進階搜尋


下載電子全文  
系統識別號 U0026-0502202021553600
論文名稱(中文) 以軸箱頻率響應函數矩陣量測輪軌力
論文名稱(英文) Wheel/Rail Contact Force Measurement with Frequency Response Function Matrix of Axle Box
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 108
學期 1
出版年 109
研究生(中文) 郭晉瑋
研究生(英文) Chin-Wei Kuo
學號 N66074459
學位類別 碩士
語文別 中文
論文頁數 70頁
口試委員 指導教授-郭振銘
口試委員-黃銘智
口試委員-歐文爵
中文關鍵字 頻率響應函數  輪軌接觸力  側向力  垂向力  Arduino 
英文關鍵字 Frequency Response Function  wheel/Rail Contact Force  Lateral Force  Vertical Force  Arduino 
學科別分類
中文摘要 國際上軌道安全大多都以Nadal提出之脫軌係數作為規範訂定背景理論,其中垂向力與側向力為影響脫軌係數最主要之參數,然而輪軌接觸力隨時間接觸面積不同、正向力也不斷改變,量測不易。
本文參考日本使用應變規量測方法,在兼顧無線傳輸的要求下使用Arduino 應變規模組透過Zigbee做為無線傳輸媒介,將量測數據回傳電腦計算輪軌接觸力,然而鋼輪變形量太小,實驗結果失敗。因此提出使用頻率響應函數矩陣之概念量測輪軌力,布置加速規於軸箱,並利用衝擊槌敲擊獲得系統頻率響應函數,透過量測車行加速度代入頻率響應函數矩陣計算輪軌力。
為應證實驗方法之可靠度,本文利用SIMPACK模擬實驗台車於試驗軌行駛之輪軌接觸力,核對實驗之結果。比較結果顯示垂向力誤差介於5%~7%,平均誤差6.17%,側向力誤差介於0.4%~25%,平均誤差15.94%,誤差值與器材雜訊處理、頻率響應函數正確性有關,透過良好儀器及多次實驗消除偶然誤差可提升準確度,期待此方法未來能應用於實車測量,隨長時間監控可做為軌道安全之依據及軌道養護之參考。
英文摘要 The derailment coefficient is based on the (L/V) ratio where L is the lateral force and V is the vertical force acting on the wheelset. Japan Railway Technical Research Institute(RTRI) measure rail/wheel contact force with a special wheelsets equipped with strain gauges. Considering wireless transmission, use Arduino strain gauge modules and Zigbee to measure rail/wheel contact force in this study. But the deformation of the wheel is too small. The Arduino strain gauge can not deteact any stain. Therefore, using Frequency Response Function(FRF) to measure rail/wheel contact force. FRF is generally measured by the inputs as excitation forces using impact hammer and outputs as accelerations using accelerometers.
In order to verify the accuracy of the FRF method, simulate the wheel-rail contact force by SIMPACK in this study. The comparison results show that the vertical force deviation is between 5% and 7%, the average deviation is 6.17%, and the lateral force deviation is between 0.4% and 25%, the average deviation is 15.94%. The deviation value is influenced by the equipment noise processing and the correctness of frequency response function. It is expected that this method can be applied to actual vehicle measurements for track safety in the future.
論文目次 摘要 I
EXTENDED ABSTRACT II
致謝 X
目錄 XII
圖目錄 XV
表目錄 XVIII
第1章 緒論 1
1.1 前言 1
1.2 動機與目的 2
1.3 研究流程 3
第2章 相關理論與文獻介紹 5
2.1 脫軌理論 5
2.2 輪軌力量測 7
2.2.1 鋼軌上量測 7
2.2.2 車體上量測 7
2.3 力量識別(Force Identification) 10
第3章 應變規實驗 12
3.1 理論介紹 13
3.1.1 應變規原理 13
3.1.2 霍爾效應(Hall Effect) 15
3.2 實驗方法與流程 16
3.2.1 儀器設定 17
3.2.2 儀器布置 18
3.3 設備介紹 21
3.3.1 Arduino開發板模組 21
3.3.2 軟體介紹 23
3.4 量測結果 26
第4章 頻率響應函數矩陣法 29
4.1 理論介紹 29
4.1.1 衝擊槌原理 29
4.1.2 快速傅立葉轉換(Fast Fourier Transform,FFT) 31
4.1.3 頻率響應函數(Frequency Response Function) 32
4.2 實驗方法與流程 33
4.2.1 儀器布置及設定 35
4.2.2 衝擊槌實驗 36
4.2.3 頻率響應函數矩陣取得 39
4.2.4 輪軌力量測 40
4.3 器材介紹 41
4.3.1 衝擊槌(Impact Hammer) 41
4.3.2 加速規(Accelerometer) 42
4.3.3 資料擷取設備 42
4.3.4 使用軟體 44
4.4 量測結果 45
4.4.1 衝擊槌實驗 45
4.4.2 頻率響應函數矩陣驗證 48
4.4.3 車行量測 52
第5章 軟體模擬與實驗比較 53
5.1 軟體介紹 53
5.1.1 SolidWorks介紹 53
5.1.2 Simpack介紹 54
5.2 模型建立流程 55
5.2.1 列車模型 56
5.2.2 軌道模型 62
5.3 模擬結果 65
第6章 結論與建議 68
6.1 結論 68
6.2 建議 69
參考文獻 70
參考文獻 [1] 黃荻昌, "台灣鐵路發展經緯──從歷史軌跡看台灣鐵路成長," 2008.
[2] J. Nadal, Theorie de la stabilite des locomotives PART II: MOUV EMENT DE LACET. Dunod et Vicq, 1896.
[3] D. Cortis, S. Giulianelli, G. Malavasi, and S. Rossi, "Self-diagnosis method for checking the wayside systems for wheel-rail vertical load measurement," Transport Problems, vol. 12, 2017.
[4] E. Gomez, J. Giménez, and A. Alonso, "Method for the reduction of measurement errors associated to the wheel rotation in railway dynamometric wheelsets," Mechanical Systems and Signal Processing, vol. 25, no. 8, pp. 3062-3077, 2011.
[5] B. Qiao, X. Zhang, J. Gao, and X. Chen, "Impact-force sparse reconstruction from highly incomplete and inaccurate measurements," Journal of Sound and Vibration, vol. 376, pp. 72-94, 2016, doi: 10.1016/j.jsv.2016.04.040.
[6] 李建興、童柏源、謝晉洲, "速克達機車把手振動傳遞路徑分析," 中華民國力學學會第三十三屆全國力學會議 11/13 2009.
[7] G. Liu, H. Liu, A. Wei, J. Xiao, P. Wang, and S. Li, "A new device for stress monitoring in continuously welded rails using bi-directional strain method," Journal of Modern Transportation, vol. 26, no. 3, pp. 179-188, 2018.
[8] K. Sekuła and P. Kołakowski, "Piezo‐based weigh‐in‐motion system for the railway transport," Structural Control and Health Monitoring, vol. 19, no. 2, pp. 199-215, 2012.
[9] Y.-S. Ham, D.-H. Lee, S.-J. Kwon, W.-H. You, and T.-Y. Oh, "Continuous measurement of interaction forces between wheel and rail," International Journal of Precision Engineering and Manufacturing, vol. 10, no. 1, pp. 35-39, 2009.
[10] D. Milković, G. Simić, Ž. Jakovljević, J. Tanasković, and V. Lučanin, "Wayside system for wheel–rail contact forces measurements," Measurement, vol. 46, no. 9, pp. 3308-3318, 2013.
[11] A. Matsumoto et al., "Actual states of wheel/rail contact forces and friction on sharp curves–Continuous monitoring from in-service trains and numerical simulations," Wear, vol. 314, no. 1-2, pp. 189-197, 2014.
[12] A. Matsumoto et al., "A new measuring method of wheel–rail contact forces and related considerations," Wear, vol. 265, no. 9-10, pp. 1518-1525, 2008.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-02-11起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-02-11起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw