進階搜尋


下載電子全文  
系統識別號 U0026-0412201212063300
論文名稱(中文) 反應濺鍍氮化鉭鋯薄膜的製備、特性及其應用於銅製程擴散阻障層之研究
論文名稱(英文) Preparation, Characterization and Diffusion Barrier Application in Cu Metallization of Reactively Sputtered Tantalum Zirconium Nitride Thin Films
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系碩博士班
系所名稱(英) Department of Materials Science and Engineering
學年度 101
學期 1
出版年 101
研究生(中文) 阮建龍
研究生(英文) Jian-Long Ruan
學號 n58931100
學位類別 博士
語文別 中文
論文頁數 134頁
口試委員 指導教授-黃肇瑞
口試委員-劉全璞
口試委員-陳貞夙
口試委員-張守進
口試委員-盧陽明
口試委員-李志偉
口試委員-李丁福
口試委員-盧鴻華
中文關鍵字 氮化鋯薄膜  氮化鉭鋯薄膜  電性質  銅製程  擴散阻障層 
英文關鍵字 ZrN films  TaZrN films  Electrical property  Cu metallization  Diffusion barrier 
學科別分類
中文摘要 當半導體製程技術邁入深次微米的階段,由於銅具有較優異之導電性和電致遷移阻抗性而取代了鋁金屬製程。然而因為銅原子容易擴散至介電層或矽基材而造成元件的失效,因此必須於銅與介電層之間導入一層擴散阻障層,以阻止銅原子的擴散。本研究利用反應磁控濺鍍法沈積ZrN薄膜,並探討製程參數,如反應氮氣流量與基板負偏壓等,對於ZrN薄膜之成份、微結構、電性質及銅阻障性質的影響。接著,實驗中以ZrN薄膜的最佳鍍膜條件為基礎(氮氣流量: 3 SCCM,基板偏壓: -200 V),以雙靶材共濺鍍系統,並利用反應磁控濺鍍法沈積TaZrN薄膜,探討Ta的添加對於TaZrN薄膜之微結構、電性質及銅阻障性質的影響。
實驗結果發現,在反應濺鍍ZrN薄膜過程中,隨著氮氣流量增加,靶材表面陶瓷化合物的形成機率增加,這不僅會降低薄膜濺鍍速率,也會影響薄膜中的化學成分。ZrN薄膜中殘留氧原子的存在可能是因為濺鍍背景壓力僅為10-6 torr,而來自於殘留於真空濺鍍腔體內之氣體。而¬薄膜的晶格常數略大於氮化鋯化合物之理論值,也證明了薄膜中殘留氧原子的存在。對於ZrN薄膜而言,部分的殘留氧原子可能會取代氮化鋯晶格結構中的氮原子位置或占據晶格中之格隙位置,而導致近計量比之(near-stoichiometric) ZrN薄膜的形成,和過計量比(over-stoichiometric)成份的薄膜延遲發生,以及薄膜整體電阻率的上昇。因為殘留氧原子而引起的雜質原子電子散射效應是ZrN薄膜整體電阻率會小幅上昇的主要原因。
在基板負偏壓對於氮化鋯薄膜的成分、微結構、電阻率和擴散阻障性質的影響研究中,其結果顯示ZrN薄膜的濺鍍速率和殘留雜質氧含量,會深受離子轟擊而引起之再濺射效應(resputtering)所影響。而表面能和應變能間的彼此競爭,會使得氮化鋯薄膜之從優取向隨著基板負偏壓的增加,由(111)面轉變成(200)面,最後再變成高度(111)面的從優取向。基板負偏壓的施加有助於減少薄膜中之氧含量,並增進薄膜的緻密性,進而有效地降低氮化鋯薄膜之電阻率。在銅阻障性質方面,施加偏壓之氮化鋯薄膜已可成功地被應用在銅和二氧化矽之間的擴散阻障層,其失效溫度在真空退火30分鐘條件下可高達800 °C以上。
而在Ta添加對於TaZrN薄膜的成分、微結構、電性質及銅阻障性質的影響研究中,其結果顯示不同鉭含量的TaZrN薄膜,其結晶結構都屬於NaCl結構。此外,由於Ta5+的離子半徑比Zr4+還要小,造成TaZrN薄膜的晶格常數會隨著鉭含量的增加而下降,此晶格常數的下降證明了Zr原子成功地被Ta原子置換,繼而形成TaZrN固溶相(solid solution)。當鉭含量為3.5 at. %時,TaZrN薄膜具有最低的電阻率78 μΩ-cm,而進一步增加鉭含量,反而會使得薄膜電阻率上昇。霍爾量測分析結果顯示氮化鉭鋯薄膜的主要載子為電子(n-type)。除此之外,由於Ta相較於Zr,多了一個d軌域價電子的關係,以及晶界電子散射效應較不顯著的影響,造成在鉭含量為3.5 at. % 的時候,薄膜載子濃度(carrier density)與遷移率(mobility)都有明顯的改善,這使得添加少量Ta (3.5 at. %)的TaZrN薄膜電阻率比氮化鋯薄膜為低。實驗中同時也製備Cu (100 nm) / TaZrN (10 nm) / SiO2 (100 nm) / Si堆疊結構,並藉由後續真空退火處理,來測試TaZrN薄膜的擴散阻障效能。結果顯示,於氮化鋯薄膜中添加少量的鉭 (3.5 at. %),會造成晶格些微扭曲與較高的堆積密度,可明顯改善氮化鋯薄膜的銅原子擴散阻障性質。因此,少量鉭添加(3.5 at. %)之TaZrN薄膜具有極大的潛力可以被應用在銅製程當中,成為新擴散阻障層的材料。
英文摘要 As semiconductor device technology approached the deep sub-micron process requirements, copper has replaced aluminum in the interconnect metallization due to its excellent electrical conductivity and superior electromigration resistance as compared to Al. However, with a higher diffusivity than Al, Cu diffused easily through the dielectrics, and then, the performance of devices was degraded by the introduction of deep-level acceptor. Moreover, Cu silicides were easily formed at temperatures as low as 200 °C. Therefore, it is necessary to introduce a diffusion barrier between Cu and the underlying dielectrics to suppress Cu diffusion. In this study, ZrN films were prepared by reactive magnetron sputtering. The effects of process parameters (nitrogen flow rate and negative substrate bias) on the composition, microstructure, electrical property and Cu barrier performance of ZrN films were investigated. In addition, TaZrN films were also prepared by reactive magnetron sputtering using dual target co-sputtering system based on the optimum process parameters of ZrN films (nitrogen flow rate: 3 SCCM and negative substrate bias: -200 V). The effects of Ta addition on the microstructure, electrical property and Cu barrier performance of TaZrN films were also intensively studied in this work.
Results indicated that the formation of compound on the target surface with increasing nitrogen flow rate not only led to a reduction in deposition rate but also influenced the composition of the film. The existence of residual oxygen in the ZrN films was ascribed to the relatively high base pressure attained in the present work. The slightly larger lattice constant of ZrN films compared with the ideal value of ZrN compound demonstrated the presence of residual oxygen atoms in the films. The residual oxygen atoms in the ZrN films may possibly substitute the nitrogen atoms or occupy the interstitial positions in the ZrN lattice, causing that so called near-stoichiometric films and the delay of occurrence for over-stoichiometric films in the N/Zr ratio evolution with nitrogen flow rate. The electron scattering effects due to impurity atoms may be enhanced by the incorporation of residual oxygen atoms and were responsible for the overall raise in the resistivity of ZrN films as a function of nitrogen flow rate, comparing with the value reported by previous studies.
The composition, microstructure, resistivity and diffusion barrier properties of ZrN films, with respect to substrate bias, were studied in this work. Results showed that the deposition rate and impurity oxygen content of ZrN films were substantially influenced by the resputtering effects due to the ion bombardment on the film surface. The competition between surface energy and strain energy made the preferred orientation of ZrN films change from (111) to (200) and then back to highly (111) preferred orientation as a function of substrate bias. The application of negative substrate bias could effectively decrease the electrical resistivity due to the decrease of impurity oxygen content and the densification of films, resulting from the moderate-energy ion irradiation. The biased ZrN films could successfully be used as a diffusion barrier layer, between Cu and SiO2, even up to the high temperature of 800 °C for 30 minutes.
The effects of Ta content on the microstructure, composition, electrical and diffusion barrier properties of TaZrN films were also investigated in this study. Results indicated that the TaZrN films with different Ta content were crystallized in NaCl-type structure. In addition, the lattice constant of TaZrN films decreased with the increase of Ta content due to the smaller ionic radius of Ta5+ comparing with that of Zr4+. The decreasing lattice constant of TaZrN films with Ta content evidenced the successful substitution of Zr with Ta and then the formation of TaZrN solid solution. The electrical resistivity of TaZrN films showed a minimum value of 78 μΩ-cm at Ta content of 3.5 at. % and then increased with the increase of Ta content. Hall measurements indicated that the electrical conduction of films was essentially due to electrons (n-type). And the increase of carrier density and mobility at Ta content of 3.5 at. %, caused by the extra d valence electron of Ta and the less electron scattering of grain boundaries, was responsible for the further decreasing of resistivity from pure ZrN films.
A sputter-prepared Cu (100 nm)/TaxZr1-xN (10 nm)/SiO2 (100 nm)/Si stacked structure was fabricated for the evaluation of diffusion barrier performance of TaZrN films. Results showed that the little incorporation of Ta (3.5 at. %) into the ZrN films significantly improved the barrier performance against Cu diffusion at high temperature annealing due to the slightly distorted lattices and higher packing density attributed to the addition of Ta elements into ZrN films. In this study, the TaZrN films with 3.5 at. % of Ta could be successfully used as a potential diffusion barrier layer in Cu metallization even up to the high temperature of 900 °C, while the ZrN films failed at the same situation.
論文目次 總目錄
中文摘要 I
Abstract III
致謝 VI
總目錄 IX
圖目錄 XII
表目錄 XVIII

第一章 緒論 1
1-1前言 1
1-2研究動機與目的 9

第二章 理論基礎 13
2-1電漿的產生 13
2-2反應磁控濺鍍 15
2-3射頻濺鍍 17
2-4基板偏壓效應 18
2-5薄膜的成核與成長 20
2-6薄膜微觀結構 22
2-7電阻電容時間延遲(RC Time Delay) 25
2-8銅金屬導線製程 27
2-9擴散阻障層 28
2-9-1擴散阻障層的定義 28
2-9-2擴散阻障層的種類 29
2-10氮化鋯與氮化鉭鋯基本性質 33

第三章 實驗方法與步驟 38
3-1實驗流程圖 38
3-2實驗材料 39
3-3基材前處理 39
3-4實驗設備 39
3-5濺鍍步驟與條件 41
3-6真空退火實驗 43
3-7鍍層的分析與測試 43
3-7-1濺鍍速率之量測 43
3-7-2微結構之觀察 43
3-7-3 X-Ray繞射分析 46
3-7-4成份和化學鍵結分析 47
3-7-5縱深元素分析 48
3-7-6四點探針電性分析 48
3-7-7霍爾效應量測 50

第四章 結果與討論 53
4-1氮氣流量對ZrN薄膜之微結構與電性質的影響 53
4-1-1反應濺鍍速率 53
4-1-2化學成份與鍵結分析 54
4-1-3微結構分析 62
4-1-4電性分析 65
4-1-5殘留氧原子之影響 69
4-2基板偏壓對ZrN擴散阻障層薄膜的影響 71
4-2-1定量成份分析 71
4-2-2反應濺鍍速率與殘留氧含量 71
4-2-3化學鍵結分析 74
4-2-4微結構分析 74
4-2-5電性分析 82
4-2-6 Cu/ZrN/SiO2/Si結構的阻障性質 84
4-3 Ta含量對TaZrN薄膜之微結構與電性質的影響 91
4-3-1定量成份分析 91
4-3-2微結構分析 93
4-3-3化學鍵結分析 99
4-3-4電性分析 99
4-4 TaZrN薄膜之銅阻障性質 105
4-4-1 X-ray繞射分析 105
4-4-2銅膜片電阻值觀察 107
4-4-3 SEM表面型態 107
4-4-4 AES成份縱深分析 110

第五章 結論 116
第六章 未來工作 119
參考文獻 120
作者簡歷 131
參考文獻 [1] 曾偉志, 矽半導體元件中之金屬導線製程簡介, 金屬工業, Vol. 33, No. 3, 96 (1999).
[2] S. P. Murarka, “Low Dielectric Constant Materials for Interlayer Dielectric Applications”, Solid State Technology, 39 (3), 83 (1996).
[3] National Technology Roadmap for Semiconductor, 1997 edition, Semiconductor Industry Association.
[4] S. P. Murarka, R. J. Gutmann, A. E. Kaloyeros, W. A. Lanford, “Advanced Multilayer Metallization Schemes with Copper as Interconnection Metal”, Thin Solid Films, 236, 257 (1993).
[5] N. Awaya., H. Inokawa, E. Yamamoto, Y. Okazaki, M. Miyake, Y. Arita, T. Kobayashi, “Evaluation of a Copper Metallization Process and the Electric Characteristics of Copper-interconnected Quarter-micron CMOS”, IEEE Trans. Electron Devices, 43, 1206 (1996).
[6] J. Tao, N. W. Cheung, C. Hu, “Electromigration Characteristics of Copper Interconnects”, IEEE Electron Device Letters., 14, 249 (1994).
[7] C. S. Liu, L. J. Chen, ”Room-Temperature Oxidation of Silicon in the Presence of Cu3Si”, Thin Solid Films, 262, 187 (1995).
[8] C. S. Liu, L. J. Chen, “Interfacial Reactions of Ultrahigh Vacuum Deposited Cu Thin Films on Atomically Cleaned (111) Si. I. Phase Formation and Interface Structure”, J. Appl. Phys , 74, 5001 (1993).
[9] 吳文發, 黃麒峰, 銅製程之擴散阻障層, 毫微米通訊, Vol. 6, No. 4, 30 (1999).
[10] Jung-Chao Chiou, Hong-I Wang, Mao-Chieh Chen, “Dielectric Degradation of Cu/SiO2/Si Structure During Thermal Annealing”, J. Electrochem. Soc., 143, 990 (1996).
[11] 楊恆傑, “直流式磁控濺鍍鋯及氮化鋯薄膜性質、結構與擴散阻障層應用之研究”, 國立成功大學材料科學及工程研究所, 碩士論文, 民國九十一年.
[12] I. Sun, Maenpa M-A, Nicolet & M. Lumoajarvi, “Thermal Stability of Hafnium and Titanium Nitraide Diffusion Barrier in Multilayer Contacts to Silicon”, J. Electrochem. Soc., 103, 1215 (1983).
[13] K. Abe, Y. Harada, H. Onoda, “Study of Crystal Orientation in Cu Films on TiN Layered Structures”, J. Vac. Sci. & Technol. B, 17, 1464 (1999).
[14] M. Takeyama, A. Noya, K. Sakanishi, “Diffusion Barrier Properties of ZrN Films in the Cu/Si Contact Systems”, J. Vac. Sci. Technol. B, 18, 1333 (2000).
[15] J. Tao, N. W. Cheung, C. Hu, “Characterization and Modeling of Electromigration Failures in Multilayered Interconnects and Barrier Layer Materials”, IEEE Trans. Electron Devices., 43, 1819 (1996).
[16] H. Wiesenberger, W. Lengauer, P. Ettmayer, “Reactive Diffusion and Phase Equilibria in The V-C, Nb-N, Ta-C and Ta-N Systems”, Acta Mater., 46 (2), 651 (1998).
[17] A. E. Kaloyeros, E. Eisenbraun, “Ultrathin/Liners for Gigascale Copper Metallization”, Anuu. Rev. Mater. Sci., 30, 363 (2000).
[18] T. B. Massalski, “Binary Phase Diagram”, American Society for Metals, Westerville, OH, 1990.
[19] D. G. Gromov, A. I. Mochalov, A. G. Klimovitskiy, A. D. Sulimin, E. N. Redichev, “Approaches to Diffusion Barrier Creation and Trench Filling for Copper Interconnection Formation”, Appl. Phys. A, 81, 1337 (2005).
[20] K. Yoshimoto, F. Kaiya, S. Shinkai, K. Sasaki, H. Yanagisawa, “Preparation of Single-Oriented (111)VN Film with Low-Resistivity and Its Application as Diffusion Barrier between Cu and Si”, Jpn. J. Appl. Phys., 45, 215 (2006).
[21] M. B. Takeyama, T. Itoi, K. Satoh, M. Sakagami, A. Noya, “Application of Thin Nanocrystalline VN Film as a High-Performance Diffusion Barrier between Cu and SiO2”, J. Vac. Sci. Technol. B, 22, 2542 (2004).
[22] Hideto Yanagisawa, Katsutaka Sasaki, Yoshio Abe, Midori Kawamura, and Satoko Shinkai, “Study on Preparation Conditions of High Quality ZrN Thin Films Using a Low Temperature Process”, Jpn. J. Appl. Phys., 37, 5714 (1998).
[23] H. O. Pierson, “Handbook of Refractory Carbides and Nitride”, Noyes Publications, New Jersey, 1996.
[24] S. M. Aouadi, J. Chladek, F. Namavar, S. L. Rohde, “Characterization of Ti-based Nanocrystalline Ternary Nitride Films”, J. Vac. Sci. Technol. B, 20, 1967 (2002).
[25] S. M. Aouadi, P. Filip, M. Debessai, “Characterization of Tantalum Zirconium Nitride Sputter-Deposited Nanocrystalline Coatings”, Surf. Coat. Technol., 187, 177 (2004).
[26] M. B. Takeyama, T. Itoi, E. Aoyagi, A. Noya, “Diffusion Barrier Properties of Nano-Crystalline TiZrN Films in Cu/Si Contact Systems”, Appl. Surf. Sci., 216, 181 (2003).
[27] K. P. Purushotham, L. P. Ward, N. Brack, P. J. Pigram, P. Evans, H. Noorman, R. R. Manory, “Tribological Studies of Zr-implanted PVD TiN Coatings Deposited on Stainless Steel Substrates”, Wear, 254, 589 (2003).
[28] H. Hasegawa, A. Kimura, T. Suzuki, “Microhardness and Structural Analysis of (Ti,Al)N, (Ti,Cr)N, (Ti,Zr)N and (Ti,V)N Films”, J. Vac. Sci. Technol. A, 18, 1038 (2000).
[29] J. Probst, U. Gbureck, R. Thull, “Binary Nitride and Oxynitride PVD Coatings on Titanium for Biomedical Applications”, Surf. Coat. Technol., 148, 226 (2001).
[30] N. N. Iosad, B. D. Jackson, F. Fero, J. R. Gao, S. N. Polyakov, P. N. Dimitriev, T. M. Klapwijk, “Source Optimization for Magnetron Sputter Deposition of NbTiN Tuning Elements for SIS THz Detectors”, Supercond. Sci. Technol., 12(11), 736 (1999).
[31] S. M. Aouadi, M. Debessai, R. Tomek, T. Maeruf, “Real Time Spectroscopic Ellipsometry Study during the Growth of Nanocrystalline Nitride Protective Coatings”, J. Vac. Sci. Technol. B, 22, 1822 (2004).
[32] S. M. Aouadi, “Structural and Mechanical Properties of TaZrN Films: Experimental and ab initio Studies”, J. Appl. Phys., 99, 053507 (2006).
[33] L. E. Koutsokeras, N. Hastas, S. Kassavetis, O. Valassiades, C. Charitidis, S. Logothetidis, P. Patsalas, “Electronic Properties of Binary and Ternary, Hard and Refractory Transition Metal Nitrides”, Surf. Coat. Technol., 204, 2038 (2010).
[34] G. M. Matenoglou, L. E. Koutsokeras, P. Patsalas, “Plasma Energy and Work Function of Conducting Transition Metal Nitrides for Electronic Applications”, Appl. Phys. Lett., 94, 152108 (2009).
[35] Brian Chapman, “Glow Discharge Process”, John Wiley and Sons, New York, 1980.
[36] S. M. Rossnagel et al., “Handbook of Plasmas Processing Technology”, Noyes Publications, Park Ridge, New Jersey, U.S.A, 1982.
[37] D. M. Mattox, “Deposition Technologies for Films and Coatings”, Noyes Publications, Park Ridge, New Jersey, U. S. A., 1982.
[38] 莊達人 編著, “VLSI製造技術”, 高立圖書有限公司, 1995.
[39] J. A. Thornton, “Influence of Apparatus Geometry and Deposition Conditions on The Structure and Topography of Thick Sputtered Coatings”, J. Vac. Sci. Technol., 11, 666 (1974).
[40] H. T. G. Hentzell, C. R. M. Grovenor, D. A. Smith, “Grain Structure Variation with Temperature for Evaporated Metal Films”, J. Vac. Sci. Technol. A, 2, 218 (1984).
[41] P. B. Barna, M. Adamik, “Fundamental Structure Forming Phenomena of Polycrystalline Films and The Structure Zone Models”, Thin Solid Films, 317, 27 (1998).
[42] S. R. Willson, C. J. Tracy, “Handbook of Multilevel Metallization for Integrated Circuits”, Noyes Publications, Park Ridge, New Jersey, U.S.A, 1993.
[43] M.-A. Nicolet, “Diffusion Barrier in Thin Films”, Thin Solid Films, 52, 415 (1978).
[44] R. S. Nowicki, I. Wang, “Improvement of the Diffusion Barrier Properties of rf‐sputtered Molybdenum”, J. Vac. Sci. Technol., 15, 235 (1978).
[45] K. Nakamura, S. S. Lau, M.-A. Nicolet, J. W. Mayer, “Ti and V Layers Retard Interaction Between Al Films and Polycrystalline Si”, Appl. Phys. Lett., 28, 277 (1976).
[46] R. S. Nowicki, J. M. Harris, M.-A. Nicolet, I. V. Mitchell, “Studies of The Ti-W/Au Metallization on Aluminum”, Thin Solid Films, 53 (2), 195 (1978).
[47] K. N. Tu, R. Rosenberg, “Mass Transport in Layered Polycrystalline Thin Films”, Thin Solid Films, 13 (1), 163 (1972).
[48] X. Sun, E. Kolawa, S. Im, C. Garland, M.-A. Nicolet, “Effect of Si Reactively Sputtered TiSiN Films on Structure and Diffusion Barrier Performance”, Appl. Phys. A, 65, 43 (1997).
[49] James W. Mayer, S. S. Lau, “Electronic Materials Science: For Integrated Circuits in Si and GaAs”, Macmillan, U.S.A., chap.11, p.306-337.
[50] D. R. Lide, editor-in-chief, “CRC Handbook of Chemistry and Physics”, 74th ed., CRC Press, Boca Raton, 1993.
[51] J. Emsley, “The Elements”, Oxford University Press, New York, 1989.
[52] I. Barin, “Thermochemical Data of Pure Substance”, 3rd ed., VCH, New York, 1995.
[53] W. Y. Ching, Y.-N. Xu, L. Ouyang, “Electron and dielectric properties of insulating Zr3N4”, Physical Review B 66, 235106 (2002).
[54] H. P. Klug, L. E. Alexander, “X-Ray Diffraction Procedures”, Wiley, New York, 1974.
[55] D. A. Neamen, “An Introduction to Semiconductor Devices”, McGraw-Hill, New York, 2006.
[56] T. Nakano, K. Hoshi, S. Baba, “Effect of Background Gas Environment on Oxygen Incorporation in TiN Films Deposited using UHV Reactive Magnetron Sputtering”, Vacuum, 83, 467 (2008).
[57] T. Easwarakhanthan, M. B. Assouar, P. Pigeat, P. Alnot, “Optical Models for Radio-Frequency-Magnetron Reactively Sputtered AlN Films”, J. Appl. Phys., 98, 073531 (2005).
[58] M. Vila, E. Roman, C. Prieto, “Electrical Conduction Mechanism in Silicon Nitride and Oxy-Nitride-Sputtered Thin Films”, J. Appl. Phys., 97, 113710 (2005).
[59] A. Vomiero, E. Boscolo Marchi, G. Mariotto, G. Della Mea, A. Scandurra, O. Puglisi, “The Role of N in the Resputtering Inhibition of Si in W–Si–N Reactively Sputtered Thin Layers”, J. Appl. Phys., 97, 034905 (2005).
[60] C. P. Liu, H. G. Yang, “Systematic Study of The Evolution of Texture and Electrical Properties of ZrNx Thin Films by Reactive DC Magnetron Sputtering”, Thin Solid Films, 444, 111 (2003).
[61] S. H. Wang, C. C. Chang, J. S. Chen, “Effects of Substrate Bias and Nitrogen Flow Ratio on the Resistivity, Density, Stoichiometry, and Crystal Structure of Reactively Sputtered ZrNx Thin Films”, J. Vac. Sci. Technol. A, 22, 2145 (2004).
[62] S. K. Habib, A. Rizk, I. A. Mousa, “Physical Parameters Affecting Deposition Rates of Binary Alloys in a Magnetron Sputtering System”, Vacuum, 49, 153 (1998).
[63] M. Ohring, “The Materials Science of Thin Films”, Second ed., Academic Press, San Diego, 2002.
[64] H. M. Benia, M. Guemmaz, G. Schmerber, A. Mosser, J.-C. Parlebas, “Investigations on Non-Stoichiometric Zirconium Nitrides”, Appl. Surf. Sci., 200, 231 (2002).
[65] Kevin S. Robinson, Peter M. A. Sherwood, “X-Ray Photoelectron Spectroscopic Studies of the Surface of Sputter Ion Plated Films”, Surface & Interface Analysis, 6 (6), 261 (1984).
[66] J.-E. Sundgren, B.-O. Johansson, S.-E. Karlsson, “Mechanisms of Reactive Sputtering of Titanium Nitride and Titanium Carbide I:Influence of Process Parameters on Film Composition”, Thin Solid Films, 105, 353 (1983).
[67] M. Yoshitake, T. Yotsuya, S. Ogawa, “Effects of Nitrogen Pressure and RF Power on the Properties of Reactive Magnetron Sputtered Zr-N Films and an Application to a Thermistor”, Jpn. J. Appl. Phys., 31, 4002 (1992).
[68] M. Del Re, R. Gouttebaron, J.-P. Dauchot, P. Leclere, G. Terwagne, M. Hecq, “Study of ZrN Layers Deposited by Reactive Magnetron Sputtering”, Surface & Coatings Technology, 174-175, 240 (2003).
[69] M. Yoshitake, T. Yotsuya, K. Takiguchi, S. Ogawa, “Synthesis of Zr–N Thin Film by Reactive Ion Beam Sputtering”, Jpn. J. Appl. Phys., 29, 2800 (1990).
[70] L. Gribaudo, D. Arias, J. Abriata, “The N-Zr (Nitrogen-Zirconium) System”, J. Phase Equilib., 15, 441 (1994).
[71] B. K. Tay, X. Shi, H. S. Yang, H. S. Tan, D. Chua, S. Y. Teo, “The Effect of Deposition Conditions on the Properties of TiN Thin Films Prepared by Filtered Cathodic Vacuum-Arc Technique”, Surf. Coat. Technol., 111, 229 (1999).
[72] J. J. Kim, D. H. Jung, M. S. Kim, S. H. Kim, D. Y. Yoon, “Surface Roughness Reducing Effect of Iodine Sources (CH3I, C2H5I) on Ru and RuO2 Composite Films Grown by MOCVD”, Thin Solid Films, 409, 28 (2002).
[73] K. Schwarz, A. R. Williams, J. J. Cuomo, J. H. E. Harper, “Zirconium Nitride—A New Material for Josephson Junctions”, Phys. Rev. B, 32, 8312 (1985).
[74] M. K. Lee, H. S. Kang, W. W. Kim, J. S. Kim, W. J. Lee, “Characteristics of TiN Film Deposited on Stellite using Reactive Magnetron Sputter Ion Plating”, J. Mater. Res., 12, 2393 (1997).
[75] Bor-Yuan Shew, Jow-Lay Huang, Ding-Fwu Lii, “Effect of R.F. Bias and Nitrogen Flow Rates on The Reactive Sputtering of TiAlN Films”, Thin Solid Films, 293, 212 (1997).
[76] R. D. Bland, G. J. Kominiak, D. M. Mattox, “Effect of Ion Bombardment during Deposition on Thick Metal and Ceramics Deposits”, J. Vac. Sci. Technol., 11(4), 671 (1974).
[77] 賈穎昌, “以反應磁控濺鍍法於壓克力基材上披覆氧化銦錫薄膜之研究”, 國立成功大學材料科學及工程研究所, 碩士論文, 民國八十六年。
[78] R. Lohmann, E. Osterschulze, K. Thoma, H. Gartner, “Analysis of R.F.-Sputtered TiB2 Hard Coatings by Means of X-ray Diffractometry and Auger Electron Spectroscopy”, Mater. Sci. Eng. A, 139, 259 (1991).
[79] J. Pelleg, L. Z. Zevin, S. Lungo, “Reactive-Sputter-Deposited TiN Films on Glass Substrates”, Thin Solid Films, 197, 117 (1991).
[80] U. C. Oh, Jung Ho Je, “Effects of Strain Energy on the Preferred Orientation of TiN Thin Films”, J. Appl. Phys., 74(3), 1692 (1993).
[81] W. Ensinger, “Growth of Thin Films with Preferential Crystallographic Orientation by Ion Bombardment during Deposition”, Surface and Coatings Technology, 65, 90 (1994).
[82] M. Marinov, “Effect of Ion Bombardment on the Initial Stages of Thin Film Growth”, Thin Solid Films, 46, 267 (1977).
[83] B. S. Yau, J. L. Huang, M. C. Kan, “Effects of Substrate Bias on Nanocrystal-(Ti, Al)Nx/Amorphous-SiNy Composite Films”, J. Mater. Res., 18, 1985 (2003).
[84] G. Hakansson, J.–E. Sundgren, “Microstructure and Physical Properties of Polycrystalline Metastable Ti0.5Al0.5N Alloys Grown by DC Magnetron Sputter Deposition”, Thin Solid Films, 153, 55 (1987).
[85] A. Cavaleiro, M. T. Vieira, G. Lemperiere, “Influence of Deposition Conditions on the Morphology of Sputtered W-C-(Co) Films”, Thin Solid Films, 213, 6 (1992).
[86] Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, “Bias Effect of Ion-Plated Zirconium Nitride Film on Si(100)”, Thin Solid Films, 405, 162 (2002).
[87] Ki-Chul Park, Ki-Bum Kim, “The Effect of Density and Microstructure on the Performance of TiN Barrier Films in Cu Metallization”, J. Appl. Phys., 80 (10), 5674 (1996).
[88] J. H. Huang, C. Y. Hsu, S. S. Chen, G. P. Yu, “Effect of Substrate bias on the Structure and Properties of Ion-Plated ZrN on Si and Stainless Steel Substrates”, Mater. Chem. Phys., 77, 14 (2002).
[89] W. H. Lee, Y. L. Kuo, H. J. Huang, C. P. Lee, “Effect of Density on the Diffusion Barrier Property of TiNx Films between Cu and Si”, Materials Chemistry and Physics, 85, 444 (2004).
[90] J.–W. Lim, K. Mimura, M. Isshiki, “Suppression of Cu Agglomeration in the Cu/Ta/Si Structure by Capping Layer”, Science and Technology of Advanced Materials, 4, 391 (2003).
[91] C. C. Chang, J. S. Chen, W. S. Hsu, “Failure Mechanism of Amorphous and Crystalline Ta-N Films in the Cu/Ta-N/Ta/SiO2 Structure”, J. Electrochem. Soc., 151(11), G746 (2004).
[92] Ki-Chul Park, Soo-Hyun Kim, Ki-Bum Kim, “Effect of Ion Bombardment During Chemical Vapor Deposition of TiN Films”, Journal of The Electrochemical Society, 147 (7), 2711 (2000).
[93] Seungchan Cho, Keunwoo Lee, Pungkeun Song, Hyeomgtag Jeon, Yangdo Kim, “Barrier characteristics of ZrN films deposited by remote plasma enhanced atomic layer deposition using tetrakis (diethylamino) zirconium precursor”, Jpn. J. Appl. Phys., 46 (7A), 4085 (2007).
[94] M. Sato, M. B. Takeyama, E. Aoyagi, A. Noya, “Application of Extremely Thin ZrN Film as Diffusion Barrier between Cu and SiOC”, Jpn. J. Appl. Phys., 47 (1), 620 (2008).
[95] O. Kubaschewski, C. B. Alcock, “Metallurgical Thermo-Chemistry”, Pergamon Press, New York, 1979.
[96] C. Kittel, “Introduction to Solid State Physics”, John Wiley and Sons, New York, 1996.
[97] D. N. Lee, “A Model for Development of Orientation of Vapour Deposits”, J. Mater. Sci., 24, 4375 (1989).
[98] Li Li, Erwu Niu, Guohua Lv, Xianhui Zhang, Huan Chen, Songhua Fan, Chizi Liu, Si-Ze Yang, “Synthesis and Electrochemical Characteristics of Ta–N Thin Films Fabricated by Cathodic Arc Deposition”, Appl. Surf. Sci., 253, 6811 (2007).
[99] M. Saib, J. C. Francois, P. Gravier, M. Sigrist, L. Argeme, “Resistivity and Hall Effect of Reactively Sputtered Zirconium Nitride Films”, Solid State Commun., 58, 385 (1986).
[100] E. Guilmeau, D. Bérardan, Ch. Simon, A. Maignan, B. Raveau, D. Ovono Ovono, F. Delorme, “Tuning the Transport and Thermoelectric Properties of In2O3 Bulk Ceramics Through Doping at In-site”, J. Appl. Phys., 106, 053715 (2009).
[101] T. Schuler, M. A. Aegerter, “Optical, Electrical and Structural Properties of Sol Gel ZnO:Al Coatings”, Thin Solid Films, 351, 125 (1999).
[102] Nam-Jim Bae, Kyoung-Il Na, Hyun-Ick Cho, Ki-Yeol Park, Sung-Eun Boo, Jeung-Ho Bae, Jung-Hee Lee, “Thermal and Electrical Properties of 5-nm-Thick TaN Film Prepared by Atomic Layer Deposition Using a Pentakis(ethylmethylamino)tantalum Precursor for Copper Metallization”, Jpn. J. Appl. Phys., 45, 9072 (2006).
[103] Yu-Lin Kuo, Fu-Chen Kung, Te-Li Su, “Superior Stability of Ultrathin and Nanocrystalline TiZrN Films as Diffusion Barriers for Cu Metallization”, Nanoscience and Nanotechnology Letters, 1, 37 (2009).
[104] M. Sherif El-Eskandarany, A. H. Ashour, “Mechanically Induced Gas–Solid Reaction for the Synthesis of Nanocrystalline ZrN Powders and Their Subsequent Consolidations”, J. Alloy. Compd., 313, 224 (2000).
[105] C. Wyon, J. P. Gonchond, D. Delille, A. Michallet, J. C. Royer, “X-ray Metrology for Advanced Silicon Processes”, Appl. Surf. Sci., 253, 21 (2006).
[106] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, “Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes”, Adv. Eng. Mater., 6, 299 (2004).
[107] Shou-Yi Chang, Dao-Sheng Chen, “10-nm-thick Quinary (AlCrTaTiZr)N Film as Effective Diffusion Barrier for Cu Interconnects at 900 °C”, Appl. Phys. Lett., 94, 231909 (2009).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-12-06起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-12-06起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw