進階搜尋


 
系統識別號 U0026-0501201619431700
論文名稱(中文) 狀態空間分析法於離岸風機結構非線性制震控制之應用研究
論文名稱(英文) A state-space analysis approach for nonlinear seismic control of offshore wind turbine structures
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 104
學期 1
出版年 105
研究生(中文) 林柏樺
研究生(英文) Bo-Hua Lin
學號 N66021189
學位類別 碩士
語文別 中文
論文頁數 142頁
口試委員 指導教授-胡宣德
共同指導教授-盧煉元
口試委員-洪李陵
口試委員-鍾立來
口試委員-林子剛
中文關鍵字 離岸風機支撐結構  質量阻尼器  非線性分析  二元系統  半主動控制  狀態空間法  減震技術  可變摩擦  半主動摩擦 
英文關鍵字 off-shore wind turbine  mass damper  nonlinear analysis  dual system  semi-active control  state-space method  structural control  variable friction damper 
學科別分類
中文摘要 能源問題一直是國際間討論的重要議題,而日本311地震導致福島核災事件後,使得再生能源議題再次浮上檯面。臺灣海峽擁有優良之風場條件,因此極為適合發展離岸風力發電技術,但相較於歐美國家,臺灣位於地殼板塊交界處地震發生頻繁,因此,臺灣若發展離岸風電技術,風機之耐震問題勢必需要更進一步研究與探討,以強化風機結構之耐震能力。有鑒於此,本文以數值方法探討對採用質量阻尼器(mass damper, MD)作為風機減震技術之可行性,考慮之技術範籌包括被動式與半主動式質量阻尼器(semi-active mass damper, SAMD)二類。由於風機結構屬於細長型結構,裝置MD之機艙搖擺角可能對風機整體結構產生非線性行為,因此本文將考慮此一非線性行為之影響。同時,為增進運算效能,本文採用二元系統分析方法,將整體風機結構拆解成非線性的機艙座次結構系統與線性的塔柱次結構系統。如此,線性系統部分即可維持較高的模擬運算效能。
本文非線性分析結果顯示,在考慮機艙搖擺角之互制效應後,MD對風機結構仍保有優異之減震效率,其效果甚至略優於線性分析結果,顯示風機結構MD之構想為有效之減震技術。同時,本文比較線性與非線性分析結果發現,對於原始無控與裝設MD後之風機結構地震反應而言,非線性與線性分析法所得結果差異並不顯著。再者,就半主動質量阻尼器方面,本文係於原有被動MD中加入可變摩擦元件,使之變為可控之SAMD。本文數值模擬結果顯示,SAMD雖會提高些許機艙加速度,但可大幅降低機艙質量塊衝程及摩擦型MD之殘餘位移,且可同時降低柱底剪力,實有利實務之應用。
英文摘要 The development of renewable energy is always an international issue. With the Fukushima nuclear disaster, the controversial discussion over the renewable energy was revoked. It is suitable to develop the technology of the offshore wind-turbine with the great wind-farms in Taiwan Straits. However, comparing to Europe, earthquakes occurred more frequently in Taiwan. In order to ensure the seismic safety of the wind turbine structure, the seismic resistance capacity of the turbine structure needs to be further investigated. To this end, the technology of the mass damper (MD) was adopted in this research. Two different types of the MD technology were investigated. One is the passive friction-MD and the other one is semi-active mass damper (SAMD), which was accomplished by adding an adjustable friction device to the passive friction-MD. Because of the slenderness of the wind-turbine structure, the rocking angle of the nacelle on the top of the tower may influence the global seismic behavior of the turbine structure with the MD. Therefore, this nonlinear behavior is considered in the thesis. Meanwhile, in order to increase the computational efficiency, the dual-system analysis method was adopted, so the whole system is divided into two substructures: the nonlinear MD-substructure and linear tower-substructure. In this case, the high-efficient computation can be retained in the linear tower-substructure.
The simulated result has demonstrated that the MD is a very effective means for mitigating the seismic responses of the wind-turbine structure even when the nonlinear effect due to the rocking angle of the nacelle is considered. It is also shown that there is no significant difference between the results simulated by the linear and nonlinear analysis methods for the turbine structure with or without the MD. As for the SAMD, the simulated results showed that the SAMD is able to substantially suppress the stroke of the nacelle and the base shear of the tower, although the nacelle acceleration may be slightly increased in the turbine structure with the SAMD.
論文目次 摘要 I
英文延伸摘要 II
誌謝 VII
目錄 VIII
表目錄 XII
圖目錄 XIII
符號說明 XVII
第一章 前言 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 研究目的與內容 5
第二章 非線性運動方程式推導 7
2.1 二元系統數學說明 7
2.2質量阻尼器次結構系統之運動方程式 7
2.2.1機艙質量阻尼器能量 7
2.2.2 質量阻尼器運動方程式推導 9
2.2.3 小變形小轉角假設 12
2.3 塔柱結構次結構系統之運動方程式 13
2.3.1 塔柱之連續質量數學模型 13
2.3.2 單根桿件之能量公式 14
2.3.3 整體塔柱結構之能量公式 16
2.3.4 塔柱結構能量及拉格朗方程式 18
2.3.5 支承條件及支承反力 20
2.3.6 考慮結構阻尼之塔柱運動方程式 21
2.3.7 塔柱頂端之作用力 (塔柱之組構條件) 21
2.4 二元系統之變形相容及力平衡條件 22
2.4.1 變形相容條件 22
2.4.2 力平衡條件 23
2.5 二元系統之互制運動方程式 23
2.5.1 塔柱運動方程式 23
2.5.2 質量阻尼器運動方程式 24
第三章 數值分析方法 26
3.1 質量阻尼器之狀態空間方程式 26
3.2 塔柱之狀態空間運動方程式 27
3.3 MD狀態方程式之離散數值解 28
3.4 塔柱狀態方程式之離散數值解 29
3.5 MD阻尼力之計算與機艙加速度計算 30
3.6 摩擦力的模擬 32
第四章 數值模擬案例及分析方法之驗證 34
4.1數值模擬之應用案例 34
4.2 分析用之歷時震波 35
4.3 線性系統運動方程式推導 35
4.3.1風機整體結構能量及拉格朗運動方程式 35
4.3.2 支承條件與結構阻尼之考量 37
4.3.3 線性系統狀態空間方程式及其離散解 38
4.4 本文二元系統數值分析方法之驗證 39
4.4.1 二元系統線性化假設 39
4.4.2 二元線性化系統與線性系統驗證 40
4.5 線性系統之模態分析 41
第五章 質量阻尼器(MD)之減震效能評估 42
5.1 參數研究 42
5.2 線性與非線性系統之行為差異比較 44
5.2.1歷時反應比較 44
5.2.2 阻尼器遲滯特性比較 45
5.2.3 機艙絕對加速度比較 45
5.3 MD之減震效能評估 47
5.3.1 線性與非線性MD之反應比較 47
5.3.2非線性MD與非線性無控系統之減震效能比較 48
5.4 小結 48
第六章 半主動摩擦質量阻尼器(SAMD)之控制應用 50
6.1 含SAMD風機結構之數學模型與運動方程式 50
6.2 半主動控制律-防鎖摩擦控制律(NSF) 50
6.3 SAMD參數研究 51
6.3.1 參數研究相關設定 51
6.3.2 無因次化與正規化 51
6.3.3 較佳控制律參數之決定 52
6.4 SAMD減震效能評估 53
6.4.1 SAMD與無控系統歷時反應比較 53
6.4.2 SAMD與摩擦型MD歷時反應比較 54
6.4.3 減震效能綜合評估 54
6.5 小結 55
第七章 結論與建議 56
7.1 結論 56
7.2 建議 57
參考文獻 59
參考文獻 Adhikari, S., & Bhattacharya, S. (2012). Dynamic analysis of wind turbine towers on flexible foundations. Shock and vibration, 19(1), 37-56.
Arrigan, J., Pakrashi, V., Basu, B., & Nagarajaiah, S. (2009, June). Semi-active frequency tracking algorithm for control of flapwise vibrations in wind turbine blades. In Signals and Systems Conference (ISSC 2009), IET Irish (pp. 1-6). IET.
Arshad, M., & O’Kelly, B. C. (2013). Offshore wind-turbine structures: a review. Proceedings of the ICE-Energy, 166(4), 139-152.
A. Mateo Alay, S. Tomio, W. Sekine, O. Takahashi (2014). Axisymmetric Finite Element Method Considering Dynamic Interaction of Wind Turbine, Pile Foundation and Soil. Sixth World Conference on Structural Control and Monitoring, Barcelona, Spain, 15th –17th July 2014.
Aggarwal, N., Manikandan, R., & Saha, N. (2014, January). Dynamic analysis and control of support structures for offshore wind turbines. In Non Conventional Energy (ICONCE), 2014 1st International Conference on (pp. 169-174). IEEE.
Bazeos, N., Hatzigeorgiou, G. D., Hondros, I. D., Karamaneas, H., Karabalis, D. L., & Beskos, D. E. (2002). Static, seismic and stability analyses of a prototype wind turbine steel tower. Engineering structures, 24(8), 1015-1025.
Bhattacharya, S., Cox, J. A., Lombardi, D., & Wood, D. M. (2012). Dynamics of offshore wind turbines supported on two foundations. Proceedings of the ICE-Geotechnical Engineering, 166(2), 159-169.
Bhattacharya, S., Nikitas, N., Garnsey, J., Alexander, N. A., Cox, J., Lombardi, D., & Nash, D. F. T. (2013). Observed dynamic soil–structure interaction in scale testing of offshore wind turbine foundations. Soil Dynamics and Earthquake Engineering, 54, 47-60.
Chopra, A. K. (1995). Dynamics of structures (Vol. 3). New Jersey: Prentice Hall.
Colwell, S., & Basu, B. (2009). Tuned liquid column dampers in offshore wind turbines for structural control. Engineering Structures, 31(2), 358-368.
Callier, F. M., & Desoer, C. A. (2012). Linear system theory. Springer Science & Business Media.
Caterino, N., Trinchillo, F., & Occhiuzzi, A. (2014). Magnetorheological dampers for vibration control in wind turbines. Sixth World Conference on Structural Control and Monitoring, Barcelona, Spain, 15th –17th July 2014.
Chaaban, R., & Fritzen, C. P. (2014). Structural Load Analysis of Tension Leg Floating Wind Turbine under Blade Pitch System Faults. Sixth World Conference on Structural Control and Monitoring, Barcelona, Spain, 15th –17th July 2014.
Caterino, N., Spizzuoco, M., & Occhiuzzi, A. (2015). Shaking table testing of a steel frame structure equipped with semi-active MR dampers: comparison of control algorithms. Smart Structures and Systems, 15(4), 963-995.
Devriendt, C., Weijtjens, W., El-Kafafy, M., & De Sitter, G. (2014). Monitoring resonant frequencies and damping values of an offshore wind turbine in parked conditions. IET Renewable Power Generation, 8(4), 433-441.
Dueñas-Osorio, L., & Basu, B. (2008). Unavailability of wind turbines due to wind-induced accelerations. Engineering Structures, 30(4), 885-893.
Garelli, F., Camocardi, P., & Mantz, R. J. (2010). Variable structure strategy to avoid amplitude and rate saturation in pitch control of a wind turbine. international journal of hydrogen energy, 35(11), 5869-5875.
Jonkman, J., Butterfield, S., Musial, W., & Scott, G. (2009). Definition of a 5-MW reference wind turbine for offshore system development. NREL/TP-500-38060 February
Jonkman, J. M. (2009). Dynamics of offshore floating wind turbines—model development and verification. Wind Energy, 12(5), 459-492.
Houtzager, I., van Wingerden, J. W., & Verhaegen, M. (2013). Rejection of periodic wind disturbances on a smart rotor test section using lifted repetitive control. Control Systems Technology, IEEE Transactions on, 21(2), 347-359.
Hwang, Y. L., & Hwang, S. J. (2011). Dynamic analysis and control of multibody systems using nonlinear combination methods. International Journal for Numerical Methods in Biomedical Engineering, 27(10), 1583-1610.
Khalil, H. K., & Grizzle, J. W. (1996). Nonlinear systems (Vol. 3). New Jersey: Prentice hall.
Ke, S. T., Ge, Y. J., Zhao, L., Chen, S. L., & Tamura, Y. (2013). Wind-induced responses of super-large cooling towers. Journal of Central South University of Technology, 11(20), 3216-3228.
Kim, S. J., Holub, C. J., & Elnashai, A. S. (2010). Analytical assessment of the effect of vertical earthquake motion on RC bridge piers. Journal of Structural Engineering, 137(2), 252-260.
Korkmaz, S. (2011). A review of active structural control: challenges for engineering informatics. Computers & Structures, 89(23), 2113-2132.
Krenk, S., Svendsen, M. N., & Høgsberg, J. (2012). Resonant vibration control of three-bladed wind turbine rotors. AIAA journal, 50(1), 148-161.
Kwon, H. I., You, J. Y., & Kwon, O. J. (2012). Enhancement of wind turbine aerodynamic performance by a numerical optimization technique. Journal of mechanical science and technology, 26(2), 455-462.
Leung, A. Y. T. (1978). An accurate method of dynamic condensation in structural analysis. International Journal for Numerical Methods in Engineering, 12(11), 1705-1715.
Lackner, Matthew A., and Mario A. Rotea. "Passive structural control of offshore wind turbines." Wind energy 14.3 (2011): 373-388.
Lap-Loi, C., Lai-Yun, W., Hsu-Hui, H., Chung-Hsin, C., & Kuan-Hua, L. (2009). Optimal design theories of tuned mass dampers with nonlinear viscous damping. J. Earthquake Eng. Eng. Vibrat, 8, 41671-41674.
Lee, T. Y., & KAWASHIMA, K. (2005). Control of seismic-excited nonlinear isolated bridges with variable viscous dampers. 地震工学論文集, 28(0), 114-114.
Li, J., Zhang, Z., & Chen, J. (2012). Experimental study on vibration control of offshore wind turbines using a ball vibration absorber. Energy and Power Engineering, 4(03), 153.
Lin, P. Y., Roschke, P. N., & Loh, C. H. (2007). Hybrid base‐isolation with magnetorheological damper and fuzzy control. Structural Control and Health Monitoring, 14(3), 384-405.
Lu, L. Y. (2001). Seismic test of modal control with direct output feedback for building structures. Structural Engineering and Mechanics, 12(6), 633-656.
Lu, L. Y. (2004). Semi-active modal control for seismic structures with variable friction dampers. Engineering structures, 26(4), 437-454.
Lu, L. Y. (2004). Predictive control of seismic structures with semi‐active friction dampers. Earthquake engineering & structural dynamics, 33(5), 647-668.
Lu, L. Y., Chung, L. L., & Lin, G. L. (2004). A general method for semi-active feedback control of variable friction dampers. Journal of Intelligent Material Systems and Structures, 15(5), 393-412.
Lu, L. Y., Chung, L. L., Wu, L. Y., & Lin, G. L. (2006). Dynamic analysis of structures with friction devices using discrete-time state-space formulation. Computers & structures, 84(15), 1049-1071.
Lu, L. Y., Lin, G. L., & Kuo, T. C. (2008). Stiffness controllable isolation system for near-fault seismic isolation. Engineering Structures, 30(3), 747-765.
Lu, L. Y., & Lin, G. L. (2009). Fuzzy friction controllers for semi-active seismic isolation systems. Journal of Intelligent Material Systems and Structures.
Lu, L. Y., Lin, G. L., & Lin, C. H. (2009). A unified analysis model for energy dissipation devices used in seismic structures. Computer‐Aided Civil and Infrastructure Engineering, 24(1), 41-61.
Lu, L. Y., Lin, C. C., Lin, G. L., & Lin, C. Y. (2010). Experiment and analysis of a fuzzy-controlled piezoelectric seismic isolation system. Journal of Sound and Vibration, 329(11), 1992-2014.
Lu, L. Y., Lin, G. L., & Lin, C. Y. (2011.a). Experimental verification of a piezoelectric smart isolation system. Structural Control and Health Monitoring, 18(8), 869-889.
Lu, L. Y., Lin, G. L., & Lin, C. Y. (2011.b). Experiment of an ABS-type control strategy for semi-active friction isolation systems. Smart Structures and Systems, 8(5), 501-524.
Luo, N. S. (2013). Structural Control Issues in New Generation Offshore Wind Energy Plants. In Advances in Science and Technology (Vol. 83, pp. 167-176).
Luo, N. S. and Basu, B. (2014). Challenging Issues in Structural Control and Monitoring of Offshore Wind Turbines. Sixth World Conference on Structural Control and Monitoring, Barcelona, Spain, 15th –17th July 2014.
Luo, N., Vidal, Y., & Acho, L. (Eds.). (2014). Wind Turbine Control and Monitoring. Springer.
Meirovitch, L. (1990). Dynamics and control of structures. John Wiley & Sons.
McGuire, W., Gallagher, R. H., & Ziemian, R. D. (2000). Matrix structural analysis.
Madden, G. J., Symans, M. D., & Wongprasert, N. (2002). Experimental verification of seismic response of building frame with adaptive sliding base-isolation system. Journal of Structural Engineering, 128(8), 1037-1045.
Murtagh, P. J., Ghosh, A., Basu, B., & Broderick, B. M. (2008). Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence. Wind Energy, 11(4), 305-317.
Mróz, A., & Kärnä, T. (2005). Mitigation of ice loading. Feasibility study of semi-active solution (Vol. 39). VTT Working Papers.
Martynowicz, P., & Szydao, Z. (2013). Wind turbine's tower-nacelle model with magnetorheological tuned vibration absorber. In Carpathian Control Conference (ICCC), 2013 14th International (pp. 238-242). IEEE.
Martynowicz, P. (2015). Vibration control of wind turbine tower-nacelle model with magnetorheological tuned vibration absorber. Journal of Vibration and Control, 1077546315591445.
Nagarajaiah, S., Li, C., Reinhorn, A. M., & Constantinou, M. C. (1993). 3D-BASIS-TABS: Computer program for nonlinear dynamic analysis of three dimensional base isolated structures.
Naeim, F. and Kelly, J.M. (1999) "Design of Seismic Isolated Structures", John Wiley & Sons, Inc., New York
Narasimhan, S., Nagarajaiah, S., Johnson, E. A., & Gavin, H. P. (2005). Smart base-isolated benchmark building. Part I: problem definition. In The 4th International Workshop on Structural Control (p. 97). DEStech Publications, Inc.
Nagarajaiah, S. (2010). Adaptive stiffness systems recent developments in structural control. Fifth World Conference on Structural Control and Monitoring, Tokyo, Japan, 12th –14th July 2010.
Ozdalyan, B., & Blundell, M. V. (1998). Anti-lock braking system simulation and modelling in ADAMS.
Symans, M. D., & Constantinou, M. C. (1999). Semi-active control systems for seismic protection of structures: a state-of-the-art review. Engineering structures, 21(6), 469-487.
Spencer Jr, B. F., & Nagarajaiah, S. (2003). State of the art of structural control. Journal of structural engineering.
Staino, A., & Basu, B. (2013). Dynamics and control of vibrations in wind turbines with variable rotor speed. Engineering Structures, 56, 58-67.
Stephen Boyd (2008). Lecture Notes for Introduction to Linear Dynamical Systems (EE263), Stanford University, CA
Stewart, G. M., & Lackner, M. A. (2011). The effect of actuator dynamics on active structural control of offshore wind turbines. Engineering Structures, 33(5), 1807-1816.
SSE (2011). Photo of the Greater Gabbard off-shore wind farm, UK. Courtesy of Scottish & Southern Energy (SSE), Perth, Scotland. Photo Credit: chpv.co.uk/ SSE/RWE.
Snamina, J., Martynowicz, P. (2014). Prediction of Characteristics of Wind Turbine’s Tower-Nacelle System from Investigations of its Scaled Model. Sixth World Conference on Structural Control and Monitoring, Barcelona, Spain, 15th –17th July 2014.
Tubaldi, E., Tassotti, L., Dall'Asta, A., & Dezi, L. (2014). Seismic response analysis of slender bridge piers. Earthquake Engineering & Structural Dynamics, 43(10), 1503-1519.
Vorpahl, F., Popko, W., & Kaufer, D. (2011). Description of a basic model of the" UpWind reference jacket" for code comparison in the OC4 project under IEA Wind Annex 30. Fraunhofer Institute for Wind Energy and Energy System Technology IWES.
Vidal, Y., Acho, L., Pujol, G., & Luo, N. (2014). Hardware-in-the-Loop Platform for the Test of Wind Turbine Controllers. Sixth World Conference on Structural Control and Monitoring, Barcelona, Spain, 15th –17th July 2014.
Wang, Y., Sui, Y., Wu, J., & Jiao, J. (2012). Research on nonlinear model predictive control technology for ship dynamic positioning system. In Automation and Logistics (ICAL), 2012 IEEE International Conference on (pp. 348-351). IEEE.
Yang, Y. B., & Lin, B. H. (1995). Vehicle-bridge interaction analysis by dynamic condensation method. Journal of Structural Engineering.
Yue, Z. (2005). Adaptive Superposition of Finite Element Meshes in Linear and Nonlinear Dynamic Analysis.
Zhang, N. (1995). Dynamic condensation of mass and stiffness matrices. Journal of Sound and Vibration, 188(4), 601-615.
吳金華 (2004) ,汽車防鎖定煞車系統,台北,全華科技。
李奕亨、顏志偉 (2006) “台灣西部離岸風力發電廠址地震條件分析”,第28屆海洋工程研討會論文集,國立中山大學。
林建宏 (2002) 狀態空間法於隔減震結構分析上之應用,國立高雄第一科技大學營建工程系碩士論文,6月。指導教授:盧煉元。
林子堯 (2014) 減震技術於離岸風力發電支承結構之應用研究,國立成功大學土木工程學系碩士論文,6月。指導教授:胡宣德、盧煉元。
林子堯、盧煉元、胡宣德、蘇峰堅 (2014) “離岸風力發電機支承結構之減震研究”,中華民國第十二屆結構工程研討會,高雄市,8月27-29日,論文編號:2313。
洪俊宏 (2011) 設備於建物中之耐震策略分析與實驗,國立高雄第一科技大學營建工程系碩士論文,7月。指導教授:盧煉元。
張國鎮、黃震興、蘇晴茂、李森枏 (2004),結構消能減震控制及隔震設計,台北,全華科技。
黃心豪 (2013) “離岸風力發電在台灣”,杜風66期。
彭冠文 (2015) 建物中設備水平與垂直雙向隔震技術之實驗與理論研究,國立高雄第一科技大學營建工程系碩士論文,1月。指導教授:楊國珍、盧煉元。
劉彥緯 (2004) 壓電式半主動摩擦阻尼器之研發, 國立高雄第一科技大學營建工程系碩士論文,7月。指導教授:盧煉元。
鄭榮杰 (2015) “槓桿式半主動摩擦阻尼器於結構減震應用之實驗與分析”,國立高雄第一科技大學營建工程系碩士論文,1月。指導教授:鄭錦銅、盧煉元。
盧煉元、林建宏、林錦隆(2004),”非線性狀態空間法於消能結構分析之應用”,中國土木水利工程學刊,第十六卷,第四期,621-634。
盧煉元、林錦隆、王智弘 (2003) “半主動摩擦消能技術於結構減震之應用”,中國土木水利工程學刊,第十五卷,第二期,335-346。
盧煉元、施明祥,張婉妮 (2003) “近斷層震波對滑動式隔震結構之影響評估”,結構工程,第十八卷,第四期,23-48。
盧煉元、胡宣德、林子堯 (2015) “減震技術於離岸風力發電支承結構之應用研究”,結構工程,2015年6月1日送審。
盧煉元、鍾立來 (1999) ”國內外結構控制技術之進展”,土木技術(防災科技專題),四月號,第14期,81-95。
營建署 (2011) 建築物耐震設計規範及解說, 內政部營建署。
薛嘉傑 (2014) “垂直及水平地震力作用下框架式結構震動效應對設備反應之影響”,國立高雄第一科技大學營建工程系碩士論文,1月。指導教授:盧煉元。
簡立杰 (2006) 慣性桿倒單擺系統之平衡控制, 國立成功大學工程科學系碩士論文,7月。指導教授:何明字。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-01-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-01-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw