Energy, 261 (2020) 114435.
[122] D.-K. Kim, C. Duan, Y.-F. Chen, A. Majumdar, Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels, Microfluidics and Nanofluidics, 9 (2010) 1215-1224.
[123] L. Wen, X. Hou, Y. Tian, J. Zhai, L. Jiang, Bio‐inspired Photoelectric Conversion Based on Smart‐Gating Nanochannels, Advanced Functional Materials, 20 (2010) 2636-2642.
[124] J.P. Edwards, Y. Xu, C.M. Gabardo, C.-T. Dinh, J. Li, Z. Qi, A. Ozden, E.H. Sargent, D. Sinton, Efficient electrocatalytic conversion of carbon dioxide in a low-resistance pressurized alkaline electrolyzer, Applied Energy, 261 (2020) 114305.
[125] R. Long, Z. Kuang, Z. Liu, W. Liu, Ionic thermal up-diffusion in nanofluidic salinity gradient energy harvesting, National Science Review, 6 (2019) 1266-1273.
[126] R. Long, Z. Kuang, Z. Liu, W. Liu, Temperature regulated reverse electrodialysis in charged nanopores, Journal of Membrane Science, 561 (2018) 1-9.
[127] A. Tamburini, M. Tedesco, A. Cipollina, G. Micale, M. Ciofalo, M. Papapetrou, W. Van Baak, A. Piacentino, Reverse electrodialysis heat engine for sustainable power production, Applied Energy, 206 (2017) 1334-1353.
[128] Y. Yang, X. Yang, L. Fu, M. Zou, A. Cao, Y. Du, Q. Yuan, C.-H. Yan, Two-dimensional flexible bilayer Janus membrane for advanced photothermal water desalination, ACS Energy Letters, 3 (2018) 1165-1171.
[129] A. Altaee, J. Zhou, A. Alhathal Alanezi, G. Zaragoza, Pressure retarded osmosis process for power generation: Feasibility, energy balance and controlling parameters, Applied Energy, 206 (2017) 303-311.
[130] A.P. Straub, M. Elimelech, Energy efficiency and performance limiting effects in thermo-osmotic energy conversion from low-grade heat, Environmental Science & Technology, 51 (2017) 12925-12937.
[131] A.P. Straub, N.Y. Yip, S. Lin, J. Lee, M. Elimelech, Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes, Nature Energy, 1 (2016) 16090.
[132] X. Tong, S. Liu, J. Yan, O.A. Broesicke, Y. Chen, J. Crittenden, Thermolytic osmotic heat engine for low-grade heat harvesting: Thermodynamic investigation and potential application exploration, Applied Energy, (2019) 114192.
[133] H. Ma, X. Wang, Y. Peng, H. Peng, M. Hu, L. Xiao, G. Wang, J. Lu, L. Zhuang, Powerful Thermogalvanic Cells Based on a Reversible Hydrogen Electrode and Gas-Containing Electrolytes, ACS Energy Letters, 4 (2019) 1810-1815.
[134] C.S. Kim, H.M. Yang, J. Lee, G.S. Lee, H. Choi, Y.J. Kim, S.H. Lim, S.H. Cho, B.J. Cho, Self-powered wearable electrocardiography using a wearable thermoelectric power generator, ACS Energy Letters, 3 (2018) 501-507.
[135] A. Nozariasbmarz, H. Collins, K. Dsouza, M.H. Polash, M. Hosseini, M. Hyland, J. Liu, A. Malhotra, F.M. Ortiz, F. Mohaddes, V.P. Ramesh, Y. Sargolzaeiaval, N. Snouwaert, M.C. Özturk, D. Vashaee, Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems, Applied Energy, 258 (2020) 114069.
[136] Y. Wang, Y. Shi, D. Mei, Z. Chen, Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer, Applied Energy, 215 (2018) 690-698.
[137] Y. Wang, Y. Shi, D. Mei, Z. Chen, Wearable thermoelectric generator for harvesting heat on the curved human wrist, Applied Energy, 205 (2017) 710-719.
[138] R. Long, Z. Luo, Z. Kuang, Z. Liu, W. Liu, Effects of Heat Transfer and the Membrane Thermal Conductivity on the Thermally Nanofluidic Salinity Gradient Energy Conversion, Nano Energy, (2019) 104284.
[139] P. Guo, C.R. Martin, Y. Zhao, J. Ge, R.N. Zare, General method for producing organic nanoparticles using nanoporous membranes, Nano Letters, 10 (2010) 2202-2206.
[140] J.-Y. Lin, C.-Y. Lin, J.-P. Hsu, S. Tseng, Ionic current rectification in a pH-tunable polyelectrolyte brushes functionalized conical nanopore: effect of salt gradient, Analytical Chemistry, 88 (2015) 1176-1187.
[141] R.B. Schoch, J. Han, P. Renaud, Transport phenomena in nanofluidics, Reviews of Modern Physics, 80 (2008) 839-883.
[142] J.M. Ortiz, J.A. Sotoca, E. Expósito, F. Gallud, V. García-García, V. Montiel, A. Aldaz, Brackish water desalination by electrodialysis: batch recirculation operation modeling, Journal of Membrane Science, 252 (2005) 65-75.
[143] M. Ye, M. Pasta, X. Xie, Y. Cui, C.S. Criddle, Performance of a mixing entropy battery alternately flushed with wastewater effluent and seawater for recovery of salinity-gradient energy, Energy & Environmental Science, 7 (2014) 2295-2300.
[144] A. Daniilidis, D.A. Vermaas, R. Herber, K. Nijmeijer, Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis, Renewable Energy, 64 (2014) 123-131.
[145] Y.C. Kim, M. Elimelech, Potential of osmotic power generation by pressure retarded osmosis using seawater as feed solution: Analysis and experiments, Journal of Membrane Science, 429 (2013) 330-337.
[146] X. Zhu, W. He, B.E. Logan, Influence of solution concentration and salt types on the performance of reverse electrodialysis cells, Journal of Membrane Science, 494 (2015) 154-160.
[147] M. Chen, Y. Mei, Y. Yu, R.J. Zeng, F. Zhang, S. Zhou, C.Y. Tang, An internal-integrated RED/ED system for energy-saving seawater desalination: A model study, Energy, 170 (2019) 139-148.
[148] J.I. Partanen, Mean activity coefficients and osmotic coefficients in dilute aqueous sodium or potassium chloride solutions at temperatures from (0 to 70) C, Journal of Chemical & Engineering Data, 61 (2015) 286-306.
[149] C. Davidson, X. Xuan, Electrokinetic energy conversion in slip nanochannels, Journal of Power Sources, 179 (2008) 297-300.
[150] N.Y. Yip, M. Elimelech, Performance Limiting Effects in Power Generation from Salinity Gradients by Pressure Retarded Osmosis, Environmental Science & Technology, 45 (2011) 10273-10282.
[151] L. Cao, W. Guo, W. Ma, L. Wang, F. Xia, S. Wang, Y. Wang, L. Jiang, D. Zhu, Towards understanding the nanofluidic reverse electrodialysis system: well matched charge selectivity and ionic composition, Energy & Environmental Science, 4 (2011) 2259-2266.
[152] K.C. Hon, C. Zhao, C. Yang, S.C. Low, A method of producing electrokinetic power through forward osmosis, Applied Physics Letters, 101 (2012) 143902.
[153] Y. Jiao, C. Yang, Y. Kang, Energy Conversion from Salinity Gradients by Forward Osmosis–Electrokinetics, The Journal of Physical Chemistry C, 118 (2014) 10574-10583.
[154] Y. Jiao, C. Zhao, Y. Kang, C. Yang, Microfluidics-based fundamental characterization of external concentration polarization in forward osmosis, Microfluidics and Nanofluidics, 23 (2019) 36.
[155] X. Sui, Z. Zhang, C. Li, L. Gao, Y. Zhao, L. Yang, L. Wen, L. Jiang, Engineered Nanochannel Membranes with Diode-like Behavior for Energy Conversion over a Wide pH Range, ACS Applied Materials & Interfaces, 11 (2019) 23815-23821.
[156] J.-P. Hsu, S.-T. Yang, C.-Y. Lin, S. Tseng, Voltage-controlled ion transport and selectivity in a conical nanopore functionalized with pH-tunable polyelectrolyte brushes, Journal of Colloid and Interface Science, 537 (2019) 496-504.
[157] Y. Ma, L.-H. Yeh, C.-Y. Lin, L. Mei, S. Qian, pH-Regulated Ionic Conductance in a Nanochannel with Overlapped Electric Double Layers, Analytical Chemistry, 87 (2015) 4508-4514.
[158] Z. Zeng, L.-H. Yeh, M. Zhang, S. Qian, Ion transport and selectivity in biomimetic nanopores with pH-tunable zwitterionic polyelectrolyte brushes, Nanoscale, 7 (2015) 17020-17029.
[159] L.-H. Yeh, Y.-H. Tai, N. Wang, J.-P. Hsu, S. Qian, Electrokinetics of pH-regulated zwitterionic polyelectrolyte nanoparticles, Nanoscale, 4 (2012) 7575-7584.
[160] Y. He, M. Tsutsui, R.H. Scheicher, F. Bai, M. Taniguchi, T. Kawai, Thermophoretic Manipulation of DNA Translocation through Nanopores, ACS Nano, 7 (2013) 538-546.
[161] M. Zhang, C. Ngampeerapong, D. Redin, A. Ahmadian, I. Sychugov, J. Linnros, Thermophoresis-Controlled Size-Dependent DNA Translocation through an Array of Nanopores, ACS Nano, 12 (2018) 4574-4582.
[162] X. Hou, F. Yang, L. Li, Y. Song, L. Jiang, D. Zhu, A Biomimetic Asymmetric Responsive Single Nanochannel, Journal of the American Chemical Society, 132 (2010) 11736-11742.
[163] A. Friebe, M. Ulbricht, Cylindrical Pores Responding to Two Different Stimuli via Surface-Initiated Atom Transfer Radical Polymerization for Synthesis of Grafted Diblock Copolymers, Macromolecules, 42 (2009) 1838-1848.
[164] M.A. Brown, A. Goel, Z. Abbas, Effect of Electrolyte Concentration on the Stern Layer Thickness at a Charged Interface, Angewandte Chemie International Edition, 55 (2016) 3790-3794.

  • 同意授權校內瀏覽/列印電子全文服務,於2020-07-06起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-07-06起公開。

  • 如您有疑問,請聯絡圖書館