進階搜尋


下載電子全文  
系統識別號 U0026-0502201313020500
論文名稱(中文) 三頻GPS/Galileo長距離相對定位:方法及效能分析
論文名稱(英文) Triple-Frequency GPS and Galileo Long-range Relative Positioning: Approaches and Performance Analyses
校院名稱 成功大學
系所名稱(中) 測量及空間資訊學系碩博士班
系所名稱(英) Department of Geomatics
學年度 101
學期 1
出版年 102
研究生(中文) 儲豐宥
研究生(英文) Feng-Yu Chu
電子信箱 P6894103@mail.ncku.edu.tw
學號 P68941035
學位類別 博士
語文別 英文
論文頁數 130頁
口試委員 指導教授-楊名
口試委員-吳究
口試委員-黃金維
口試委員-郭重言
口試委員-江凱偉
口試委員-陳國華
中文關鍵字 全球定位系統  伽俐略導航衛星系統  長基線相對定位  效能分析  週波值解 
英文關鍵字 Global Positioning System  Galileo  long baseline relative positioning  performance analyses  ambiguity resolution 
學科別分類
中文摘要 全球衛星定位系統(GPS)長距離相對定位已經廣泛的應用於大地測量的領域,並且可達到公分級的定位精度。在未來的全球導航衛星系統 (GNSS)中,現代化GPS以及Galileo兩系統是可相容的並且都提供了三頻的民用訊號。因此在長基線相對定位中,評估使用雙系統三頻觀測量後其效能的提升為一門重要的研究課題。本研究中,我們首先提出一種廣義的長基線相對定位方法 (GLA)來處理現代化GPS以及Galileo的三頻觀測量。GLA是以目前雙頻GPS長基線相對定位方法為基礎,這種方法必須同時採用到相位以及電碼觀測量。雖然現代化GPS以及Galileo的三頻觀測量在長基線相對定位的效能可以藉由GLA獲得,但其效能會受到電碼觀測量上的多路徑效應所影響。考量到電碼多路徑的影響,針對現代化GPS以及Galileo,本研究提出一種新的只用三頻相位觀測量的長距離相對定位方法(PLA), 利用此方法我們可以評估出在不受到電碼多路徑下的效能。本研究的測試資料採用了一條長度為2243公里的基線,透過分析可以獲得以下結論: (1) 目前GPS連續追蹤站的每日定位解的精度可藉由雙系統GPS/Galileo觀測量的使用來提升,(2) 利用GLA可產生出使用相位以及電碼觀測量的動態週波值解,其分析指出使用三頻觀測量在效能上優於使用雙頻觀測量,尤其是當多路徑效應或電碼雜訊嚴重時,(3)只使用三頻相位觀測量的動態週波值解可透過PLA獲得,其成果指出當嚴重的電碼多路徑影響下,只用三頻相位觀測量的動態週波值解在效能上能夠勝過使用GLA產生的三頻相位以及電碼觀測量的動態週波值解。
英文摘要 Global positioning system (GPS) long-range relative positioning is commonly used for achieving centimeter-level positioning accuracy and has been widely applied to the fields of geodesy. In the future Global Navigation Satellite Systems (GNSS), the modernized GPS and Galileo are mutually compitable and both provide triple-frequency signals for civil use, and it is of high interest to investigate the performance by using the triple-frequency measurements from the two constellations. In this study, we first proposed a generalized GPS/Galileo long-range approach (GLA), which is based on the current generalized dual-frequency GPS long-range approach using both the phase and code measurements, to process the mutually-compatible modernized GPS and Galileo triple-frequency measurements. The triple-frequency GPS/Galileo performances can be evaluated by GLA, and however, the performances are affected by the unstable multipath effect on code measurements. Considering the multipath effect on code measurements, a triple-frequency phase-only long-range GPS/Galileo approach (PLA) was then proposed. The triple-frequency phase-only GPS/Galileo performances can be further evaluated by PLA. With the simulated test data (baseline length: 2243 km), it can be concluded that (1) the current positioning accuracy of daily solutions at continuous GPS tracking stations can be improved by using the GPS/Galileo dual-constellation measurements, (2) according to the performance of phase-code kinematic ambiguity resolution computed by GLA, using the triple-frequency measurements is superior to using the dual-frequency measurements, particularly when multipath or code noise is large, and (3) according to the performance of phase-only and phase-code kinematic ambiguity resolution computed by PLA and GLA, respectively, the triple-frequency phase-only kinematic ambiguity resolution outperforms the triple-frequency phase-code kinematic ambiguity resolution when severe code multipath is present.
論文目次 摘要I
AbstractII
AcknowledgementIII
ContentsV
List of TablesVIII
List of FiguresIX

CHAPTER 1 Introduction1
1.1 Background1
1.2 Statement of problems5
1.3 Objectives6
1.4 Thesis outline7

CHAPTER 2 Modernization GPS and Galileo8
2.1 Modernization GPS8
2.2 Galileo10
2.3 Compatibility and interoperability of modernized GPS and Galileo13

CHAPTER 3 Satellite measurements and systematic errors17
3.1 Code and phase measurements17
3.2 Ionosphere delays18
3.3 Troposphere delays21
3.4 Orbital uncertainty22
3.5 Satellite antenna phase center offset23
3.6 Receiver antenna phase center offset and variation24
3.7 Tide displacement26
3.7.1 Earth tidal displacement26
3.7.2 Ocean loading Tidal displacement27
3.8 Earth rotational effects27
3.9 Receiver noise and multipath28

CHAPTER 4 Basic theories of relative positioning30
4.1 Least-squares adjustment30
4.1.1 Stochastic and functional model31
4.1.2 Error propagation33
4.1.3 Testing the posteriori variance34
4.1.4 The test35
4.2 Double-differenced (DD) measurements 36
4.3 Cycle slip detection37
4.4 Troposphere delay handling38
4.5 Kalman filter39
4.6 Integer ambiguity search41
4.6.1 The LAMBDA method42
4.6.2 Ambiguity resolution and validation46
4.6.3 Full and partial ambiguity fixing47
4.7 Triple-Frequency measurement linear combinations49
4.7.1 General form of triple-frequency linear combinations49
4.7.2 Wide-lane and extra wide-lane phase combinations51
4.7.3 Ionosphere-free phase combinations53
4.7.4 Extra wide-lane ionosphere-reduced phase combinations54
4.7.5 Phase and code combination55

CHAPTER 5 GPS and Galileo measurement simulator57
5.1 The simulator57
5.2 Simulation of the GPS and Galileo constellation 59
5.3 Simulation of ionosphere delays61
5.4 Simulation of troposphere delays64
5.5 Simulation of receiver noises and multipath effects67
5.6 Simulation of orbital errors69

CHAPTER 6 GPS/Galileo long-range relative positioning approaches70
6.1 Generalized GPS/Galileo approach 70
6.1.1 Observation sets 70
6.1.2 Parameter estimation73
6.1.3 GLA flowchart79
6.2 Phase-only GPS/Galileo long-range approach80
6.2.1 Phase range80
6.2.2 Resolving phase-only integer synthetic ambiguity solutions84
6.2.3 Full-rank observation model86
6.2.4 Candidates and the determination89
6.2.5 Optimal selection of the constraint90
6.2.5.1 UBE of constraints90
6.2.5.2 Biases of constraints93
6.2.5.3 The optimal constraints of the triple-frequency GPS and Galileo95
6.2.6 Alternative integer ambiguity solution of the Galileo95

CHAPTER 7 Test results and performance analysis99
7.1 Experiments on GLA99
7.1.1 Validating positioning accuracy of GLA99
7.1.2 Data simulation101
7.1.3 Improvements on positioning102
7.1.4 Analysis of kinematic ambiguity resolution 104
7.1.4.1 Improvement of the performance104
7.1.4.2 Influence of noise and multipath 108
7.2 Comparisons of phase-only and phase-code ambiguity resolution112
7.2.1 Data simulation112
7.2.2 Ambiguity-fixed percentage113
7.2.3 Influence of phase and code multipath114
7.2.4 Galileo ambiguity resolution performance116
7.2.5 Improvements of the phase-only ambiguity resolution performance117
7.2.6 Improvements of GPS/Galileo phase-only ambiguity resolution performance120
CHAPTER 8 Conclusions122

References124
參考文獻 Abdel-salam MA-t (2005) Precise point positioning using un-differeced code and carrier phase observations (report no. 20229). PhD. thesis, University of Calgary, Calgary, Alberta.
Benedicto J, S.E.Dinwiddy, Gatti G, Lucas R, Lugert M (2000) GALILEO : satellite system design and technology developments. European space agency. Paris.
Beutler G, Bock H, Dach R, Fridez P, Gäde A, Hugentobler U, Jäggi A, Meindl M, Mervart L, Prange L, Schaer S, Springer T, Urschl C, Walser P (2007) Bernese GPS software version 5.0. Astronomical institute, University of Bern, Bern.
Bevis M, Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., Ware, R. H. (1992) GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system. Journal of geophysical research 97 (D14):15787-15801.
Blewitt G (1989) Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2000 km. Journal of geophysical research 94 (B8):10187-10230.
Bossler JD, Goad CC, Bender PL (1980) Using the global positioning system (GPS) for geodetic positioning. Bulletin géodesique 54 (4):553-563.
Brockmann E (1996) Combination of solutions for geodetic and geodynamic applications of the global positioning system (GPS). PhD. Thesis, University of Bern, Bern.
Cao W (2009) Multi-frequency GPS and Galileo kinematic positioning with partial ambiguity fixing (report no. 20285). MsC. Thesis, University of Calgary, Calgary, Alberta.
Ching K-E, Hsieh M-L, Johnson KM, Chen K-H, Rau R-J, Yang M (2011) Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000-2008. Journal of geophysical research 116 (B08406).
Cocard M, Bourgon S, Kamali O, Collins P (2008) A systematic investigation of optimal carrier-phase combinations for modernized triple-frequency GPS. Journal of geodesy 82 (9):555-564.
de Jonge P, Tiberius CCJM (1996) The LAMBDA method for Integer ambiguity estimation : implementation aspects. Delft geodetic computing centre LGR series, Delft university of tecnology, The Netherlands.
Dellago R, Detoma E, Luongo F Galileo-GPS interoperability and compatibility: a synergetic viewpoint. In: ION GPS/GNSS 2003, Portland, Oregon, September 9-12 2003.
Dow JM, Neilan RE, Gendt G (2005) The international GPS service: celebrating the 10th anniversary and looking to the next decade. Advances in space research 36 (3):320-326.
Duan J, Bevis M, Fang P, Bock Y, Chiswell S, Businger S, Rocken C, Solheim F, Hove Tv, Ware R, McClusky S, Herring TA, King RW (1996) GPS meteorology: direct estimation of the absolute value of precipitable Water. Journal of applied meteorology 35 (6):830-838.
Eueler H-J, Goad CC (1991) On optimal filtering of GPS dual frequency observations without using orbit information. Bulletin géodesique 65 (2):130-143.
Feng Y (2008) GNSS three carrier ambiguity resolution using ionosphere-reduced virtual signals. Journal of geodesy 82 (12):847-862.
Feng Y, Li B (2008) A benefit of multiple carrier GNSS signals: regional scale network‐based RTK with doubled inter‐station distances. Journal of spatial science 53 (1):135-147.
Feng Y, Rizos C (2009) Network-based geometry-free three carrier ambiguity resolution and phase bias calibration. GPS solutions 13 (1):43-56.
Ganguly S, Jovancevic A Interoperability study between GPS and Galileo signals. In: ION GPS/GNSS 2003, Portland, Oregon, September 9-12 2003.
Geng J, Teferle FN, Meng X, Dodson AH (2010) Kinematic precise point positioning at remote marine platforms. GPS solutions 14 (4):343-350.
Goad CC, Goodman L A modified hopfield tropospheric refraction correction model. In: American geophysical union annual fall meeting, San Francisco, California, December 12-17 1974.
Goad C, Yang M (1997) A new approach to precision airborne GPS positioning for photogrammetry. Photogrammetric engineering & remote sensing 63 (9):1067-1077.
GPSoft (2003) Satellite navigation toolbox 3.0. GPSoft LLC, Athens, Ohio.
Han S, Rizos C The impact of two additional civilian GPS frequencies on ambiguity resolution strategies. In: 55th annual meeting of the institute of navigation, Cambridge, Massachusetts, June 27 - 30 1999.
Hatch R The synergism of GPS code and carrier measurement. In: Third international geodetic symposium on satellite doppler positioning, Las Cruces, New Mexico February 8-12 1982.
Hatch R, Jung J, Enge P, Pervan B (2000) Civilian GPS: the benefits of three frequencies. GPS solutions 3 (4):1-9.
Harrington P GPS program update. In: ICG expert meeting on GNSS, Montreal, Canada, July 15 2008.
Hein GW (2000) From GPS and GLONASS via EGNOS to Galileo - positioning and navigation in the third millennium. GPS solutions 3 (4):39-47.
Hein GW, Godet J, Issler J-L, Martin J-C, Lucas-Rodriguez R, Pratt T The Galileo frequency structure and signal design. In: ION GPS-2001, Salt Lake City, Utah, September 11-14 2001.
Hein GW, Pany T (2002) Architecture and signaldesign of the European satellite navigation system Galileo - status Dec. 2002. Journal of global positioning systems 1 (2):73-84.
Hein GW, Godet JI, Jean-Luc M, Jean-Christophe E, Philippe L, Rafael K, Pratt T (2003) Galileo frequency & signal design. GPS world 14 (6):30-37.
Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS-global navigation satellite systems. Springer-verlag, Wien Graz.
Hopfield HS (1969) Two-quartic tropospheric refractivity profile for correcting satellite data. Journal of geophysical research 74 (18):4487-4499.
Hwang C, Guo J, Deng X, Hsu H-Y, Liu Y (2006) Coastal gravity anomalies from retracked geosat/GM altimetry: improvement, limitation and the role of airborne gravity data. Journal of geodesy 80 (4):204-216.
Hwang C, Hsiao Y-S, Shih H-C, Yang M, Chen K-H, Forsberg R, Olesen AV (2007) Geodetic and geophysical results from a Taiwan airborne gravity survey: data reduction and accuracy assessment. Journal of geophysical research 112 (B04407).
Julien O, Alves P, Cannon ME, Zhang W A tightly coupled GPS/Galileo combination for improved ambiguity resolution. In: ENC-GNSS 2003, Graz, Austria, April 22-25 2003.
Julien O, Alves P, Cannon ME, Lachapelle G Improved triple-frequency GPS/GALILEO carrier phase ambiguity resolution using a stochastic ionosphere modeling. In: ION NTM 2004, San Diego, California, January 26-28 2004.
Jung J, Enge P, Pervan B Optimization of cascade integer resolution with three civil GPS frequencies. In: ION GPS-2000, Salt Lake City, Utah, September 19-22 2000.
Kim D, Langley RB GPS Ambiguity Resolution and Validation: Methodologies, Trends and Issues. In: International Symposium on GPS/GNSS, Seoul, Korea, November 30 -December 2 2000.
Kleusberg A, Teunissen PJG (1996) GPS for geodesy. Springer-verlag, Berlin.
Klobuchar JA (1987) Ionospheric time-delay algorithm for single- frequency GPS users. IEEE transactions on aerospace and electronic system AES-23 (3):325–331.
Koch KR (1999) Parameter estimation and hypothesis testing in linear models, 2nd. Springer, New York.
Kouba J, Héroux P (2001) Precise point positioning using IGS orbit and clock products. GPS solutions 5 (2):12-28.
Leick A (2004) GPS satellite surveying 3rd. John Willey & Sons, New York.
Leonard A, Blomenhofer H, Izquierdo I GPS and GALILEO interoperability and synergies. In: ION GPS 2002, Portland, Oregon, September 24-27 2002.
Li B, Feng Y, Shen Y (2010) Three carrier ambiguity resolution: distance-independent performance demonstrated using semi-generated triple frequency GPS signals. GPS solutions 14 (2):177-184.
Luo N (2001) Precise relative positioning of multiple moving platforms using GPS carrierphase observables (report no. 20147). PhD. thesis, University of Calgary, Alberta.
Ma LH, Han YB, Yin ZQ (2009) Periodicities in global mean TEC from GNSS observations. Earth moon planet 105 (1):3-10.
Mader GL (1999) GPS antenna calibration at the national geodetic survey. GPS solutions 3 (1):50-58.
Mannucci AJ, Tsurutani BT, Iijima BA, Komjathy A, Saito A, Gonzalez WD, Guarnieri FL, Kozyra JU, Skoug R (2005) Dayside global ionospheric response to the major interplanetray events of October 29-30 "Halloween Storms". Geoophysical research letters 32 (L12S02):1-4.
McCarthy DD, Petit G (2004) IERS technical note no. 32 (IERS conventions(2003)). IERS conventions centre, Paris.
Melbourne WG The case for ranging in GPS based geodetic system. In: First international symposium on position with global positioning system, Rockville, Maryland, April 15-19 1985.
Miller J Global positioning system policy and program update. In: ION GNSS 2007, Fort Worth, Texas, September 25-28 2007.
Misra P, Enge P (2001) Global positioning system: signals, measurements, and performance. Ganga-jamuna press, Massachusetts.
Montenbruck O, nther CG, Graf S, Garcia-Fernandez M, Furthner J, Kuhlen H (2006) GIOVE-a initial signal analysis. GPS solutions 10 (2):146-153.
Moudrak A, Konovaltsev A, Furthner J, Hammesfahr J, Bauch A, Defraigne P, Bedrich S Timing aspects of GPS-Galileo interoperability: challenges and solutions. In: 36th annual precise time and time interval meeting, Washington. DC, December 7-9 2004.
Nee RDJV (1992) Multipath effects on GPS code phase measurements. Navigation 39 (2):177-190.
Nee RDJV The multipath estimating delay lock loop: approaching theoretical accuracy limits. In: Position location and navigation symposium, Las Vegas, Nevada April 11-15 1994.
Odijk D, Marel HvD, Song I (2000) Precise GPS positioning by applying ionospheric corrections from an active control network. GPS solutions 3 (3):49-57.
Odijk D Weighting ionospheric corrections to improve fast GPS positioning over medium distances In: ION GPS 2000, SaltLake City, Utah, Sepember 19-22 2000.
Odijk D, Teunissen PJG, Tiberius CCJM Triple-frequency ionosphere-free phase combinations for ambiguity resolution. In: ENC-GNSS 2002, Copenhagen, Denmark, May 27-30 2002.
Odijk D (2003) Ionosphere-free phase combinations for modernized GPS. Journal of surveyinge engineering 129 (4):165-173.
O'Donnell M, Watson T, Fisher J, Simpson S, Brodin G, Bryant E, Walsh D (2003) Galileo performance. GPS world 14 (6):38-44.
O'Keefe K Availability and reliability advantages of GPS/Galileo integration. In: ION GPS 2001, Salt Lake City, Utah, September 11-14 2001.
Onidi O GALILEO is launched. In: ION GPS 2002, Portland, Oregon, September 24-27 2002.
Pope AJ (1976) The statistics of residuals and the detection of outliers. Technical Report (TR-NOS-65-NGS-1). National ocean survey, Rockville, Maryland.
Rafael CG, Woods RE (2002) Digital image processing. Prentice-Hall, New Jersey.
Ray JK, Cannon ME, Fenton P Mitigation of static carrier phase multipath effects using multiple closely-spaced antennas. In: ION GPS 1998, Nashville, Tennessee, September 15-18 1998.
Rizos C, Han S (2003) Reference station network based RTK systems-concepts and progress. Wuhan unuversity journal of natural sciences 8 (2B):566-574.
Rothacher M, Springer TA, Schaer S, Beutler G Processing strategies for regional GPS networks. In: IAG symposia: advances in positioning and reference frames, Rio de Janeiro, September 3-9 1997.
Saastamoinen JJ (1973) Contributions to the theory of atmospheric refraction. Bulletin géodesique 107 (1):13-34.
Santerre R (1991) Impact of GPS satellite sky distribution. Manuscripta geodaetica 16:28-53.
Schaer S, Gurtner W, Feltens J The ionosphere map exchange format version 1. In: IGS analysis centers workshop, Darmstadt February 9-11 1998.
Schaer S (1999) Mapping and predicting the earth's ionosphere using the global positioning system. PhD. thesis, Bern, Switzerland.
Schaffrin B, Bock Y (1988) A unified scheme for processing GPS dual-band phase observations. Journal of geodesy 62 (2):142-160.
Seeber G (2003) Satellite geodesy 2nd edition. Walter de Gruyter, Germany.
Steigenberger P, Hugentobler U, Montenbruck O, Hauschild A (2011) Precise orbit determination of GIOVE-B based on the CONGO network. Journal of geodesy 85 (6):357-365.
Strang G (1988) Linear algebra and its applications 3rd edition. Thomson learning, inc., United States.
Strang G, Borre K (1997) Linear algebra, geodesy and GPS. Wellesley-cambrudge press, United States.
Tiberius C, Pany T, Eissfeller B, Joosten P, Verhagen S (2002) 0.99999999 confidence ambiguity resolution with GPS and Galileo. GPS solutions 6 (1):96-99.
Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. Journal of geodesy 70 (1-2):65-82.
Teunissen PJG (1997) The geometry-free GPS ambiguity search space with a weighted ionosphere. Journal of geodesy 71 (6):370-383.
Teunissen PJG, Jonkman NF, Joosten P, Tiberius CCJM Long baseline 3 frequency differential GNSS. In: Position location and navigation symposium, IEEE 2000, San Diego, California, April 15-18 2000.
Teunissen PJG, Joosten P, Tiberius C A comparison of TCAR , CIR and LAMBDA GNSS ambiguity resolution. In: ION GPS 2002, Portland, Oregon, September 24-27 2002.
Teunissen PJG, Odijk D (2003) Rank-defect integer estimation and phase-only modernized GPS ambiguity resolution. Journal of geodesy 76 (9):523-535.
Verhagen S Performance analysis of GPS, Galileo and Integrated GPS-Galileo. In: ION GPS 2002, Portland, Oregon, September 24-27 2002.
Verhagen S, Joosten P Algorithms for design computation for integrated GPS–Galileo. In: GNSS 2003, Graz, Austria April 22-25 2003.
Verhagen S (2004) Integer ambiguity validation: an open problem? GPS solutions 8 (1):36-43.
Verhagen S (2005) The GNSS integer ambiguities: estimation and validation. NCG, Delft, Netherlands.
Vollath U, Birnbach S, Landau H Analysis of three-carrier ambiguity resolution (TCAR) technique for precise relative positioning in GNSS-2. In: ION GPS-98, Nashville, Tennessee, September 15-18 1998.
Vollath U, Deking A, Landau H, Pagels C Long range RTK positioning using virtual reference stations. In: the international symposium on kinematic systems in geodesy, geomatics and navigation, Banff, June 5-8 2001.
Wübbena G, Schmitz M, Menge F, Böder V, Seeber G Automated Absolute Field Calibration of GPS Antennas in Real-Time. In: ION GPS 2000, Salt Lake City, Utah, September 19-22 2000.
Xu G (2003) GPS theory, algorithms and application. Springer-Verlag, New York.
Yang Z (1998) Joint time frequency analysis of global positioning system (GPS) multipath signals. PhD. thesis, Ohio University.
Yang M, Tang C-H, Yu T-T (2000a) Development and assessment of a medium-range real-time kinematic GPS using an ionosphere information filter. Earth planets and space 50 (10):783-788.
Yang M, Rau R-J, Yu J-Y, Yu T-T (2000) Geodetically observed surface displacements of the 1999 Chi-Chi, Taiwan, earthquake. Earth planets and space 52 (6):403-413.
Yang M, Tseng C-L, Yu J-Y (2001) Establishment and maintenance of Taiwan geodetic datum 1997. Journal of surveying engineering 127 (4):119-132.
Zhang QJ, Schwarz K-P Estimating double difference GPS multipath under kinematic conditions. In: Position location and navigation symposium, IEEE 1996, Atlanta, Georgia, April 22-26 1996.
Zhang J (1999) Investigations into the estimation of residual tropospheric delays in a GPS network (report no. 20132). PhD. thesis, University of Calgary, Calgary, Canada.
Zhang J, Lachapelle G (2001) Precise estimation of residual tropospheric delays using a regional GPS network for real-time kinematic applications. Journal of geodesy 75 (5):255-266.
Zhang W (2005) Triple frequency cascading ambiguity resolution for modernized GPS and GALILEO (report no. 20228). MSc. thesis, University of Calgary, Canada.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-02-07起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-02-07起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw