進階搜尋


 
系統識別號 U0026-0506201311210900
論文名稱(中文) 有機薄膜/金屬結構界面於高效率高分子發光二極體之研究
論文名稱(英文) Organic/Metal Electrode Interface in Efficienct Polymer Light-Emitting Diodes
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 101
學期 2
出版年 102
研究生(中文) 林銘偉
研究生(英文) Ming-Wei Lin
電子信箱 l7897110@mail.ncku.edu.tw
學號 L78971102
學位類別 博士
語文別 英文
論文頁數 127頁
口試委員 指導教授-郭宗枋
口試委員-溫添進
口試委員-鄭弘隆
召集委員-張守進
口試委員-吳志毅
口試委員-許瑤真
中文關鍵字 高分子發光二極體  聚乙二醇二甲醚  聚乙烯亞胺  碳酸銫  鈣金屬  界面效應 
英文關鍵字 polymer light-emitting diode  poly(ethylene glycol) dimethyl ether  polyethyleneimine  cesium carbonate  calcium  interface properties 
學科別分類
中文摘要 本論文專注於提升有機發光二極體元件其載子傳輸效率。探討在陰電極及放光層間的界面修飾層:poly(ethylene glycol) dimethyl ether (PEGDE)、polyethyleneimine (PEI)、cesium carbonate (Cs2CO3)及calcium (Ca)對電子傳導及注入之影響。
在使用有機氧化物PEGDE做為陰電極緩衝層時,可保護主動層不被熱蒸鍍金屬破壞,而PEGDE本身雖為一絕緣材料,但當搭配金屬aluminum (Al)陰極時卻可有效的使元件效率(5.19 cd/A)提升約為以Al單獨做為電極時(0.04 cd/A)的100倍。透夠X光光電子能譜的分析我們發現當PEGDE與Al搭配時其樣品會觀察到Al與C的鍵結,藉由能譜解析我們發現此鍵結為 C-Al或C-O-Al的鍵結,我們推測此一鍵結的產生將有助於電子的注入,亦即表面功函數會降低。除此之外,我們更進一步提出共蒸鍍PEGDE與Al,利用改變共蒸鍍比例以調變所成之膜中C-O-Al鍵 (或C-Al鍵)含量,進而調控功函數並影響電子注入能力。使用另一有機化合物PEI做為陰電極緩衝層時,我們發現不同於PEGDE材料只能在搭配Al時才能有效幫助電子注入,PEI材料在搭配Al、silver (Ag)、gold (Au)陰極時,都能有效誘發電子注入到有機發光層中,搭配Al的元件,效率從0.02 cd/A提升到8.63 cd/A;搭配Ag時,效率從0.16 cd/A提升到7.60 cd/A;搭配Au時,從元件無法運作到效率5.03 cd/A。PEI促使電子注入提升的機制主要為:PEI中的氮官能機在有機發光層及金屬陰電極界面產生界面偶極矩,此界面偶極矩可調變真空能階,提供一較低注入能障供電子傳輸。
在以藍光材料為放光層結構的有機半導體元件中,我們使用Cs2CO3搭配Al作為陰電極結構,將Cs2CO3材料與常用Ca電子注入層比較,Ca在熱蒸鍍過程會擴散入放光層中對放光層造成破壞,此破壞除了會抑制電子傳輸外,亦會使藍光元件在偏壓施加下容易產生額外綠光,反之在使用Cs2CO3時,發現Cs2CO3對放光層幾乎沒有任何破壞產生,相較於Ca的使用,Cs2CO3電極提高了電子傳輸能力及穩定元件在藍光色域的色純度表現,而整體元件最佳化結果效率為14 cd/A,藍光CIE值為(0.15, 0.14)。
高分子發光二極體陰電極與放光層間藉由加入界面修飾層PEGDE、PEI及Cs2CO3都可有效提升電子電洞傳導及注入之能力。
英文摘要 This thesis focus on the design of materials including poly(ethylene glycol) dimethyl ether (PEGDE), cesium carbonate (Cs2CO3), polyethyleneimine (PEI) and calcium (Ca) for the interfacial modification of PLEDs.
In the case of PEGDE, spin-coating or thermally evaporating PEGDE polymer film as a buffer medium on the surface of light-emitting layer with aluminum (Al) cathode significantly improve the electron injection through the Al cathode. We attribute the improved device performance to the interfacial reactions at the ethylene oxide/Al junction, which works as an effective cathode buffer with multiple functions to facilitate the injection of electrons, to prevent the formation of metal-induced electroluminescent (EL) quenching sites, and to confine the excitons in the light emissive layer… etc. Furthermore, by changing the compositions of PEGDE and Al, co-evaporation of PEGDE with Al in vacuum at various ratios, we can fine tune the electron injection capability of cathode to balance the injected charge carriers and achieve the optimal device performance. In the case of PEI, we find that the surface modifiers PEI polymers containing amine groups substantially reduce the work function of metals and significantly improve the electron injection by leading to the formation of interface dipoles. The utilization of PEI/Al, PEI/silver (Ag), and PEI/gold (Au) all can achieve dramatic increased in device performance in comparison to similar polymer light-emitting diodes (PLEDs) without the PEI layer.
We also apply the Cs2CO3/Al cathode in efficient blue-emissive PLEDs, the device has the superior performance and it was due to the non-formation of metal-induced exciton quenching sites when utilization of Cs2CO3 layer. In fact, the exciton quenching often created by the Ca metal. The device of the optimal configuration is highly promising for use in developing deep blue-emissive PLEDs, with the EL emissions centered at 430-450 nm of the Commission Internationale de l’Eclairage chromaticity coordinates (CIE) coordinates, (0.15, 0.14), a maximum brightness of 35054.20 cd/m2, and LE of 14 cd/A (at 2975 cd/m2).
Finally, our results emphasize the importance of interface modification in efficient the electron injection, the case in PEGDE, PEI, and Cs2CO3 all show that the integrity of electrode/organic interfacial contact is crucial to the performance and stability of PLEDs.
論文目次 Table of Contents
摘要….……………………………………………………………………………………...I
Abstract III
誌謝 V
Table of Contents VI
List of Tables IX
List of Figures X
Symbols XIV
Abbreviations XVI
Chapter 1 Introduction 1
1.1 Motivation of this research 2
1.2 Scope of this research 3
Chapter 2 Introduction to Organic Light-Emitting Devices 6
2.1 Basic electronic structure and dynamics of conjugated materials 7
2.1.1 Chemistry overview of conjugated materials 7
2.1.1.1 Atomic orbitals for organic chemistry 7
2.1.1.2 Molecular orbitals for organic chemistry 11
2.1.2 Conjugation in organic chemistry 14
2.2 Design concept of molecular materials for high-performance OLEDs 17
2.2.1 Basic operation of OLEDs 17
2.2.2 Carrier transport/injection in OLEDs 17
2.2.2.1 Carrier transporting 18
2.2.2.2 Polaron vs disorder models for carrier hopping 19
2.2.2.3 Long-range correlations 22
2.2.2.4 Carrier injection 23
2.2.2.5 Space-charge limited versus injection-limited current mechanisms 26
2.2.3 Carrier recombination and emission process 28
2.2.4 Estimation of external and internal quantum efficiency 29
2.2.5 Design of multilayer structures 32
2.3 Interface engineering for organic electronics 35
2.3.1 Experimental technique of photoelectron spectroscopy (PES) 36
2.3.2 Practical factors affecting the interfacial electronic structure 39
2.3.3 Materials for OLEDs and PLEDs 41
2.3.3.1 Low work-function metal and alkali metal salts 41
2.3.3.2 Polyfluorene-based polyelectrolytes 43
2.3.3.3 Alcohol-soluble neutral conjugated polymer 43
2.3.3.4 Polyethylene glycol based neutral surfactants 45
2.3.3.5 Cesium carbonate 47
2.4 Summary 48
Chapter 3 Experimental Methods 50
3.1 Device fabrication 50
3.1.1 Materials and device structure 50
3.1.2 Fabrication process 52
3.2 Electrical characteristic measurement 57
3.2.1 Current density-brightness-voltage (J-L-V) 57
3.2.2 Photovoltaic measurement 57
3.2.3 Photoluminescence measurement 58
3.3 Surface analysis 58
3.3.1 UV-Vis absorption spectroscopy 58
3.3.2 Fourier transform infrared spectroscopy (FTIR) 59
3.3.3 X-ray photoelectron spectroscopy (XPS) 60
3.3.4 Ultraviolet photoelectron spectroscopy (UPS) 60
3.4 Summary 60
Chapter 4 Poly(ethylene oxide)-Functionalized Al Cathodes of Tunable Electron-Injection Capabilities for Polymer Light-Emitting Diodes 62
4.1 Introduction 62
4.2 PLED cathodes modified by poly(ethylene glycol) dimethyl ether (PEGDE) functionalized Al cathode 63
4.3 Experiment sections 65
4.3.1 Fabrication of PLEDs 65
4.3.2 Samples for the XPS and UPS measurement 66
4.4 Results and discussions 67
4.4.1 Describe the chemical reactions at the PEGDE/Al and PEGDE:Al/Al junction 67
4.4.2 Electroluminescence properties 72
4.4.3 Work-function study of the PEGDE/Al and PEGDE:Al/Al cathode 74
4.5 Summary 78
Chapter 5 Polyethyleneimine/Metal Functionalized Cathodes in Efficient Polymer Light-Emitting Diodes 80
5.1 Introduction 80
5.2 Experiment sections 82
5.2.1 Fabrication of PLEDs 82
5.2.2 Samples for the XPS and UPS measurement 82
5.3 Results and discussions 83
5.3.1 Electroluminescence properties 83
5.3.2 Discuss the mechanism of electron injection contributed from PEI buffer 86
5.3.2.1 Determine the chemical properties at PEI/metal interface 87
5.3.2.2 Determine the electronic structures at PEI/Metal junction 90
5.3.2.3 Electron only device and stability measurement to characteristic the enhanced electron injection attributed by PEI 92
5.4 Summary 95
Chapter 6 Bright, Efficient, Deep Blue-Emissive Polymer Light-Emitting Diodes of Suitable Hole-Transport Layer and Cathode Design 96
6.1 Introduction 96
6.2 Experiment sections 98
6.2.1 Fabrication of PLEDs 98
6.2.2 Determine the HOMO/LUMO value of P1 and PFO-TPA 98
6.2.3 Samples for PL and FTIR measurement to characteristic the quenching effect from the deposition metal 99
6.3 Results and discussions 100
6.3.1 Effect of PFO-TPA on the performance of blue polymer light-emitting diodes 100
6.3.2 Effects of Ca and Cs2CO3 on the performance of blue polymer light-emitting diodes 102
6.4 Summary 111
Chapter 7 Conclusion 112
7.1 Current progress 112
7.2 Future work 114
Reference 117
Curriculum Vitae 125
Publication Papers 126
Conference Papers 126

參考文獻 Reference
[1] P. L. Burn, A. B. Holmes, A. Kraft, D. D. C. Bradley, A. R. Brown, and R. H. Friend, J. Chem. Soc. Chem. Commun. 1, 32 (1992).
[2] P. L. Burn, A. B. Holmes, A. Kraft, D. D. C. Bradley, A. R. Brown, R. H. Friend, and R. W. Gymer, Nature 356, 47 (1992).
[3] J. H. Burroughs, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holms, Nature 347, 539 (1990).
[4] A. R. Brown, D. D. C. Bradley, P. L. Burn, J. H. Burroughes, R. H. Friend, N. Greenham, A. B. Holmes, and A. Kraft, Appl. Phys. Lett. 61, 2793 (1992).
[5] G. Grem, G. Leditzky, B. Ullrich, and G. Leising, Adv. Mat. 4, 36 (1992).
[6] Y. Ohmori, M. Uchida, K. Muro, and K. Yoshino, Jpn. J. Appl. Phys. 30, L1941 (1991).
[7] Y. Ohmori, C. Morishima, M. Uchida, and K. Yoshino, Jpn. J. Appl. Phys. 31, L568 (1992).
[8] D. Braun, G. Gustafsson, D. McBranch, and A. J. Heeger, J. Appl. Phys. 72, 564 (1992).
[9] D. Braun, and A. J. Heeger, Appl. Phys. Lett. 58, 1982 (1991).
[10] H. Vestweber, A. Greiner, U. Lemmer, R. F. Mahrt, R. Richert, W. Heitz, and H. Bassler, Adv. Mat. 4, 661 (1992).
[11] G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, Nature 357, 477 (1992).
[12] C. Zhang, S. Hőger, K. Pakbaz, F. Wudl, and A. J. Heeger, J. Electron. Mat. 22, 413 (1993).
[13] A. Bernanose, M. Comte, and P. Vouaux, J. Chim. Phys. 50, 65 (1953).
[14] M. Pope, J. Chem. Phys. 38, 2043 (1963).
[15] C. W. Tang, and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
[16] Y. Cao, G. Yu, and A. J. Heeger, Adv. Mater. 10, 917 (1998)
[17] C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Jpn. J. Appl. Phys. 27, L269 (1987).
[18] C. W. Tang, Appl. Phys. Lett. 48, 183 (1985).
[19] Y. Hamada, T. Sano, M. Fujita, T. Fujii, Y. Nishio, and K. Shibata, Jpn. J. Appl. Phys. 32, L514 (1993).
[20] L. S. Hung, C. W. Tang, and M. G. Mason, App. Phys. Letts. 70, 152 (1997).
[21] P .H. Oh, Y. Shen, G. G. Malliaras, J. C. Scott, and P. J. Brock, App. Phys. Lett. 77, 2403 (2000).
[22] I. D. Parker, Y. Cao, and C. Y. Yang, J. Appl. Phys. 85, 2441 (1999).
[23] F. Huang, Y. H. Niu, Y. Zhang, J. W. Ka, M. S. Liu, and A. K.-Y. Jen, Adv. Mater. 19, 2010 (2007).
[24] F. Huang, Y. Zhang, M. S. Liu, Y. J. Cheng, and A. K.-Y. Jen, Adv. Funct. Mater. 17, 3808 (2007).
[25] P. Piromerium, H. Oh, Y. Shen, G. G. Malliaras, J. C. Scott, and P. J. Brock, Appl. Phys. Lett. 77, 2403 (2000).
[26] J. Brondijk, X. Li, H. Akkerman, P. Blom, and B. de Boer, Appl. Phys. A: Mater. Sci. Process 95, 1 (2009).
[27] W. Chen, C. Huang, X. Y. Gao, L. Wang, C. G. Zhen, D. Qi, S. Chen, H. L. Zhang, K. P. Loh, Z. K. Chen, and A. T. S. Wee, J. Phys. Chem. B 110, 26075 (2006).
[28] W. A. Hartman, and H. L. Armstrong, J. Appl. Phys. 38, 2393 (1967).
[29] J. Gu, M. Kawabe, K. Masuda, and S. Namba, J. Appl. Phys. 48, 2493 (1977).
[30] S. Miyata, and H. S. Nalwa, Editors, Organic Electroluminescent Materials and Devices, (Gordon and Breach Publishers, Overseas Publishers Association, Amsterdam, 1997).
[31] Z. H. Kafafi, Editor, Organic Light-Emitting Materials and Devices, SPIE Proc. 3148, (SPIE- The International Society for Optical Engineering, Belingham, WA, 1997).
[32] Z. H. Kafafi, Editor, Organic Light-Emitting Materials and Devices Ⅲ, SPIE Proc. 3797, (SPIE- The International Society for Optical Engineering, Belingham, WA, 1997).
[33] C. Adachi, T. Tsutsui, and S. Saito, Appl. Phys. Lett. 55, 1489 (1989).
[34] C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys. 65, 3610 (1989).
[35] N. Tessler, N. T. Harrison, and R. H. Friend, Adv. Mat. 10, 64 (1998).
[36] N. Tessler, Adv. Mat. 11, 363 (1999).
[37] J. H. Schön, S. Berg, Ch. Kloc, and B. Batlogg, Science 287, 1022 (2000).
[38] M. Raikh, and X. Wei, Mol. Cryst. Liq. Cryst. 256, 563 (1994).
[39] A. Miller, and E. Abrahams, Phys. Rev. 120, 7455 (1960).
[40] S. V. Frolov, M. Leiss, P. A. Lane, W. Gellerman, and Z. V. Vardeny, Phys. Rev. Lett. 78, 4285 (1997).
[41] A. J. Pal, R. Osterbacka, K. M. Kallman, and H. Stubb, Appl. Phys. Lett. 71, 228 (1997).
[42] S. Karg, V. Dyakonov, M. Reier, W. Reiss, and G. Paasch, Synth. Met. 67, 165 (1994).
[43] S. Naka, H. Okada, H. Onnagawa, Y. Yamaguchi, and T. Tsutsui, Synth. Met. 111, 331 (2000).
[44] B. J. Chen, W. Y. Lai, Z. Q. Cao, C. S. Lee, S. T. Lee, and W. A. Gambling, Appl. Phys. Lett. 75, 4010 (1999).
[45] A. J. Campbell, D. D. C. Bradlev, H. Antoniadis, M. Inbasekaran, W. W. Wu, and E. P. Woo, Appl. Phys. Lett. 76, 1734 (2000).
[46] E. W. Forsythe, M. A. Abkowitz, Y. Cao, and C. W. Tang, J. Vac. Sci. & Tech. A18, 1869 (2000).
[47] H. Meyer, D. Haarer, H. Naarmann, and H. H. Horhold, Phys. Rev. B 52, 2587 (1995).
[48] E. Lebedev, Th. Dittrich, V. Petrova-Koch, S. Karg, and W. Brutting, Appl. Phys. Lett. 71, 2686 (1997).
[49] P. M. Boresenberger, L. Pautimeier, and H. Bässler, J. Chem. Phys. 95, 1258 (1991).
[50] I. H. Campbell, D. L. Smith, C. J. Neef, and J. P. Ferraris, Appl. Phys. Lett. 74, 2809 (1999).
[51] W. Brutting, E. Lebedev, S. Karg, T. Dittrich, V. Petrova-Koch, and M. Schwoerer, SPIE 3281, 251 (1998).
[52] N. Camaioni, G. Casalbore-Miceli, A. Geri, and S. Nicoletti, Adv. Mater. 11, 472 (1999).
[53] M. Dongge, I. A. Hummelgen, B. Hu, and F. E. Karasz, J. Appl. Phys. 86, 3181 (1999).
[54] P. W. M. Blom, M. J. M. de Jong, and M. G. van Munster, Phys. Rev. B 55, R656 (1997).
[55] H. A. Mizes, and E. M. Conwell, Phys. Rev. Lett. 70, 1505 (1993).
[56] E. M. Conwell, Phys. Rev. B 57, R12670 (1998).
[57] T. Blum, and H. Bässler, Chem. Phys. 123, 431 (1988).
[58] D. H. Dunlap, P. E. Parris, and V. M. Kenkre, Phys. Rev. Lett. 77, 542 (1996).
[59] Yu. N. Gartstein, and E. M. Conwell, Chem. Phys. Lett. 245, 351 (1995).
[60] D. H. Dumlap, P. E. Parris, and V. M. Kenkre, Phys. Rev. Lett. 77, 542 (1996).
[61] S. V. Novikov, D. H. Dunlap, V. M. Kenkre, P. E. Parris, and A. V. Vannikov, Phys. Rev. Lett. 81, 4472 (1998).
[62] S. W. DeLeeuw, J. W. Perram, and E. R. Smith, Proc. R. Soc. London A 373, 27 (1989).
[63] S. V. Novikov, and A. V. Vannikov, JETP 79, 482 (1994).
[64] V. I. Arkhipov, E. V. Emelianova, Y. H. Tak, and H. Bassler, J. Appl. Phys. 84, 848 (1998).
[65] P. S. Davids, Sh. M. Kogan, I. D. Parker, and D. L. Smith, Appl. Phys. Lett. 69, 2270 (1996).
[66] Yu. N. Gartstein, and E. M. Conwell, Chem. Phys. Lett. 255, 93 (1996).
[67] E. M. Conwell, and M. W. Wu, Appl. Phys. Lett. 70, 1867 (1997).
[68] V. N. Savvate'ev, and Z. Ovadyahu, "Slow Relaxation in a Fermi Glass," in Hopping and Related Phenomena: Proceedings of the 6th International Conference on Hopping and Related Phenomena, edited by O. Millo and Z. Ovadyahu, p.44 (1995).
[69] M. A. Lampert, and P. Mark, Current Injection in Solids, (Academic Press, NY, 1970).
[70] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A. Cronin, and M. E. Thompson, J. Appl. Phys. 79, 7991 (1996).
[71] P. S. Davids, I. H. Campbell, and D. Smith, J. Appl. Phys. 82, 6319 (1997).
[72] D. Ma, I. Hummelgen, B. Hu, and F. E. Karasz, J. Phys. D: Appl. Phys. 32, 2568 (1999).
[73] M. Koehler, and I. A. Hummelgen, J. Appl. Phys. 87, 3074 (2000).
[74] P. W. M. Blom, M. J. M. de Jong, and S. Breedijk, Appl. Phys. Lett. 71, 930 (1997).
[75] S. Berleb, W. Brutting, and M. Schwoerer, J. Appl. Phys. 83, 4403 (1998).
[76] B. K. Crone, P. S. Davids, I. H. Campbell, and D. L. Smith, J. Appl. Lett. 84, 833 (1998).
[77] J. Staudigel, M. Stössel, and J. Simmerer, J. Appl. Phys. 85, 3895 (1999).
[78] M. G. Harrison, J. Gruner, and G. C. W. Spencer, Syn. Met. 76, 71 (1996).
[79] A. J. Campbell, D. D. C. Bradley, and D. G. Lidzey, J. Appl. Phys. 82, 6326 (1997).
[80] M. Meier, S. Karg, and W. Reiss, J. Appl. Phys. 82, 1961 (1997).
[81] H. C. F. Martens, H. B. Brom, and P. W. M. Blom, Phys. Rev. B 60, R8489 (1999).
[82] A. Ioannidis, E. Forsythe, Yongli Cao, M. W. Wu, and E. M. Conwell, Appl. Phys. Lett. 72, 3038 (1998).
[83] J. Staudigel, M. Stössel, F. Steuber, and J. Simmerer, J. Appl. Phys. 86, 3895 (1999).
[84] M. Matsumura, A. Ito, and Y. Miyamae, Appl. Phys. Lett. 75, 1042 (1999).
[85] M. Pope, and C. E. Swenberg, Electronic Processes in Organic Crystals, Oxford University Press, New York, 1982.
[86] T. Yonezawa, T. Nagata, H. Kato, A. Imamura, and K. Morokuma, Introduction of Quantum Chemistry, Kagaku-Dojin, Japan, 1983.
[87] N. J. Turro, Molecular Photochemistry, Benjamin, San Francisco 1965.
[88] G. Gu, D. Z. Garbuzpv, P. E. Burrows, S. Venkatesh, S. R. Forest, and M. E. Thompson, Opt. Lett. 22, 396 (1997).
[89] T. Tsutsui, and S. Saito, in Intrinsically Conducting Polymer: An Emerging Technology, edited by M. Aldissi, Kluwer Academic, Dordrecht 1993, p. 123.
[90] C. Adachi, T. Tsutsui, and S. Saito, Optoelectron: Device Technol. 6, 25 (1991).
[91] C. Adachi, T. Tsutsui, and S. Saito, Appl. Phys. Lett. 57, 531 (1990).
[92] T. Tsutsui, E. Aminaka, and S. Saito, J. Appl. Phys. 79, 8808 (1996).
[93] C. P. Lin, T. Tsutsui, and S. Saito, J. Polym. Res. 2, 133 (1995).
[94] J. Littman, and P. Martic, J. Appl. Phys. 72, 1957 (1992).
[95] J. G. C. Veinot, and T. J. Marks, Acc. Chem. Res. 38, 632 (2005).
[96] G. Hughes, and M. R. Bryce, J. Mater. Chem. 15, 94 (2005).
[97] A. P. Kulkarni, C. J. Tonzola, A. Babel, and S. A. Jenekhe, Chem. Mater. 16, 4556 (2004).
[98] F. Huang, Y. J. Cheng, Y. Zhang, M. S. Liu, and A. K.-Y Jen, J. Mater. Chem. 18, 4495 (2008).
[99] N. Koch, J. Phys: Condens. Matter 20, 184008 (2008).
[100] H. L. Skriver, and N. M. Rosengaard, Phys. Rev. B 46, 7157 (1992).
[101] H. B. Michaelson, J. Appl. Phys. 48, 4729 (1997).
[102] H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater. 11, 605 (1999).
[103] S. Hüfner, Photoelectron Spectroscopy (Berlin: Springer) (1995).
[104] J. Birgerson, M. Fahlman, P. Broms, and W. R. Salaneck, Synth. Met. 80, 125 (1996).
[105] W. R. Salaneck, and J. L. Bredas, Adv. Mater. 8, 48 (1996).
[106] V. E. Choong, Y. Park, N. Shivaparan, C. W. Tang, and Y. Cao, Appl. Phys. Lett. 71, 1005 (1997).
[107] V. E. Choong, Y. Park, Y. Cao, T. Wehrmeister, K. Mullen, B. R. Hsieh, and C. W. Tang, Vac. Sci. Technol. A 15, 1745 (1997).
[108] V. E. Choong, Y. Park, Y. Cao, T. Wehrmeister, K. Mullen, B. R. Hsieh, and C. W. Tang, Appl. Phys. Lett. 69, 1492 (1996).
[109] F. Li, H. Tang, J. Anderegg, and J. Shinar, App. Phys. Lett. 70, 1233 (1997).
[110] G. E. Jabbour, B. Kippelen, N. R. Armstrong, and N. Peyghambarian, Appl. Phys. Lett. 73, 1185 (1998).
[111] F. Huang, H. B. Wu, J. B. Peng, W. Yang, and Y. Cao, Curr. Org. Chem. 11, 1207 (2007).
[112] S. H. Oh, S. I. Na, Y. C. Nah, D. Vak, S. S. Kim, and D. Y. Kim, Org. Electron. 8, 773 (2007).
[113] H. P. Wang, P. Lu, B. L. Wang, S. Qiu, M. R. Liu, M. Hanif, G. Cheng, S. Y. Liu, and Y. G. Ma, Macromol. Rapid Commun. 28, 1645 (2007).
[114] G. Zhou, Y. H. Geng, Y. X. Cheng, Z. Y. Xie, L. X. Wang, X. B. Jing, and F. S. Wang, Appl. Phys. Lett. 89, 233501 (2006).
[115] W. J. Zeng, H. B. Wu, C. Zhang, F. Huang, J. B. Peng, W. Yang, and Y. Cao, Adv. Mater. 19, 810 (2007).
[116] H. B. Wu, F. Huang, Y. Q. Mo, W. Yang, D. L. Wang, J. B. Peng, and Y. Cao, Adv. Mater. 16, 1826 (2004).
[117] F. Huang, L. T. Hou, H. B. Wu, X. H. Wang, H. L. Shen, W. Cao, W. Yang, and Y. Cao, J. Am. Chem. Soc. 126, 9845 (2004).
[118] W. L. Ma, P. K. Iyer, X. Gong, and G. C. Bazan, J. Am. Chem. Soc. 128, 14422 (2006).
[119] B. W. D'Andrade, and S. R. Forrest, Adv. Mater. 16, 1585 (2004).
[120] X. Y. Deng, W. M. Lau, K. Y. Wong, K. H. Low, H. F. Chow, and Y. Cao, Appl. Phys. Lett. 84, 3522 (2004).
[121] A. J. Campbell, D. D. C. Bradley, and H. Antoniadis, Appl. Phys. Lett. 79, 2133 (2001).
[122] J. H. Park, O. O. Park, J. W. Yu, J. K. Kim, and Y. C. Kim, Appl. Phys. Lett. 84, 1783 (2004).
[123] T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, S. N. Hsieh, and Y. S. Fu, Appl. Phys. Lett. 87, 013504 (2005).
[124] T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, S. N. Hsieh, Y. S. Fu, and C. T. Chung, Appl. Phys. Lett. 88, 113501 (2006).
[125] T. F. Guo, F. S. Yang, Z. J. Tsai, G. W. Feng, T. C. Wen, S. N. Hsieh, C. T. Chung, and C. I. Wu, Appl. Phys. Lett. 89, 051103 (2006).
[126] T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, C. I. Wu, and C. T. Chung, Appl. Phys. Lett. 89, 053507 (2006).
[127] T. H. Lee, J. C. A. Huang, G. L. Pakhomov, T. F. Guo, T. C. Wen, Y. S. Huang, C. C. Tsou, C. T. Chung, Y. C. Lin, and Y. J. Hsu, Adv. Funct. Mater. 18, 3036 (2008).
[128] C. I. Wu, C. T. Lin, Y. H. Chen, M. H. Chen, Y. J. Lu, and C. C. Wu, Appl. Phys. Lett. 88, 152104 (2006).
[129] J. Huang, Z. Xu, and Y. Yang, Adv. Funct. Mater. 17, 1966 (2007).
[130] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. dos Santos, J. L. Bredas, M. Logdund, and W. R. Salancek, Nature 397, 121 (1999).
[131] L. Akcelrud, Prog. Polym. Sci. 28, 975 (2003).
[132] S. Braun, W. R. Salaneck, and M. Fahlman, Adv. Mater. 21, 1450 (2009).
[133] L. Yan, N. J. Watkins, S. Zorba, Y. Cao, and C. W. Tang, Appl. Phys. Lett.81, 2752 (2008).
[134] X. Crispin, V. Geskin, A. Crispin, J. Cornil, R. Lazzaroni, W. R. Salaneck, and J. L. Brédas, J. Am. Chem. Soc. 124, 8131 (2002).
[135] Y. S. Huang, J. H. Jou, W. K. Weng, and J. M. Liu, Appl. Phys. Lett. 80, 2782 (2002).
[136] Y. H. Niu, H. Ma, Q. Xu, and A. K.-Y. Jen, App. Phys. Lett. 86, 083504 (2005).
[137] A. R. B. M. Yusoff, W. J. da Silva, J. P. M. Serbena, M. S. Meruvia, and I. A. Hümmelgen, Appl. Phys. Lett. 94, 253305 (2009).
[138] C. C .Wang, and G. H. Hsiue, J. Polym. Sci. Part A 31, 2601 (1993).
[139] M. Atreya, S. Li, E. T. Kang, K. G. Neoh, and K. L. Tan, Polym. Degrad. Dtab. 63, 53 (1999).
[140] N. Dam, M. M. Beerbom, J. C. Braunagel, and R. Schlaf, J. Appl. Phys. 97, 024909 (2005).
[141] R. Sutcliffe, W. W. Lee, J. F. Gaynor, J. D. Luttmer, D. Martini, J. Kelber, and M. A. Plano, Appl. Surf. Sci. 126, 43 (1998).
[142] J. Y. Jeng, M. W. Lin, Y. J. Hsu, T. C. Wen, and T. F. Guo, Adv. Mater.1, 1192 (2011).
[143] P. K. H. Ho, J. S. Kim, J. H. Burroughes, H. Becker, S. F. Y. Li, T. M. Brown, F. Cacialli, and R. H. Friend, Nature 404, 481 (2000).
[144] Q. Xu, J. Ouyang, Y. Yang, T. Ito, and J. Kido, Appl. Phys. Lett. 83, 4695 (2003).
[145] A. Yusoff, Z. Hassan, and H. Abu Hassan, Appl. Phys. Lett. 88, 242109 (2006).
[146] S. Cros, M. Firon, S. Lenfant, P. Trouslard, and L. Beck, Nucl.Instrum. Methods Phys. Res., Sect. B, 251, 257 (2006).
[147] X. Gong, P. K. Iyer, D. Moses, G. C. Bazan, A. J. Heeger, and S. S. Xiao, Adv. Funct. Mater. 13, 325 (2003).
[148] L. M. Chen, Z. Xu, Z. Hong, and Y. Yang, J. Mater. Chem. 20, 2575 (2010).
[149] M. Granström, and O. Inganäs, Appl. Phys. Lett. 68, 147 (1996).
[150] G. Tu, Q. Zhou, Y. Cheng, L. Wang, D. Ma, X. Jing, and F. Wang, Appl. Phys. Lett. 85, 2172 (2004).
[151] S. K. Lee, D. H. Hwang, B. J. Jung, N. S. Cho, J. Lee, J. D. Lee, and H. K. Shim, Adv. Funct. Mater. 15, 1647 (2005).
[152] C. Y. Chuang, P. I. Shih, C. H. Chien, F. I. Wu, and C. F. Shu, Macromolecules 40, 247 (2007).
[153] C. H. Kuo, W. K. Cheng, K. R. Lin, M. K. Leung, and K. H. Hsieh, J. Polym. Sci. Part A: Polym. Chem. 45, 4504 (2007).
[154] E. J. W. List, R. Guentner, P. S. de Freitas, and U. Scherf, Adv. Mater. 14, 374 (2002).
[155] M. H. Song, D. Kabra, B. Wenger, R. H. Friend, and H. J. Snaith, Adv. Funct. Mater. 19, 2130 (2009).
[156] A. W. Grice, D. D. C. Bradley, M. T. Bernius, M. Inbasekaran, W. W. Wu, and E. P. Woo, Appl. Phys. Lett. 73, 629 (1998).
[157] M. Cross, D. C. Müller, H. G. Nothofer, U. Scherf, D. Neher, C. Bräuchle, and K. Meerholz, Nature 405, 661 (2000).
[158] S. Janietz, D. D. C. Bradley, M. Grell, C. Giebeler, M. Inbasekaran, and E. P. Woo, Appl. Phys. Lett. 73, 2453 (1998).
[159] M. Redecker, D. D. C. Bradley, M. Inbasekaran, and E. P. Woo, Appl. Phys. Lett. 73, 1565 (1998).
[160] E. Zojer, A. Pogantsch, E. Hennebicq, D. Beljonne, J. L. Brédas, P. S. de Freitas, U. Scherf, and E. J. W. List, J. Chem. Phys. H, 6794 (2002).
[161] L. M. Herz, and R. T. Phillips, Phys. Rev. B 61, 13691 (2000).
[162] T. V. Woudenbergh, J. Wildeman, P. W. M. Blom, J. J. A. M. Bastiaansen, and B. M. W. Langeveld-Voss, Adv. Funct. Mater. 14, 677 (2004).
[163] T. Miteva, A. Meisel, W. Knoll, H. G. Nothofer, U. Scherf, D. C. Müller, K. Meerholz, A. Yasuda, and D. Neher, Adv. Mater. 13, 565 (2001).
[164] M. C. Hung, J. L. Liao, S. A. Chen, S. H. Chen, and A. C. Su, J. Am. Chem. Soc. 127, 14576 (2005).
[165] E. Wang, C. Li, Y. Mo, Y. Zhang, G. Ma, W. Shi, J. Peng, W. Yang, and Y. Cao, J. Mater. Chem. 16, 4133 (2006).
[166] R. T. Chen, S. H. Chen, B. Y. Hsieh, and Y. Chen, J. Polym. Sci. Part A: Polym. Chem. 47, 2821 (2009).
[167] W. F. Su, R. T. Chen, and Y. Chen, J. Polym. Sci. Part A: Polym. Chem. 49, 352 (2011).
[168] W. L. Yu, Y. Cao, J. Pei, W. Huang, and A. J. Heeger, Appl. Phys. Lett. 75, 3270 (1999).
[169] Y. He, S. Gong, R. Hattori, and J. Kanicki, Appl. Phys. Lett. 74, 2265 (1999).
[170] G. Kiaerner, M. H. Davey, W. D. Chen, J. C. Scott, and R. D. Miller, Adv. Mater. 10, 993 (1998).
[171] S. Setayesh, A. C. Grimsdale, T. Weil, V. Enkelmann, K. Müllen, F. Meghdadi, E. J. W. List, and G. Leising, J. Am. Chem. Soc. 123, 946 (2001).
[172] S. Xiao, M. Nguyen, X. Gong, Y. Cao, H. B. Wu, D. Moses, and A. J. Heeger, Adv. Funct. Mater. 13, 25 (2003).
[173] H. H. Lu, C. Y. Liu, T. H. Jen, J. L. Liao, H. E. Tseng, C. W. Huang, M. C. Hung, and S. A. Chen, Macromolecules 38, 10829 (2005).
[174] B. J. Chen, X. W. Sun, K. S. Wong, and X. Hu, Opt. Express 13, 26 (2005).
[175] C. I. Wu, C. T. Lin, Y. H. Chen, M. H. Chen, Y. J. Lu, and C. C. Wu, Appl. Phys. Lett. 88, 152104 (2006).
[176] G. E. Jabbour, Y. Kawabe, S. E. Shaheen, J. F. Wang, M. M. Morrell, B. Kippelen, and N. Peyghambarian, Appl. Phys. Lett. 71, 1762 (1997).
[177] J. Yoon, J. J. Kim, T. W. Lee, and O. O. Park, Appl. Phys. Lett. 76, 2152 (2000).
[178] S. N. Hsieh, S. W. Hsiao, T. Y. Chen, C. Y. Li, C. H. Lee, T. F. Guo, Y. J. Hsu, T. L. Lin, Y. Wei, and T. C. Wen, J. Mater. Chem. 21, 8715 (2011).
[179] T. W. Lee, O. O. Park, L. M. Do, T. Zyung, T. Ahn, and H. K. Shim, J. Appl. Phys. 90, 2128 (2001).
[180] C. G. Bazuin, and A. Eisenberg, Ind. Eng. Chem. Prod. Res. Dev. 20, 271 (1981).
[181] M. W. Lin, T. C. Wen, Y. J. Hsu, and T. F. Guo, J. Mater. Chem. 21, 18840 (2011).
[182] H. Ma, H. L. Yip, F. Huang, and A. K.-Y. Jen, Adv. Funct. Mater. 20, 1371 (2010).
[183] S. H. Oh, D. Vak, S. I. Na, T. W. Lee, and D. Y. Kim, Adv. Mater. 20, 1624 (2008).
[184] T. M. Brown, R. H. Friend, I. S. Millard, D. J. Lacey, T. Butler, J. H. Burroughes, and F. Cacialli, J. Appl. Phys. 93, 6159 (2003).
[185] Y. E. Kim, H. Park, and J. J. Kim, Appl. Phys. Lett. 69, 599 (1996).
[186] I. H. Campbell, J. D. Kress, R. L. Martin, D. L. Smith, N. N. Barashkov, and J. P. Ferraris, Appl. Phys. Lett. 71, 3528 (1997).
[187] G. Y. Jung, C. Pearson, L. E. Horsburgh, I. D. W. Samuel, A. P. Monkman, and M. C. Petty, J. Phys. D 33, 1029 (2000).
[188] S. Wu, S. Han, Y. Zheng, H. Zheng, N. Liu, L. Wang, Y. Cao, and J. Wang, Org. Electron. 12, 504 (2011).
[189] J. S. Kim, R. H. Friend, I. Grizzi, and J. H. Burroughes, Appl. Phys. Lett. 87, 023506 (2005).
[190] R. Q. Png, P. J. Chia, S. Sivaramakrishnan, L. Y. Wong, M. Zhou, L. L. Chua, and P. K. H. Ho, Appl. Phys. Lett. 91, 013511 (2007).
[191] A. van Dijken, A. Perro, E. A. Meulenkamp, and K. Brunner, Org. Electron. 4, 131 (2003).


論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-07-12起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-07-12起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw