進階搜尋


下載電子全文  
系統識別號 U0026-0502201817413700
論文名稱(中文) 訓練成為古力寶專家:知覺專家假說的再檢驗
論文名稱(英文) Training to become Greeble experts: A re-examination of perceptual expertise hypothesis
校院名稱 成功大學
系所名稱(中) 心理學系
系所名稱(英) Department of Psychology
學年度 106
學期 1
出版年 107
研究生(中文) 劉闊
研究生(英文) Kuo Liu
學號 U76043024
學位類別 碩士
語文別 中文
論文頁數 40頁
口試委員 口試委員-襲充文
口試委員-陳德祐
指導教授-龔俊嘉
中文關鍵字 知覺專家  紡錘體  訓練效應  古力寶 
英文關鍵字 perceptual expertise hypothesis  FFA  Training effect  Greeble 
學科別分類
中文摘要 2011年,Brants 等人(JOCN 23:12, pp. 3949-58) 利用「古力寶」的訓練典範發現到在梭狀回臉孔區(又稱FFA)對於臉孔與古力寶在訓練前後皆有倒立效果,亦即正立的反應比倒立的情況來得大,藉以推論受試者實際上是皆把古力寶當成了臉孔在處理。如此的論証,有兩個未檢驗的前提:首先,文獻中的神經倒立效果,其實是相當的不一致,不適合用來作為支持臉孔獨特性的主要支持証據。此外,Brants 等人採用了與傳統古力寶專家訓練(Gauthier1997)流程不一樣的程序(Gauthier1998),且其訓練結果顯示其受試者並未成為符合經典定義的專家。為了更進一步的檢驗Brants et al.的文章,本研究操弄古力寶訓練的兩種典範,比較梭狀回臉孔區專家效果的差異。16位實驗參與者隨機分為兩組,各進行1997和1998的古力寶訓練。訓練前、中、后三個階段皆進行fMRI。兩組的行為結果分別重複了先前研究的發現,且對前述第二前提的檢驗提供了直接的證據。fMRI結果顯示,唯有1997組的梭狀回臉孔區對古力寶反應有顯著訓練前後差異,除再次驗證了基礎發現,亦直接說明1998訓練典範是無法達到預期的專家效果。第二,兩個組訓練前後,梭狀回臉孔區對臉孔或古力寶都沒有神經倒立效應; 另經由整合分析14篇有提及梭狀回臉孔區對臉孔倒立效應的fMRI文獻,亦未發現顯著的倒立效應,綜合顯示它並不能作為臉孔處理的有效指標。第三,比較各組在古力寶呈現之後,相較於古力寶前,梭狀回臉孔區對臉孔的反應,顯示只有1997組在訓練前后有顯著差異(意即有神經適應性),顯示唯有在1997組的訓練後,臉孔與古力寶才會在梭狀回臉孔區有交互影響。綜合以上三項結果(不同的古力寶訓練對梭狀回臉孔區的改變會有差異; 神經倒立效果不足以擔任臉孔選擇性的有效指標; 與新發現的神經適應性效果),本研究試著對Brants 等人(2011)文章所提出的觀點提出回應,並對後續研究提供相關建議 。
英文摘要 In 2011, Brants et al., (JOCN 23:12, pp. 3949-58) trained eight Greeble experts and found the Neuronal “Inversion Effects” (NIE) or higher FFA activities for upright than for inverted Greebles and faces, both before and after training. Furthermore, they took these as the evidence and pointed out that participants viewed Greebles as faces throughout training, thereby weakening the evidential power of one classic support for the perceptual expertise account of FFA. Such claim, however, faces two unwarranted assumptions: (1) it turned out that the literature review on NIE in FFA was highly variable and inconsistent, rendering it an unreliable index of face selectivity; (2) Brants et al., adopted a variation of the original Greeble training (Gauthier1997) paradigm, which resulted in subjects’ failure to pass the operational definition of the expertise criterion. To further evaluate Brants et al.’s study, we compared two different training paradigms (i.e. Gauthier1997 and Gauthier1998) and explored their impact on FFA both before and after the training. A total of 16 participants were enrolled and randomly divided into two training groups. The fMRI data included passive viewing of Faces, Greebles, and Objects, sequential matching of upright and inverted faces and Greebles, and the FFA localizer experiment, scattered in either before-, during- or after-Greeble-training sessions. As shown by the behavioral results, the response times and accuracy were significantly improved after 10 sessions of training in both groups, but the 1998 group did not meet the expert criterion, nullifying the 2nd assumption. For fMRI results, in the 1997 group, FFA had a significant increase for Greebles relative to objects, and a clear training effect, both reassuring the expected findings in Greeble training. In contrast, no significant differences were found in FFA in 1998 group. Furthermore, only in the 1997 group did we identify a clear indication of adaptation by less face activities following Greebles than following objects, and only after training (and this could be an additional verification of the expertise hypothesis). Lastly, both 1997 and 1998 groups did not show significant NIE for faces or Greebles both before and after training. In light of the insignificant (p=.010) meta-analysis combining 14 published studies bearing on the NIE for faces in FFA (in which only half, or 7, studies found significance), the unreliability of NIE as a support of FFA’s face selectivity seems to be obvious. Taken together, we not only address the problems associated with Brants et al., but also highlight some direction for future verification of the perceptual expertise hypothesis.
論文目次 目录
Introduction ............... 1
METHOD.................. 7
fMRI Experiment ..... 7
Participants ...... 7
Materials ...... 7
Procedure:.. 8
Analysis. 11
fMRI Experiment ....... 11
Participants .................. 11
Stimuli and fMRI task ............... 12
ROI selection ............... 13
fMRI imaging parameters and analysis..... 14
Result .......... 15
Behavior Results.............. 15
Verification Test ........ 15
Interpretation feedback ............. 17
fMRI Results............... 18
Percent Signal Changes in FFA .............. 20
Neural Inversion Effect.................... 22
Meta-analysis................................... 25
Adaptation Effect........................ 26
Discussion........................ 28
References ...................... 34
參考文獻 Gauthier, I., et al., Activation of the middle fusiform 'face area' increases with expertise in recognizing novel objects. Nat Neurosci, 1999. 2(6): p. 568-73.

Gauthier, I. and M.J. Tarr, Becoming a "Greeble" expert: exploring mechanisms for face recognition. Vision Res, 1997. 37(12): p. 1673-82.

Kriegeskorte, N., M. Mur, and P. Bandettini, Representational similarity analysis - connecting the branches of systems neuroscience. Front Syst Neurosci, 2008. 2: p. 4.

Yin, R.K., Looking at upside-down faces. Journal of Experimental Psychology, 1969. 81(1): p. 141-145.

Rossion, B. and I. Gauthier, How Does the Brain Process Upright and Inverted Faces? Behavioral and Cognitive Neuroscience Review, 2002. 1(1): p. 62-74.

Brants, M., J. Wagemans, and H. Op de Beeck, Activation of fusiform face area by Greebles is related to face similarity but not expertise. Journal of Cognitive Neuroscience, 2011. 23(12): p. 3949-3958.

Gauthier, I., et al., Training "Greeble" experts: A framework for studying expert object recognition processes. Vision Research, 1998. 38(15/16): p. 2401-2428.

Gauthier, I. and M.J. Tarr, Unraveling mechanisms for expert object recognition: bridging brain activity and behavior. J Exp Psychol Hum Percept Perform, 2002. 28(2): p. 431-46.

Kanwisher, N., Domain specificity in face perception. Nature Neuroscience, 2000. 3(8): p. 759-763.

Yovel, G. and N. Kanwisher, Face perception: domain specific, not process specific. Neuron, 2004. 44(5): p. 889-98.

McKone, E., N. Kanwisher, and B.C. Duchaine, Can generic expertise explain special processing for faces? Trends Cogn Sci, 2007. 11(1): p. 8-15.
McKone, E. and R. Robbins, The evidence rejects the expertise hypothesis: reply to Gauthier & Bukach. Cognition, 2007. 103(2): p. 331-6.

Yin, R.K., Face recognition by brain-injured patients: A dissociable ability? Neuropsychologia, 1970. 8: p. 395-402.

Kung, C.C., J.J. Peissig, and M.J. Tarr, Is Region-of-Interest Overlap Comparison a Reliable Measure of Category Specificity? J Cogn Neurosci, 2007. 19: p. 2019-34.

Rossion, B., C.C. Kung, and M.J. Tarr, Visual expertise with nonface objects leads to competition with the early perceptual processing of faces in the human occipitotemporal cortex. Proc Natl Acad Sci U S A, 2004. 101(40): p. 14521-6.

Tanaka, J.W. and I. Gauthier, Expertise in object and face recognition, in Mechanisms of Perceptual Learning, R.L. Goldstone, D.L. Medin, and P.G. Schyns, Editors. 1997, Academic Press: San Diego, CA. p. 83-125.

Tanaka, J.W. and M.J. Farah, Parts and wholes in face recognition. Quarterly Journal of Experimental Psychology, 1993. 46A: p. 225-245.

Young, A.W., D. Hellawell, and D. Hay, Configural information in face perception. Perception, 1987. 10: p. 747-759.

McKone, E. and N. Kanwisher, Does the human brain process objects of expertise like faces? A Review of the Evidence, in From Monkey Brain to Human Brain, S. Dehaene, et al., Editors. 2005, MIT Press: Boston.

Rossion, B. and T. Curran, Visual expertise with pictures of cars correlates with RT magnitude of the car inversion effect. Perception, 2010. 39(2): p. 173-83.

Gauthier, I., et al., Perceptual interference supports a non-modular account of face processing. Nat Neurosci, 2003. 6(4): p. 428-32.

Rossion, B., et al., Long-term expertise with artificial objects increases visual competition with early face categorization processes. J Cogn Neurosci, 2007. 19(3): p. 543-55.

Gauthier, I., et al., Expertise for cars and birds recruits brain areas involved in face recognition. Nat Neurosci, 2000. 3(2): p. 191-7.

Tarr, M.J. and I. Gauthier, FFA: A Flexible Fusiform Area for subordinate-level visual processing automatized by expertise. Nature Neuroscience, 2000. 3(8): p. 764-769.

Gauthier, I. and C. Bukach, Should we reject the expertise hypothesis? Cognition, 2007. 103(2): p. 322-30.

Grill-Spector, K., N. Knouf, and N. Kanwisher, The fusiform face area subserves face perception, not generic within-category identification. Nat Neurosci, 2004. 7(5): p. 555-62.

Op de Beeck, H.P. and C.I. Baker, The neural basis of visual object learning. Trends Cogn Sci, 2010. 14(1): p. 22-30.

Op de Beeck, H.P. and C.I. Baker, Informativeness and learning: Response to Gauthier and colleagues. Trends Cogn Sci, 2010. 14(6): p. 236-237.

Gauthier, I., A.C. Wong, and T.J. Palmeri, Manipulating visual experience: comment on Op de Beeck and Baker. Trends Cogn Sci, 2010. 14(6): p. 235-6; author reply 236-7.

Wong, A.C. and Y.K. Wong, Interaction between perceptual and cognitive processing well acknowledged in perceptual expertise research. Front Hum Neurosci, 2014. 8: p. 308.

McGugin, R.W., et al., High-resolution imaging of expertise reveals reliable object selectivity in the fusiform face area related to perceptual performance. Proc Natl Acad Sci U S A, 2012. 109(42): p. 17063-8.

Tsao, D.Y., et al., A cortical region consisting entirely of face-selective cells. Science, 2006. 311(5761): p. 670-4.

Morton, J. and M.H. Johnson, CONSPEC and CONLERN: A two-process theory of infant face recognition. Psychological Review, 1991. 98(2): p. 164-181.

Gauthier, I. and C.A. Nelson, The development of face expertise. Curr Opin Neurobiol, 2001. 11(2): p. 219-24.
Bukach, C.M., I. Gauthier, and M.J. Tarr, Beyond faces and modularity: the power of an expertise framework. Trends Cogn Sci, 2006. 10(4): p. 159-66.

Rossion, B., et al., Expertise training with novel objects leads to left-lateralized facelike electrophysiological responses. Psychol Sci, 2002. 13(3): p. 250-7.

Williams, P. and D.J. Simons, Detecting changes in novel, complex three-dimensional objects. Visual Cognition, 2000. 7(1-3): p. 297-322.

James, T.W. and I. Gauthier, Auditory and action semantic features activate sensory-specific perceptual brain regions. Curr Biol, 2003. 13(20): p. 1792-6.

Wong, A.C., T.J. Palmeri, and I. Gauthier, Conditions for facelike expertise with objects: becoming a Ziggerin expert--but which type? Psychol Sci, 2009. 20(9): p. 1108-17.

Wong, A.C., et al., Beyond shape: how you learn about objects affects how they are represented in visual cortex. PLoS ONE, 2009. 4(12): p. e8405.

Kanwisher, N., J. McDermott, and M.M. Chun, The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci, 1997. 17(11): p. 4302-11.

Kanwisher, N., F. Tong, and K. Nakayama, The effect of face inversion on the human fusiform face area. Cognition, 1998. 68(1): p. B1-11.

Haxby, J.V., et al., The effect of face inversion on activity in human neural systems for face and object perception. Neuron, 1999. 22: p. 189-199.

Aguirre, G.K., R. Singh, and M. D'Esposito, Stimulus inversion and the responses of face and object-sensitive cortical areas. Neuroreport, 1999. 10: p. 189-194.

Epstein, R.A., et al., Cortical correlates of face and scene inversion: a comparison. Neuropsychologia, 2006. 44(7): p. 1145-58.
Bilalic, M., et al., Many faces of expertise: fusiform face area in chess experts and novices. J Neurosci, 2011. 31(28): p. 10206-14.

Jimura, K. and R.A. Poldrack, Analyses of regional-average activation and multivoxel pattern information tell complementary stories. Neuropsychologia, 2012. 50(4): p. 544-52.

Norman, K.A., et al., Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn Sci, 2006. 10(9): p. 424-30.

Kamitani, Y. and F. Tong, Decoding the visual and subjective contents of the human brain. Nat Neurosci, 2005. 8(5): p. 679-85.

Kay, K.N., et al., Identifying natural images from human brain activity. Nature, 2008. 452(7185): p. 352-5.

Miyawaki, Y., et al., Visual image reconstruction from human brain activity using a combination of multiscale local image decoders. Neuron, 2008. 60(5): p. 915-29.

Nishimoto, S., et al., Reconstructing visual experiences from brain activity evoked by natural movies. Curr Biol, 2011. 21(19): p. 1641-6.

Horikawa, T., et al., Neural decoding of visual imagery during sleep. Science, 2013. 340(6132): p. 639-42.

Kriegeskorte, N., R. Goebel, and P. Bandettini, Information-based functional brain mapping. Proc Natl Acad Sci U S A, 2006. 103(10): p. 3863-8.

Warnking, J., et al., fMRI retinotopic mapping--step by step. Neuroimage, 2002. 17(4): p. 1665-83.

Aguirre, G. K., et al. (1999). "Stimulus inversion and the responses of face and object‐sensitive cortical areas." Neuroreport 10(1): 189-194.

Bilalić, M., et al. (2014). "The faces in radiological images: fusiform face area supports radiological expertise." Cerebral Cortex 26(3): 1004-1014.

Bilalić, M., et al. (2011). "Many faces of expertise: fusiform face area in chess experts and novices." Journal of Neuroscience 31(28): 10206-10214.

Bookheimer, S. Y., et al. (2008). "Frontal contributions to face processing differences in autism: evidence from fMRI of inverted face processing." Journal of the International Neuropsychological Society 14(6): 922-932.

Bushmakin, M. A. and T. W. James (2014). "The influence of feature conjunction on object inversion and conversion effects." Perception 43(1): 31-42.

Carbon, C.-C. and T. Ditye (2012). "Face adaptation effects show strong and long-lasting transfer from lab to more ecological contexts." Frontiers in psychology 3.

Dubois, J., et al. (2015). "Single-unit recordings in the macaque face patch system reveal limitations of fMRI MVPA." Journal of Neuroscience 35(6): 2791-2802.

Epstein, D. L., et al. (2006). "Democratic transitions." American journal of political science 50(3): 551-569.

Fleiss, J. L. and A. J. Gross (1991). "Meta-analysis in epidemiology, with special reference to studies of the association between exposure to environmental tobacco smoke and lung cancer: a critique." Journal of clinical epidemiology 44(2): 127-139.

Grill-Spector, K., et al. (2004). "The fusiform face area subserves face perception, not generic within-category identification." Nature neuroscience 7(5): 555-562.

Grotheer, M., et al. (2014). "Repetition probability effects for inverted faces." NeuroImage 102: 416-423.

Haxby, J. V., et al. (1999). "The effect of face inversion on activity in human neural systems for face and object perception." Neuron 22(1): 189-199.

Kanwisher, N., et al. (1997). "The fusiform face area: a module in human extrastriate cortex specialized for face perception." Journal of Neuroscience 17(11): 4302-4311.

Kanwisher, N., et al. (1998). "The effect of face inversion on the human fusiform face area." Cognition 68(1): B1-B11.

Kanwisher, N. and G. Yovel (2006). "The fusiform face area: a cortical region specialized for the perception of faces." Philosophical Transactions of the Royal Society B: Biological Sciences 361(1476): 2109-2128.

Passarotti, A., et al. (2007). "Developmental differences in the neural bases of the face inversion effect show progressive tuning of face-selective regions to the upright orientation." NeuroImage 34(4): 1708-1722.

Rhodes, J. R., et al. (2009). GLMM applied on the spatial distribution of koalas in a fragmented landscape. Mixed effects models and extensions in ecology with R, Springer: 469-492.

Sacks, H. S., et al. (1987). "Meta-analyses of randomized controlled trials." New England Journal of Medicine 316(8): 450-455.

Spitzer, W. O. (1991). "Meta-meth-analysis: unanswered questions about aggregating data." Journal of clinical epidemiology 44(2): 103-107.

Stein, T., et al. (2012). "Privileged detection of conspecifics: Evidence from inversion effects during continuous flash suppression." Cognition 125(1): 64-79.

Strobach, T. and C.-C. Carbon (2013). "Face adaptation effects: reviewing the impact of adapting information, time, and transfer." Frontiers in psychology 4.

Sulzer, J., et al. (2013). "Real-time fMRI neurofeedback: progress and challenges." NeuroImage 76: 386-399.

Uyar, F., et al. (2016). "Retinotopic information interacts with category selectivity in human ventral cortex." Neuropsychologia 92: 90-106.

Webster, M. A., et al. (2004). "Adaptation to natural facial categories." Nature 428(6982): 557-561.

Weiner, K. S., et al. (2017). "The cytoarchitecture of domain-specific regions in human high-level visual cortex." Cerebral Cortex 27(1): 146-161.

Winer, B. J., et al. (1971). Statistical principles in experimental design, McGraw-Hill New York.

Wolf, F. M. (1986). Meta-analysis: Quantitative methods for research synthesis, Sage.

Yovel, G. and N. Kanwisher (2004). "Face perception: domain specific, not process specific." Neuron 44(5): 889-898.

Yovel, G. and N. Kanwisher (2005). "The neural basis of the behavioral face-inversion effect." Current Biology 15(24): 2256-2262.

楊志誠 and 襲充文 (2010). "臉孔辨識及其發展差異: 多層次文獻回顧." 應用心理研究(46): 153-230.

徐岩, et al. (2003). "面孔加工的认知神经科学研究: 回顾与展望." 心理科学进展 11(01): 35-43.

李晓白, et al. (2009). "行为遗传学: 解决面孔特异性问题争论的新思." 心理科学进展 17(02): 284-293.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-02-08起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-02-08起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw