進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0502202002125500
論文名稱(中文) 應用水熱法成長銻和鎵摻雜氧化鋅奈米棒陣列於奈米摩擦發電機之研究
論文名稱(英文) Growth of Aligned Sb- and Ga-doped Zinc Oxide Nanorod Arrays using Hydrothermal for Triboelectric Nanogenerators
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 108
學期 1
出版年 109
研究生(中文) 陳幸男
研究生(英文) Sin-Nan Chen
學號 N58001222
學位類別 博士
語文別 英文
論文頁數 164頁
口試委員 指導教授-劉全璞
口試委員-林宗宏
口試委員-賴盈至
口試委員-陳嘉勻
口試委員-王瑞琪
中文關鍵字 銻摻雜氧化鋅奈米棒陣列  鎵摻雜氧化鋅奈米棒陣列  奈米摩擦發電機  摩擦序列  氧化鋅表面能帶彎曲 
英文關鍵字 Sb-doped zinc oxide nanorod array  Ga-doped zinc oxide nanorod array  triboelectric nanogenerator  triboelectric series  zinc oxide surface band bending 
學科別分類
中文摘要 本研究主要應用水熱法摻雜銻和鎵不同導電性種類跟一系列載子濃度氧化鋅奈米棒陣列於奈米摩擦發電機,探討奈米棒內部載子濃度和表面電子濃度等因素來連繫奈米摩擦發電機的效能。文獻提到Thermionic Model被用來解釋摩擦時電子轉移行為。對奈米摩擦發電機效能,Fermi-Dirac Distribution Probability Function會是關鍵因素。預期摻雜氧化鋅奈米棒會影響奈米摩擦發電機效能。
首先,將成功地成長未摻雜及一系列銻摻雜(p-type)載子濃度1015 ~ 1018 cm-3氧化鋅奈米棒陣列跟帶摩擦負電性聚二甲基矽氧烷(PDMS,Poly(dimethylsiloxane))組裝元件,以接觸分離模式施加應力互相對壓。其元件輸出短路電流密度(或開路電壓)隨摻雜濃度增加而略微上升,從未摻雜2.0 × 10-8 A/cm2至最高摻雜濃度1.1 × 10-7 A/cm2接近一個order增加,同時跟帶摩擦正電性nylon互相對壓來量測摩擦輸出。導電原子力顯微鏡證實摻雜後氧化鋅為p-type,因電洞密度多於電子密度為p-type特性,直覺地、會減少元件摩擦效能。但是,表面分析X-ray光電子光譜顯示奈米棒表面蘊含豐富Sb+3離子;紫外光電子光譜分析表面電子結構為n-type特性。從表面電子能帶圖往下彎曲來解釋摩擦靜電荷轉移為p-type氧化鋅表面提供電子給PDMS。
另一部分,成長未摻雜及一系列鎵摻雜(n-type)載子濃度1014 ~ 1018 cm-3氧化鋅奈米棒陣列跟PDMS同樣以相同施力模式對壓摩擦。其元件輸出短路電流密度(或開路電壓)隨著摻雜濃度增加而上升,從未摻雜1.3 × 10-9 A/cm2至最高載子濃度1.2 × 10-7 A/cm2 改善約兩個order,也跟帶摩擦正電性nylon互相對壓來量測摩擦輸出。光致螢光光譜儀顯示摻雜後氧化鋅光學能隙些微寬化,是為Burstein-Moss效應。X-ray光電子光譜解釋鎵原子取代鋅位置導致氧離子化學位移偏移;紫外光電子光譜顯示Valence Band Maximum和Work Function隨載子濃度增加而增大跟減小。能帶圖描述表面能帶從最初朝上反轉至平坦甚至些微下彎來解釋摻雜氧化鋅表面提供電子給PDMS。
英文摘要 This dissertation proposes a plan for exploring the effect of doping on triboelectrification (contact electrification). The proposed triboelectric nanogenerator is composed of a series of Sb- and Ga-doped nanorod arrays with various carrier concentrations fabricated using hydrothermal via doping rubbing with polydimethylsiloxane (PDMS) or nylon. Regarding electron transfer in triboelectrification, the thermionic model indicates that the Fermi-Dirac distribution function dominates and that the change in electron transfer behavior is expected to occur when a semiconducting zinc oxide nanorod array is doped.
The first part of this dissertation describes the proposed triboelectric nanogenerator consisting of a series of Sb-doped nanorods arrays with various carrier concentrations rubbing versus negatively charged triboelectric PDMS and positively charged triboelectric nylon with the applied force in contact-separation mode. The results demonstrate that output current density is correlated with carrier concentration. The electric conductivity and carrier concentration are determined using conductive atomic force microscopy. Counterintuitively, p-type zinc oxide contributes more electrons to the PDMS counterpart than does an undoped sample. X-ray photoelectron spectroscopy indicates that the high electron concentration on the surface is due to Sb+3 ions and reflects the above-half-energy-band-gap valence band maximum, as characterized by ultraviolet photoelectron spectroscopy. Therefore, surface downward band bending likely explains the eccentric behavior.
The second part of this dissertation describes the proposed triboelectric nanogenerator consisting of a series of Ga-doped nanorod arrays with various carrier concentrations. The output current density of the triboelectric nanogenerator increased with increasing carrier concentration. The photoluminescence for the energy band gap exhibits the Burstein-Moss effect after doping. Photoelectron spectroscopy indicates that Ga replaces the position of Zn, leading to a chemical shift of O-2. The corresponding valence band maximum and work function for a series of Ga-doped samples show increasing and decreasing trends, respectively. The schematic energy band diagrams show an initially upward and then flat or slightly downward band condition, which describes the tendency in electron transfer from n-type Ga-doped nanorods to PDMS.
論文目次 TABLE OF CONTENTS
摘 要 I
ABSTRACT III
ACKNOWLEDGEMENTS V
LIST OF FIGURES VIII
LIST OF TABLES XIII
Chapter 1. Introduction and Motivation for Triboelectric Nanogenerator 1
1.1 Introduction to triboelectric nanogenerator 1
1.2 Challenges for semiconducting tribo-nanogenerators 18
1.3 Motivation for this dissertation 20
1.4 Organization of the dissertation 21
Chapter 2. Literature Review of zinc oxide 22
2.1 General properties of zinc oxide wurtzite structure 22
2.2 Electronic band structure of zinc oxide 27
2.3 Photoluminescence of zinc oxide 30
2.4 Literature review of Sb and Ga-doped zinc oxide 38
Chapter 3. Materials and Method 43
3.1 Experimental flow chart 43
3.2 Growth of Sb- and Ga-doped aligned zinc oxide nanorod arrays through hydrothermal method 44
3.2.1 Growth of undoped and 4, 2, 1, 0.2 M% Sb-doped aligned zinc oxide nanorod arrays 44
3.2.2 Growth of undoped and 1, 2, 3, and 4 M% Ga-doped aligned zinc oxide nanorod arrays 45
3.3 Device fabrication for triboelectric nanogenerator 47
3.3.1 Triboelectric nanogenerator containing Sb-doped aligned zinc oxide nanorod arrays 47
3.3.2 Triboelectric nanogenerator containing Ga-doped aligned zinc oxide nanorod arrays 47
3.4 Characterization of undoped, Sb-doped, and Ga-doped aligned zinc oxide nanorod arrays 49
3.5 Devices for triboelectric performance testing 51
3.5.1 Sb-doped triboelectric nanogenerator 51
3.5.2 Ga-doped triboelectric nanogenerator 51
Chapter 4. Triboelectric Nanogenerator based on Sb-doped Aligned Zinc Oxide Nanorod Arrays 52
4.1 Morphological analysis 52
4.2 Output performance of triboelectric nanogenerator 57
4.3 Electrical conductivity analysis 74
4.4 Surface analysis by photoelectron emission spectroscopy 77
4.5 Proposed surface energy downward bending diagrams and tribocharges transfer for triboelectric nanogenerators 82
Chapter 5. Triboelectric Nanogenerator based on Ga-doped Aligned Zinc Oxide Nanorod Array 94
5.1 Morphological and microstructural analysis 94
5.2 Structural defects analysis 100
5.3 Electrical conductivity analysis 107
5.4 Output performance of triboelectric nanogenerators 110
5.5 Surface analysis 122
5.6 Proposed surface energy downward bending diagrams and tribocharge transfer for triboelectric nanogenerators 133
5.7 Further discussions 147
Chapter 6. Conclusions and Future Directions 149
6.1 Conclusions 149
6.2 Future Perspectives 152
References 153
Publication List 163
參考文獻 References

1 Fan, F.-R., Tian, Z.-Q. & Wang, Z. L. Flexible triboelectric generator. Nano energy 1, 328-334 (2012).
2 Hinchet, R. et al. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365, 491-494 (2019).
3 Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors - Principles, problems and perspectives. Faraday Discuss. 176, 447-458, doi:10.1039/c4fd00159a (2014).
4 Zhu, G. et al. Triboelectric-Generator-Driven Pulse Electrodeposition for Micropatterning. Nano Letters 12, 4960-4965, doi:10.1021/nl302560k (2012).
5 Zhu, G. et al. Linear-Grating Triboelectric Generator Based on Sliding Electrification. Nano Letters 13, 2282-2289, doi:10.1021/nl4008985 (2013).
6 Yang, Y. et al. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. Acs Nano 7, 7342-7351 (2013).
7 Wang, S., Xie, Y., Niu, S., Lin, L. & Wang, Z. L. Freestanding triboelectric‐layer‐based nanogenerators for harvesting energy from a moving object or human motion in contact and non‐contact modes. Adv. Mater. 26, 2818-2824 (2014).
8 Wang, Z. L. On Maxwell's displacement current for energy and sensors: the origin of nanogenerators. Materials Today 20, 74-82 (2017).
9 Zou, H. et al. Quantifying the triboelectric series. Nature Communications 10, 1427 (2019).
10 Zhang, C. et al. Rotating‐disk‐based direct‐current triboelectric nanogenerator. Advanced Energy Materials 4, 1301798 (2014).
11 Guo, H. Y. et al. All-in-One Shape-Adaptive Self-Charging Power Package for Wearable Electronics. Acs Nano 10, 10580-10588, doi:10.1021/acsnano.6b06621 (2016).
12 Yang, J. et al. Triboelectrification-Based Organic Film Nanogenerator for Acoustic Energy Harvesting and Self-Powered Active Acoustic Sensing. Acs Nano 8, 2649-2657, doi:10.1021/nn4063616 (2014).
13 Wang, S. H. et al. Maximum Surface Charge Density for Triboelectric Nanogenerators Achieved by Ionized-Air Injection: Methodology and Theoretical Understanding. Adv. Mater. 26, 6720-6728, doi:10.1002/adma.201402491 (2014).
14 Yang, Y. et al. Hybrid Energy Cell for Degradation of Methyl Orange by Self-Powered Electrocatalytic Oxidation. Nano Letters 13, 803-808, doi:10.1021/nl3046188 (2013).
15 Yang, Y. et al. Silicon-Based Hybrid Energy Cell for Self-Powered Electrodegradation and Personal Electronics. ACS Nano 7, 2808-2813, doi:10.1021/nn400361p (2013).
16 Yang, Y. et al. A hybrid energy cell for self-powered water splitting. Energy & Environmental Science 6, 2429-2434, doi:10.1039/C3EE41485J (2013).
17 Hsiao, V. K. et al. Photo-carrier extraction by triboelectricity for carrier transport layer-free photodetectors. Nano Energy 65, 103958 (2019).
18 Saravanakumar, B., Mohan, R., Thiyagarajan, K. & Kim, S. J. Fabrication of a ZnO nanogenerator for eco-friendly biomechanical energy harvesting. RSC Adv. 3, 16646-16656, doi:10.1039/c3ra40447a (2013).
19 Ko, Y. H., Nagaraju, G., Lee, S. H. & Yu, J. S. PDMS-based Triboelectric and Transparent Nanogenerators with ZnO Nanorod Arrays. ACS Appl. Mater. Interfaces 6, 6631-6637, doi:10.1021/am5018072 (2014).
20 Lee, S., Ko, W. & Hong, J. Enhanced Performance of Triboelectric Nanogenerators Integrated with ZnO Nanowires. Journal of nanoscience and nanotechnology 14, 9319-9322 (2014).
21 Chen, S. N., Chen, C. H., Lin, Z. H., Tsao, Y. H. & Liu, C. P. On enhancing capability of tribocharge transfer of ZnO nanorod arrays by Sb doping for anomalous output performance improvement of triboelectric nanogenerators. Nano Energy 45, 311-318, doi:10.1016/j.nanoen.2018.01.013 (2018).
22 Chen, S.-N., Huang, M.-Z., Lin, Z.-H. & Liu, C.-P. Enhancing charge transfer for ZnO nanorods based triboelectric nanogenerators through Ga doping. Nano Energy 65, 104069 (2019).
23 Seung, W. et al. Nanopatterned textile-based wearable triboelectric nanogenerator. ACS nano 9, 3501-3509 (2015).
24 Zhang, C., Tang, W., Zhang, L., Han, C. & Wang, Z. L. Contact electrification field-effect transistor. ACS nano 8, 8702-8709 (2014).
25 Zhang, C. & Wang, Z. L. Tribotronics—A new field by coupling triboelectricity and semiconductor. Nano Today 11, 521-536 (2016).
26 Zhang, C. et al. Organic Tribotronic Transistor for Contact-Electrification-Gated Light-Emitting Diode. Advanced Functional Materials 25, 5625-5632, doi:10.1002/adfm.201502450 (2015).
27 Pang, Y. K. et al. Tribotronic transistor sensor for enhanced hydrogen detection. Nano Research 10, 3857-3864, doi:10.1007/s12274-017-1599-y (2017).
28 Xue, F. et al. MoS2 tribotronic transistor for smart tactile switch. Advanced Functional Materials 26, 2104-2109 (2016).
29 Wu, J. M., Lin, Y. H. & Yang, B.-Z. Force-pad made from contact-electrification poly(ethylene oxide)/InSb field-effect transistor. Nano Energy 22, 468-474, doi:https://doi.org/10.1016/j.nanoen.2016.02.048 (2016).
30 Wang, Z. L., Chen, J. & Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy & Environmental Science 8, 2250-2282 (2015).
31 Wang, H., Huang, C.-C. & Polcar, T. Controllable Tunneling Triboelectrification of Two-Dimensional Chemical Vapor Deposited MoS 2. Scientific reports 9, 334 (2019).
32 Zhou, Y. S. et al. In situ quantitative study of nanoscale triboelectrification and patterning. Nano letters 13, 2771-2776 (2013).
33 Zhou, Y. S. et al. Manipulating nanoscale contact electrification by an applied electric field. Nano letters 14, 1567-1572 (2014).
34 Lin, S. Q., Xu, L., Zhu, L. P., Chen, X. Y. & Wang, Z. L. Electron Transfer in Nanoscale Contact Electrification: Photon Excitation Effect. Adv. Mater. 31, doi:10.1002/adma.201901418 (2019).
35 Xu, C. et al. On the electron‐transfer mechanism in the contact‐electrification effect. Adv. Mater. 30, 1706790 (2018).
36 Seol, M. L., Han, J. W., Moon, D. I. & Meyyappan, M. Triboelectric nanogenerator for Mars environment. Nano Energy 39, 238-244, doi:10.1016/j.nanoen.2017.07.004 (2017).
37 Shen, J. L., Li, Z. L., Yu, J. Y. & Ding, B. Humidity-resisting triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy 40, 282-288, doi:10.1016/j.nanoen.2017.08.035 (2017).
38 Zhang, Q., Xu, R. & Cai, W. Pumping electrons from chemical potential difference. Nano Energy 51, 698-703, doi:https://doi.org/10.1016/j.nanoen.2018.07.016 (2018).
39 Meyer, B. & Marx, D. Density-functional study of the structure and stability of ZnO surfaces (vol 67, art no 035403, 2003). Phys. Rev. B 67, 1, doi:10.1103/PhysRevB.67.039902 (2003).
40 Pearton, S., Norton, D., Ip, K., Heo, Y. & Steiner, T. Recent progress in processing and properties of ZnO. Progress in materials science 50, 293-340 (2005).
41 Rössler, U. Energy bands of hexagonal II-VI semiconductors. Physical Review 184, 733 (1969).
42 Usuda, M., Hamada, N., Kotani, T. & van Schilfgaarde, M. All-electron GW calculation based on the LAPW method: Application to wurtzite ZnO. Phys. Rev. B 66, 125101 (2002).
43 Langer, D. & Vesely, C. Electronic core levels of zinc chalcogenides. Phys. Rev. B 2, 4885 (1970).
44 Powell, R., Spicer, W. & McMenamin, J. Location of the Zn 3 d States in ZnO. Physical Review Letters 27, 97 (1971).
45 Girard, R. et al. Electronic structure of ZnO (0001) studied by angle-resolved photoelectron spectroscopy. Surface Science 373, 409-417 (1997).
46 Ranke, W. Separation of the partial s-and p-densities of valence states of ZnO from UPS-measurements. Solid State Communications 19, 685-688 (1976).
47 Göpel, W., Pollmann, J., Ivanov, I. & Reihl, B. Angle-resolved photoemission from polar and nonpolar zinc oxide surfaces. Phys. Rev. B 26, 3144 (1982).
48 Greene, L. E. et al. Low‐temperature wafer‐scale production of ZnO nanowire arrays. Angewandte Chemie International Edition 42, 3031-3034 (2003).
49 Wang, H., Baek, S., Song, J., Lee, J. & Lim, S. Microstructural and optical characteristics of solution-grown Ga-doped ZnO nanorod arrays. Nanotechnology 19, 075607 (2008).
50 Wang, H., Dong, S., Zhou, X., Hu, X. & Chang, Y. Effect of synthesis conditions on microstructures and photoluminescence properties of Ga doped ZnO nanorod arrays. Physica E: Low-dimensional Systems and Nanostructures 44, 307-312 (2011).
51 Phan, D.-T. & Chung, G.-S. Effects of defects in Ga-doped ZnO nanorods formed by a hydrothermal method on CO sensing properties. Sensors and Actuators B: Chemical 187, 191-197 (2013).
52 Teke, A. et al. Excitonic fine structure and recombination dynamics in single-crystalline ZnO. Phys. Rev. B 70, 195207 (2004).
53 Zhong, J. et al. Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition. Applied Physics Letters 83, 3401-3403 (2003).
54 Mandalapu, L., Xiu, F., Yang, Z. & Liu, J. Ultraviolet photoconductive detectors based on Ga-doped ZnO films grown by molecular-beam epitaxy. Solid-state electronics 51, 1014-1017 (2007).
55 Djurišić, A. et al. Defect emissions in ZnO nanostructures. Nanotechnology 18, 095702 (2007).
56 Kim, Y. Y., Kong, B. H. & Cho, H. K. Vertically arrayed Ga-doped ZnO nanorods grown by magnetron sputtering: The effect of Ga contents and microstructural evaluation. Journal of Crystal Growth 330, 17-21 (2011).
57 Fan, J. C., Sreekanth, K., Xie, Z., Chang, S. & Rao, K. V. p-Type ZnO materials: theory, growth, properties and devices. Progress in Materials Science 58, 874-985 (2013).
58 Wang, F. et al. An aqueous solution-based doping strategy for large-scale synthesis of Sb-doped ZnO nanowires. Nanotechnology 22, 225602 (2011).
59 Limpijumnong, S., Zhang, S., Wei, S.-H. & Park, C. Doping by large-size-mismatched impurities: the microscopic origin of arsenic-or antimony-doped p-type zinc oxide. Physical review letters 92, 155504 (2004).
60 Lupan, O. et al. Synthesis and characterization of Ag-or Sb-doped ZnO nanorods by a facile hydrothermal route. The Journal of Physical Chemistry C 114, 12401-12408 (2010).
61 Ilican, S., Caglar, Y., Caglar, M., Yakuphanoglu, F. & Cui, J. Preparation of Sb-doped ZnO nanostructures and studies on some of their properties. Physica E: Low-dimensional Systems and Nanostructures 41, 96-100 (2008).
62 Park, G. C., Hwang, S. M., Lim, J. H. & Joo, J. Growth behavior and electrical performance of Ga-doped ZnO nanorod/p-Si heterojunction diodes prepared using a hydrothermal method. Nanoscale 6, 1840-1847 (2014).
63 Pineda-Hernandez, G., Escobedo-Morales, A., Pal, U. & Chigo-Anota, E. Morphology evolution of hydrothermally grown ZnO nanostructures on gallium doping and their defect structures. Materials Chemistry and Physics 135, 810-817 (2012).
64 Hsiao, C.-H. et al. Field-emission and photoelectrical characteristics of Ga–ZnO nanorods photodetector. IEEE Transactions on Electron Devices 60, 1905-1910 (2013).
65 Bera, A. & Basak, D. Carrier relaxation through two-electron process during photoconduction in highly UV sensitive quasi-one-dimensional ZnO nanowires. Applied Physics Letters 93, 053102 (2008).
66 Lee, J.-H., Lee, K. Y., Kumar, B. & Kim, S.-W. Synthesis of Ga-doped ZnO nanorods using an aqueous solution method for a piezoelectric nanogenerator. Journal of nanoscience and nanotechnology 12, 3430-3433 (2012).
67 Yang, L., Zhou, H., Xue, M., Song, Z. & Wang, H. A self-powered, visible-blind ultraviolet photodetector based on n-Ga:ZnO nanorods/p-GaN heterojunction. Sensors and Actuators A: Physical 267, 76-81, doi:https://doi.org/10.1016/j.sna.2017.08.007 (2017).
68 Iwantono, I. et al. Performance of Dye-Sensitized Solar Cell Utilizing Ga-ZnO Nanorods: Effect of Ga Concentration. Int. J. Electrochem. Sci 11, 7499-7506 (2016).
69 Yao, I.-C., Lee, D.-Y., Tseng, T.-Y. & Lin, P. Fabrication and resistive switching characteristics of high compact Ga-doped ZnO nanorod thin film devices. Nanotechnology 23, 145201 (2012).
70 Huang, C.-Y., Ho, Y.-T., Hung, C.-J. & Tseng, T.-Y. Compact Ga-doped ZnO nanorod thin film for making high-performance transparent resistive switching memory. IEEE Transactions on Electron Devices 61, 3435-3441 (2014).
71 He, J. H., Hsin, C. L., Liu, J., Chen, L. J. & Wang, Z. L. Piezoelectric gated diode of a single ZnO nanowire. Adv. Mater. 19, 781-784 (2007).
72 Lin, S., Song, J., Lu, Y. & Wang, Z. Identifying individual n-and p-type ZnO nanowires by the output voltage sign of piezoelectric nanogenerator. Nanotechnology 20, 365703 (2009).
73 Lu, M.-P. et al. Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano letters 9, 1223-1227 (2009).
74 Wang, Z. L. & Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242-246 (2006).
75 Zhang, Z. et al. Quantitative analysis of current–voltage characteristics of semiconducting nanowires: decoupling of contact effects. Advanced functional materials 17, 2478-2489 (2007).
76 Yang, T. et al. Sb doping behavior and its effect on crystal structure, conductivity and photoluminescence of ZnO film in depositing and annealing processes. Journal of Alloys and Compounds 509, 5426-5430 (2011).
77 Uhlrich, J., Olson, D., Hsu, J. & Kuech, T. Surface chemistry and surface electronic properties of ZnO single crystals and nanorods. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 27, 328-335 (2009).
78 Kurbanov, S., Yang, W. C. & Kang, T. W. Kelvin probe force microscopy of defects in ZnO nanocrystals associated with emission at 3.31 eV. Applied physics express 4, 021101 (2011).
79 Ben, C. V., Cho, H. D., Kang, T. W. & Yang, W. Surface potential measurement of As‐doped homojunction ZnO nanorods by Kelvin probe force microscopy. Surface and Interface Analysis 44, 755-758 (2012).
80 Ren, C.-Y., Chiou, S.-H. & Hsue, C.-S. Ga-doping effects on electronic and structural properties of wurtzite ZnO. Physica B: Condensed Matter 349, 136-142 (2004).
81 Zhu, R. & Yang, R. Separation of the piezotronic and piezoresistive effects in a zinc oxide nanowire. Nanotechnology 25, 345702 (2014).
82 Hao, H. et al. Piezoelectric potential in single-crystalline ZnO nanohelices based on finite element analysis. Nanomaterials 7, 430 (2017).
83 Ristein, J. Surface transfer doping of semiconductors. Science 313, 1057-1058 (2006).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2030-02-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2030-02-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw