進階搜尋


下載電子全文  
系統識別號 U0026-0502201815382800
論文名稱(中文) 搭載四環黴素的缺鈣型氫氧基磷灰石對於抗菌性的綜合評估
論文名稱(英文) Evaluation of tetracycline loaded calcium deficient hydroxyapatite for integrated anti-microbial activity
校院名稱 成功大學
系所名稱(中) 口腔醫學研究所
系所名稱(英) Institute of Oral Medicine
學年度 106
學期 1
出版年 107
研究生(中文) 謝秉舟
研究生(英文) Ping-Chou Hsieh
學號 T46041067
學位類別 碩士
語文別 英文
論文頁數 41頁
口試委員 指導教授-黃振勳
共同指導教授-謝達斌
口試委員-黃則達
中文關鍵字 植體周圍炎  缺鈣型氫氧基磷灰石  四環黴素  藥物傳遞系統  組織工程 
英文關鍵字 peri-implantitis  calcium-deficient hydroxyapatite (CDHA)  tetracycline  drug delivery system  tissue engineering 
學科別分類
中文摘要 植體周圍炎是造成晚期植牙失敗的主要風險之一,由於生物膜附著於鈦金屬表面,傳統藥物治療通常無法完全清除致病菌。在本研究中,我們發展出攜帶四環黴素(tetracycline)的奈米級缺鈣型氫氧基磷灰石(calcium-deficient hydroxyapatite)希望能達到生物膜的去除、刺激齒槽骨再生並運用於植體周圍炎的治療。
針對裝載四環黴素的缺鈣型氫氧基磷灰石奈米粒子(TC-CDHA),我先以掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡、(TEM)、X光繞射(XRD)、能量散佈分析儀(EDS)以及動態光散射(DLS)來檢定性質,接著再測定其最低抑菌濃度(MIC)和最低殺菌濃度(MBC)以評估TC-CDHA對於致病菌的抗菌能力。
在掃描式電子顯微鏡和穿透式電子顯微鏡下,TC-CDHA呈現小於100奈米之柱狀型態,其結晶大小經過謝樂公式(Scherrer’s formula)計算約為10.8奈米長4.62奈米寬之構型。我們進一步發現四環黴素裝載至缺鈣型氫氧基磷灰石奈米載體,其藥物裝載率經測試為86.23%,在能量散佈分析儀的檢測下發現四環黴素能與缺鈣型氫氧基磷灰石複合。在同為0.1微克/毫升的藥物濃度下,抗菌檢定顯示裝載抗生素的奈米粒子(89.47%)與自由形式的四環黴素(86.25%)有著相近的50%抑菌濃度。
本研究顯示TC-CDHA有著與自由態TC相近的抗菌能力,並且由於缺鈣氫氧基磷灰石可能具有刺激骨再生的潛力,而有機會運用於未來植體周圍炎的治療。
英文摘要 Peri-implantits is a major risk factor for late dental implants failures. Traditional remedy usually failed to eliminate pathogens completely due to biofilm covering the titanium surface. In this study, we developed a nano calcium-deficient hydroxyapatite (CDHA) carrier intended for extended tetracycline (TC) release to disrupt biofilm on the implant surface while simultaneously enhance new bone regeneration for peri-implantitis treatment. The tetracycline-loaded CDHA nanoparticles (TC-CDHA) were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) and dynamic light scattering (DLS). The TC-CDHAs were then evaluated for anti-bacteria potency by determine their minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) of pathogens. The TC-CDHA presented as round, less than 100nm rod shape particles under SEM and TEM. The crystalline size measured by Scherrer’s formula is about 10.8nm x 4.62nm. We discovered that the loading capacity of TC was 86.23%. Tetracycline is well embedded in the CDHA as revealed by EDS examination. Anti-bacterial assay showed that the MIC of the drug loaded nanoparticles are comparable to that of the freeform TC (86.25% for TC vs. 89.47% for TC-CDHA) when both were at TC concentration of 0.1ug/ml. This study revealed that the as prepared TC-CDHA has similar potency as freeform TC while may harbor additional advantages for stimulating bone regeneration. Such nanomedicine holds a promising future for peri-implantitis treatment.
論文目次 中文摘要………………………………………………………………………………..I
Abstract………………………………………………………………………………..II
致謝……………………………………………………………………………….. III
Content ………………………………………………………………………………..IV
List of tables ………………………………………………………………………………..VII
List of figures……………………………………………………………………………….. VIII
Abbreviations ………………………………………………………………………………..IX
1. Introduction………………………………………………………………………………..1
1.1. Peri-implantitis………………………………………………….………………………1
1.1.1. Etiology and Pathogenesis…………………………………………………………1
1.1.2. Microbiota and Biofilm………………………………….………………………2
1.2. Peri-implantitis clinical management……………………………………………………4
1.2.1. Mechanical therapy and Chemotherapy…………………...……………………..4
1.2.2. Current recommended treatment logistics………………………………………..5
1.3. Common materials for peri-implantitis management……………………………………6
1.3.1. Ceramic scaffold materials……………………………………...………………..6
1.4. Considerations for future advanced peri-implantitis therapeutics……….………………8
1.4.1. Infection control………………………………………………………………….8
1.4.2. Tissue regeneration……………………………………………………………….9
1.5. Motivation and aims…………………………………………………………..…………9
2. Materials and methods…………………………………………………………...………11
2.1. Preparation of CDHA and particle size analysis…………………………..…….11
2.2. Loading tetracycline to CDHA………………………………...…………..……12
2.3. Characterization of CDHA……………………………………………………….12
2.3.1. Dynamic light scattering (DLS) …………………………………………….12
2.3.2. X-ray Diffraction (XRD)…………………………………………………..13
2.3.3. Scanning Electron Microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS)………………………………………….…………………..…………13
2.3.4. Transmission electron microscope (TEM) .....................……………………...14
2.4. Evaluation of the anti-bacteria potency of the nanoparticles to pathogens …..…..….14
2.4.1. Minimum inhibitory concentration (MIC) ……………………………………….14
2.4.2. Minimum bactericide concentration (MBC)…………………………………..…15
2.5. Statistical analysis……………………………………………………………………15
3. Results……………………………………………………………………………………16
3.1. Characterization of CDHA………………………………………………………16
3.1.1. Dynamic light scattering (DLS)……………………………………………16
3.1.2. X-ray Diffraction (XRD)………………………………………………….16
3.1.3. Scanning Electron Microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS)……………………………………………………………………………17
3.1.4. Transmission electron microscope (TEM) ………………………………..18
3.2. Evaluation of the anti-bacteria potency of the nanoparticles to pathogens …………...18
3.2.1. Minimum inhibitory concentration (MIC) and Minimum bactericide concentration (MBC)………………………………………..…………………………………18
4. Discussions……………………………………………………………………………….19
5. Conclusion…………………………………………………………………………..……23
6. Reference…………………………………………………………………………………24
7. Tables…………………………………………………………………………………….29
8. Figures and legends………………………………………………………………………33
參考文獻 1. Almirall, A., G. Larrecq, J. A. Delgado, S. Martinez, J. A. Planell and M. P. Ginebra (2004). "Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an alpha-TCP paste." Biomaterials 25(17): 3671-3680.
2. Babaei, Z., M. Jahanshahi and S. M. Rabiee (2013). "The fabrication of nanocomposites via calcium phosphate formation on gelatin-chitosan network and the gelatin influence on the properties of biphasic composites." Mater Sci Eng C Mater Biol Appl 33(1): 370-375.
3. Bagheri-Khoulenjani, S., H. Mirzadeh, M. Etrati-Khosroshahi and M. A. Shokrgozar (2013). "Particle size modeling and morphology study of chitosan/gelatin/nanohydroxyapatite nanocomposite microspheres for bone tissue engineering." J Biomed Mater Res A 101(6): 1758-1767.
4. Bassetti, M., D. Schar, B. Wicki, S. Eick, C. A. Ramseier, N. B. Arweiler, A. Sculean and G. E. Salvi (2014). "Anti-infective therapy of peri-implantitis with adjunctive local drug delivery or photodynamic therapy: 12-month outcomes of a randomized controlled clinical trial." Clin Oral Implants Res 25(3): 279-287.
5. Belibasakis, G. N., G. Charalampakis, N. Bostanci and B. Stadlinger (2015). "Peri-implant infections of oral biofilm etiology." Adv Exp Med Biol 830: 69-84.
6. Chakraborti, M., J. K. Jackson, D. Plackett, D. M. Brunette and H. M. Burt (2011). "Drug intercalation in layered double hydroxide clay: application in the development of a nanocomposite film for guided tissue regeneration." Int J Pharm 416(1): 305-313.
7. Chen, C., H. Li, J. Pan, Z. Yan, Z. Yao, W. Fan and C. Guo (2015). "Biodegradable composite scaffolds of bioactive glass/chitosan/carboxymethyl cellulose for hemostatic and bone regeneration." Biotechnol Lett 37(2): 457-465.
8. Dou, X. C., X. P. Zhu, J. Zhou, H. Q. Cai, J. Tang and Q. L. Li (2011). "Minocycline-released hydroxyapatite-gelatin nanocomposite and its cytocompatibility in vitro." Biomed Mater 6(2): 025002.
9. Faggion, C. M., Jr., S. Listl, N. Fruhauf, H. J. Chang and Y. K. Tu (2014). "A systematic review and Bayesian network meta-analysis of randomized clinical trials on non-surgical treatments for peri-implantitis." J Clin Periodontol 41(10): 1015-1025.
10. Fuoco, D. (2012). "Classification Framework and Chemical Biology of Tetracycline-Structure-Based Drugs." Antibiotics (Basel) 1(1): 1-13.
11. Ginebra, M. P., J. A. Delgado, I. Harr, A. Almirall, S. Del Valle and J. A. Planell (2007). "Factors affecting the structure and properties of an injectable self-setting calcium phosphate foam." J Biomed Mater Res A 80(2): 351-361.
12. Goudouri, O. M., E. Kontonasaki, U. Lohbauer and A. R. Boccaccini (2014). "Antibacterial properties of metal and metalloid ions in chronic periodontitis and peri-implantitis therapy." Acta Biomater 10(8): 3795-3810.
13. Habraken, W. J., J. G. Wolke and J. A. Jansen (2007). "Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering." Adv Drug Deliv Rev 59(4-5): 234-248.
14. Hunter, K. T. and T. Ma (2013). "In vitro evaluation of hydroxyapatite-chitosan-gelatin composite membrane in guided tissue regeneration." J Biomed Mater Res A 101(4): 1016-1025.
15. Islam, M. M., M. A. Khan and M. M. Rahman (2015). "Preparation of gelatin based porous biocomposite for bone tissue engineering and evaluation of gamma irradiation effect on its properties." Mater Sci Eng C Mater Biol Appl 49: 648-655.
16. Kim, D.-H., T.-W. Kim, J. D. Lee, K.-K. Shin, J. S. Jung, K.-H. Hwang, J. K. Lee, H.-C. Park and S.-Y. Yoon (2013). "Preparation andIn VitroandIn VivoPerformance of Magnesium Ion Substituted Biphasic Calcium Phosphate Spherical Microscaffolds as Human Adipose Tissue-Derived Mesenchymal Stem Cell Microcarriers." Journal of Nanomaterials 2013: 1-9.
17. Kim, H. W., J. C. Knowles and H. E. Kim (2005). "Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds." J Biomed Mater Res A 72(2): 136-145.
18. Koshy, S. T., R. M. Desai, P. Joly, J. Li, R. K. Bagrodia, S. A. Lewin, N. S. Joshi and D. J. Mooney (2016). "Click-Crosslinked Injectable Gelatin Hydrogels." Adv Healthc Mater 5(5): 541-547.
19. Madhumathi, K. and T. S. Sampath Kumar (2014). "Regenerative potential and anti-bacterial activity of tetracycline loaded apatitic nanocarriers for the treatment of periodontitis." Biomed Mater 9(3): 035002.
20. Mastrogiacomo, M., S. Scaglione, R. Martinetti, L. Dolcini, F. Beltrame, R. Cancedda and R. Quarto (2006). "Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics." Biomaterials 27(17): 3230-3237.
21. Mohamed, K. R., H. H. Beherei and Z. M. El-Rashidy (2014). "In vitro study of nano-hydroxyapatite/chitosan-gelatin composites for bio-applications." J Adv Res 5(2): 201-208.
22. Mombelli, A., A. Feloutzis, U. Bra ̈gger and N. P. Lang (2001). "Treatment of peri-implantitis by local delivery of tetracycline. Clinical, microbiological and radiological results." Clin. Oral Impl. Res. 12: 287–294.
23. Myers, H. M., H. J. Tochon-Danguy and C. A. Baud (1983). "IR Absorption Spectrophotometric Analysis of the Complex Formed by Tetracycline and Synthetic Hydroxyapatite." Calcif. Tissue Int. 35: 745-749.
24. Poinern, G. J., R. Brundavanam, X. T. Le, S. Djordjevic, M. Prokic and D. Fawcett (2011). "Thermal and ultrasonic influence in the formation of nanometer scale hydroxyapatite bio-ceramic." Int J Nanomedicine 6: 2083-2095.
25. Rams, T. E., J. E. Degener and A. J. van Winkelhoff (2014). "Antibiotic resistance in human peri-implantitis microbiota." Clin Oral Implants Res 25(1): 82-90.
26. Reddy, N., R. Reddy and Q. Jiang (2015). "Crosslinking biopolymers for biomedical applications." Trends Biotechnol 33(6): 362-369.
27. Santoro, M., A. M. Tatara and A. G. Mikos (2014). "Gelatin carriers for drug and cell delivery in tissue engineering." J Control Release 190: 210-218.
28. Seymour, R. A. and P. A. Heasman (1995). "Tetracyclines in the management of periodontal diseases. A review." J Clin Periodontol. 22(1): 22-35.
29. Shue, L., Z. Yufeng and U. Mony (2012). "Biomaterials for periodontal regeneration: a review of ceramics and polymers." Biomatter 2(4): 271-277.
30. Sindhura Reddy, N., S. Sowmya, J. D. Bumgardner, K. P. Chennazhi, R. Biswas and R. Jayakumar (2014). "Tetracycline nanoparticles loaded calcium sulfate composite beads for periodontal management." Biochim Biophys Acta 1840(6): 2080-2090.
31. Vargas-Reus, M. A., K. Memarzadeh, J. Huang, G. G. Ren and R. P. Allaker (2012). "Antimicrobial activity of nanoparticulate metal oxides against peri-implantitis pathogens." Int J Antimicrob Agents 40(2): 135-139.
32. Victor, S. P. and T. Kumar (2008). "Tailoring calcium-deficient hydroxyapatite nanocarriers for enhanced release of antibiotics." Journal of Biomedical Nanotechnology 4(2): 203-209.
33. Xu, H. H. and C. G. Simon, Jr. (2005). "Fast setting calcium phosphate-chitosan scaffold: mechanical properties and biocompatibility." Biomaterials 26(12): 1337-1348.
34. Xu, H. H., M. D. Weir, E. F. Burguera and A. M. Fraser (2006). "Injectable and macroporous calcium phosphate cement scaffold." Biomaterials 27(24): 4279-4287.
35. Zhao, P., C. Deng, H. Xu, X. Tang, H. He, C. Lin and J. Su (2014). "Fabrication of photo-crosslinked chitosan- gelatin scaffold in sodium alginate hydrogel for chondrocyte culture." Biomed Mater Eng 24(1): 633-641.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-02-13起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-02-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw