進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0409201910194600
論文名稱(中文) 利用液相層析串聯式質譜搭配蛋白質親和性富集策略和誘導修飾膠體染色法鑑定癌細胞中兒茶酚激素目標蛋白
論文名稱(英文) Identification of Protein Targets of Catechol Estrogens in Cancer Cells by Affinity Enrichment and Modification-induced Gel Staining Coupled with LC-MS/MS
校院名稱 成功大學
系所名稱(中) 化學系
系所名稱(英) Department of Chemistry
學年度 107
學期 2
出版年 108
研究生(中文) 杜瓊莊
研究生(英文) Quynh-Trang Do
電子信箱 nana251195@gmail.com
學號 L36067022
學位類別 碩士
語文別 英文
論文頁數 69頁
口試委員 指導教授-陳淑慧
口試委員-陳仲瑄
口試委員-戴榮湘
中文關鍵字 none 
英文關鍵字 Catechol estrogens  affinity purification  click chemistry  LC-MS/MS  redox-cycling 
學科別分類
中文摘要 none
英文摘要 Catechol estrogens (CEs) are toxic metabolites which form stable covalent conjugation with cellular proteins via transformation to catechol quinones and CEs-conjugation has been linked to cancer formation. Identification and characterization of cellular targets of CEs are essential to better understand CEs adduction-induced disease mechanism but challenging goals. We previously used click reaction coupled with dimethyl labeling to identify protein targets of CEs in rat liver microsomes. However, the identification of conjugation sites is still difficult by the previous method. Moreover, preparation and treatment of culture cells related to CEs-related diseases have not yet developed. In this thesis, an improved enrichment method was developed and applied to identify CE targets in MCF-7 breast cancer cells. Moreover, a modification-induced gel staining method was developed to detect the conjugation of high abundant proteins.
4OHEE2 (4-hydroxyethynylestradiol) was used as a CEs probe to capture protein targets by covalent conjugation. The CEs-conjugated proteins were further enriched by streptavidin beads through a new cleavable biotin linker short of amide functional group. The resulting peptides were found to minimize linker fragmentation and improve protein identification by LC-MSMS-based proteomics. CEs-conjugated peptides were further enriched by borate gel to assist the assignment of multiple conjugation sites on cytosolic, nuclear and histone proteins. We expect to explore functional roles of some identified protein targets and study their usefulness as disease markers or drug targets.
論文目次 ABSTRACT I
ACKNOWLEDGEMENTS III
TABLE OF CONTENT IV
LIST OF TABLES VII
LIST OF FIGURES VIII
ABBREVIATIONS XI
CHAPTER 1: ESTROGEN METABOLISM 1
CHAPTER 2: MASS SPECTROMETRY AND PROTEOMICS FOR CATECHOL ESTROGEN MODIFICATION 6
2.1. MASS SPECTROMETRY AND PROTEOMICS 6
2.1.1. Mass spectrometry 6
2.1.2. Introduction of Proteomics 8
2.1.3. LC-MS/MS based bottom-up protein identification 9
2.2. AFFINITY PURIFICATION 12
2.3. CLICK CHEMISTRY COUPLED STREPTAVIDIN BEADS 13
2.4. NBT REDOX-CYCLING METHOD 17
2.5. CATECHOL-BORONATE REVERSIBLE REACTION UTILIZING FOR ENRICHMENT SYSTEM 19
CHAPTER 3: MATERIALS AND METHODS 21
3.1. MATERIALS 21
3.1.1. Reagents 21
3.1.2. Equipment 22
3.2. CATECHOL ESTROGEN TREATED MCF-7 CELLS 23
3.3. SUBCELLULAR FRACTIONATION 24
3.3.1. Cytoplasmic fractionation 24
3.3.2. Nuclear extraction 25
3.3.3. Acid extracted fraction 25
3.3.4. Insolution digestion 26
3.4. PREPARATION OF ESTROGENIZED PROTEIN STANDARDS 27
3.4.1. 4OHEE2- adducted insulin 27
3.4.2. 4OHEE2- adducted human serum albumin 27
3.5. SDS-PAGE AND PROTEIN DETECTION 27
3.5.1. Denaturing polyacryamide gel gel electrophoresis (SDS-PAGE) 27
3.5.2. Coomassie blue staining 28
3.5.3. Electroblotting of proteins 28
3.5.4. Nitro blue tetrazolium redox-cycling staining 28
3.6. AFFINITY PURIFICATION STRATEGIES 29
3.6.1. Enrichment based streptavidin beads 29
3.6.2. Enrichment based boronate gel 31
3.7. LC-MS/MS ANALYSIS 32
3.7.1. Conditions of Liquid Chromatography 32
3.7.2. Conditions of Mass Spectrometry 33
3.8. DATA INTERPRETATION AND BIOINFORMATICS ANALYSIS 33
3.8.1 Mascot 33
3.8.2. Mascot Distiller 34
3.8.3. Peaks 35
3.8.4. Bioinformatics analysis 35
CHAPTER 4: RESULT AND DISCUSSION 36
4.1. SUBCELLULAR FRACTIONATION EFFICIENCY 36
4.2. ENRICHMENT OF CE-MODIFIED PROTEIN STANDARDS 38
4.2.1. Redox-cycling staining method 38
4.2.2. Boronic acid affinity purification 40
4.2.3. Click chemistry coupled streptavidin beads strategy 42
4.2.4. Click chemistry coupled on-streptavidin bead digestion 44
4.3. IDENTIFICATION OF CE TARGET PROTEINS IN SUBCELLULAR FRACTIONS OF MCF-7 CELLS 49
4.3.1. Cytosol fraction 49
4.3.2. Nuclear fraction 53
4.3.3. Acid extracted fraction 55
4.4. FUNCTIONAL ANNOTATIONS OF IDENTIFIED PROTEIN TARGETS IN MCF-7 CELLS 56
CHAPTER 5: CONCLUSIONS 59
CHAPTER 6: REFERENCE 61
參考文獻 1. DeSantis, C. E.; Fedewa, S. A.; Sauer, A. G.; Kramer, J. L.; Smith, R. A.; Jemal, A., Breast Cancer Statistics, 2015: Convergence of Incidence Rates Between Black and White Women. Ca-Cancer J Clin 2016, 66 (1), 31-42.
2. Ghoncheh, M.; Pham, T. Q. N.; Hoang, V.; Kim, B.; Phan, T.; Doan, T.; Nguyen, T.; Van Duong, K.; Luong, N., Trends in Second-Hand Tobacco Smoke Exposure Levels at Home among Viet Nam School Children Aged 13-15 and Associated Factors. Asian Pacific journal of cancer prevention 2016, 17 (sup1), 43-47.
3. Bolton, J.; Thatcher, G. R. J., Potential Mechanisms of Estrogen Quinone Carcinogenesis. Chemical Research in Toxicology 2008, 21 (1), 93-101.
4. Cavalieri, E.; Rogan, E.; Zahid, M., Critical depurinating DNA adducts: Estrogen adducts in the etiology and prevention of cancer and dopamine adducts in the etiology and prevention of Parkinson's disease. International Journal of Cancer 2017, 141 (6), 1078-1090.
5. Liang, J.; Shang, Y., Estrogen and Cancer. Annual Review of Physiology 2013, 75 (1), 225-240.
6. Cavalieri, E.; Chakravarti, D.; Guttenplan, J.; Hart, E.; Ingle, J.; Jankowiak, R.; Muti, P.; Rogan, E.; Russo, J.; Santen, R.; Sutter, T., Catechol estrogen quinones as initiators of breast and other human cancers: Implications for biomarkers of susceptibility and cancer prevention. Biochimica et biophysica acta, CR. Reviews on cancer 2006, 1766 (1), 63-78.
7. Hua, H.; Zhang, H.; Kong, Q.; Jiang, Y., Mechanisms for estrogen receptor expression in human cancer. Experimental Hematology & Oncology 2018, 7 (1), 24.
8. Jefcoate, C. R.; Liehr, J. G.; Santen, R. J.; Sutter, T. R.; Yager, J. D.; Yue, W.; Santner, S. J.; Tekmal, R.; Demers, L.; Pauley, R.; Naftolin, F.; Mor, G.; Berstein, L., Chapter 5: Tissue-Specific Synthesis and Oxidative Metabolism of Estrogens. JNCI Monographs 2000, 2000 (27), 95-112.
9. Cavalieri, E.; Frenkel, K.; Liehr, J. G.; Rogan, E.; Roy, D., Chapter 4: Estrogens as Endogenous Genotoxic Agents--DNA Adducts and Mutations. JNCI Monographs 2000, 2000 (27), 75-94.
10. Okoh, V.; Felty, Q.; Parkash, J.; Poppiti, R.; Roy, D.; Pani, G., Reactive Oxygen Species via Redox Signaling to PI3K/AKT Pathway Contribute to the Malignant Growth of 4-Hydroxy Estradiol-Transformed Mammary Epithelial Cells. PLoS ONE 2013, 8 (2), e54206.
11. Liehr, J., Is Estradiol a Genotoxic Mutagenic Carcinogen?1. Endocrine Reviews 2000, 21 (1), 40-54.
12. Fang, C.-M.; Ku, M.-C.; Chang, C.-K.; Liang, H.-C.; Wang, T.-F.; Wu, C.-H.; Chen, S.-H., Identification of Endogenous Site-specific Covalent Binding of Catechol Estrogens to Serum Proteins in Human Blood. Toxicological Sciences 2015, 148 (2), 433-442.
13. Ku, M.-C.; Fang, C.-M.; Cheng, J.-T.; Liang, H.-C.; Wang, T.-F.; Wu, C.-H.; Chen, C.-C.; Tai, J.-H.; Chen, S.-H., Site-specific covalent modifications of human insulin by catechol estrogens: Reactivity and induced structural and functional changes. Scientific Reports 2016, 6, 28804.
14. Liang, H.-C.; Liu, Y.-C.; Chen, H.; Ku, M.-C.; Do, Q.-T.; Wang, C.-Y.; Tzeng, S.-F.; Chen, S.-H., In Situ Click Reaction Coupled with Quantitative Proteomics for Identifying Protein Targets of Catechol Estrogens. Journal of Proteome Research 2018, 17 (8), 2590-2599.
15. Banerjee, S.; Mazumdar, S., Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte. International Journal of Analytical Chemistry 2012.
16. Sobott, F.; Watt, S. J.; Smith, J.; Edelmann, M. J.; Kramer, H. B.; Kessler, B. M., Comparison of CID Versus ETD Based MS/MS Fragmentation for the Analysis of Protein Ubiquitination. Journal of the American Society for Mass Spectrometry 2009, 20 (9), 1652-1659.
17. Casey, P. J.; Thissen, J. A.; Moomaw, J. F., Enzymatic modification of proteins with a geranylgeranyl isoprenoid. Proceedings of the National Academy of Sciences 1991, 88 (19), 8631.
18. Delanghe, S.; Delanghe, J.; Speeckaert, R.; Van Biesen, W.; Speeckaert, M., Mechanisms and consequences of carbamoylation. Nature Reviews Nephrology 2017, 13 (9), 580-593.
19. Jacobs, A. T.; Marnett, L. J., Systems Analysis of Protein Modification and Cellular Responses Induced by Electrophile Stress. Accounts of Chemical Research 2010, 43 (5), 673-683.
20. Chait, B. T., Mass Spectrometry: Bottom-Up or Top-Down? Science 2006, 314 (5796), 65.
21. Sadygov, R.; Cociorva, D.; Yates, J., Large-scale database searching using tandem mass spectra: Looking up the answer in the back of the book. Nature Methods 2004, 1 (3), 195-202.
22. Schütz, F.; Kapp, E. A.; Simpson, R. J.; Speed, T. P., Deriving statistical models for predicting peptide tandem MS product ion intensities. Biochemical Society Transactions 2003, 31 (6), 1479-1483.
23. Tabb, D. L.; Smith, L. L.; Breci, L. A.; Wysocki, V. H.; Lin, D.; Yates, J. R., 3rd, Statistical characterization of ion trap tandem mass spectra from doubly charged tryptic peptides. Anal Chem 2003, 75 (5), 1155-1163.
24. Sudhir, P.-R.; Chen, C.-H., Proteomics-Based Analysis of Protein Complexes in Pluripotent Stem Cells and Cancer Biology. International journal of molecular sciences 2016, 17 (3), 432.
25. Szychowski, J.; Mahdavi, A.; Hodas, J. J. L.; Bagert, J. D.; Ngo, J. T.; Landgraf, P.; Dieterich, D. C.; Schuman, E. M.; Tirrell, D. A., Cleavable Biotin Probes for Labeling of Biomolecules via Azide−Alkyne Cycloaddition. Journal of the American Chemical Society 2010, 132 (51), 18351-18360.
26. Ziegler, S.; Pries, V.; Hedberg, C.; Waldmann, H., Target Identification for Small Bioactive Molecules: Finding the Needle in the Haystack. Angewandte Chemie International Edition 2013, 52 (10), 2744-2792.
27. Row, R. D.; Shih, H.-W.; Alexander, A.; Mehl, R.; Prescher, J., Cyclopropenones for Metabolic Targeting and Sequential Bioorthogonal Labeling. Journal of the American Chemical Society 2017, 139 (21), 7370-7375.
28. Sano, T.; Vajda, S.; Cantor, C., Genetic engineering of streptavidin, a versatile affinity tag. Journal of chromatography. Biomedical applications 1998, 715 (1), 85-91.
29. Laitinen, O. H.; Hytönen, V. P.; Nordlund, H. R.; Kulomaa, M. S., Genetically engineered avidins and streptavidins. Cellular and Molecular Life Sciences 2006, 63 (24), 2992-3017.
30. Stayton, P.; Freitag, S.; Klumb, L.; Chilkoti, A.; Chu, V.; Penzotti, J.; To, R.; Hyre, D.; Le Trong, I.; Lybrand, T.; Stenkamp, R., Streptavidin–biotin binding energetics. Biomolecular engineering 1999, 16 (1-4), 39-44.
31. Yoo, B.-S.; Regnier, F., Proteomic analysis of carbonylated proteins in two-dimensional gel electrophoresis using avidin-fluorescein affinity staining. ELECTROPHORESIS 2004, 25 (9), 1334-1341.
32. Soreghan, B.; Yang, F.; Thomas, S.; Hsu, J.; Yang, A., High-Throughput Proteomic-Based Identification of Oxidatively Induced Protein Carbonylation in Mouse Brain. Pharmaceutical Research 2003, 20 (11), 1713-1720.
33. Elliott, M.; Smith, D.; Parker, C.; Borchers, C., Current trends in quantitative proteomics. Journal of Mass Spectrometry 2009, 44 (12), 1637.
34. Handwerger, R.; Diamond, S., Biotinylated Photocleavable Polyethylenimine: Capture and Triggered Release of Nucleic Acids from Solid Supports. Bioconjugate Chemistry 2007, 18 (3), 717-723.
35. Yang, J.; Gupta, V.; Tallman, K.; Porter, N.; Carroll, K.; Liebler, D., Global, in situ, site-specific analysis of protein S-sulfenylation. Nature Protocols 2015, 10 (7), 1022-1037.
36. Nessen, M. A.; Kramer, G.; Back, J.; Baskin, J. M.; Smeenk, L. E. J.; de Koning, L. J.; van Maarseveen, J. H.; de Jong, L.; Bertozzi, C. R.; Hiemstra, H.; de Koster, C. G., Selective Enrichment of Azide-Containing Peptides from Complex Mixtures. Journal of Proteome Research 2009, 8 (7), 3702-3711.
37. Yang, Y.-Y.; Grammel, M.; Raghavan, A.; Charron, G.; Hang, H., Comparative Analysis of Cleavable Azobenzene-Based Affinity Tags for Bioorthogonal Chemical Proteomics. Chemistry & biology 2010, 17 (11), 1212-1222.
38. Bak, D.; Pizzagalli, M.; Weerapana, E., Identifying Functional Cysteine Residues in the Mitochondria. ACS Chemical Biology 2017, 12 (4), 947-957.
39. Rutkowska, A.; Thomson, D.; Vappiani, J.; Werner, T.; Mueller, K.; Dittus, L.; Krause, J.; Muelbaier, M.; Bergamini, G.; Bantscheff, M., A Modular Probe Strategy for Drug Localization, Target Identification and Target Occupancy Measurement on Single Cell Level. ACS Chemical Biology 2016, 11 (9), 2541-2550.
40. Ngo, J.; Champion, J.; Mahdavi, A.; Tanrikulu, I. C.; Beatty, K.; Connor, R.; Yoo, T.; Dieterich, D.; Schuman, E.; Tirrell, D., Cell-selective metabolic labeling of proteins. Nature Chemical Biology 2009, 5 (10), 715-717.
41. Ishizuka, T.; Liu, H.; Ito, K.; Xu, Y., Fluorescence imaging of chromosomal DNA using click chemistry. Scientific Reports 2016, 6 (1), 33217.
42. Sibbersen, C.; Schou Oxvig, A.-M.; Bisgaard Olesen, S.; Nielsen, C.; Galligan, J.; Jørgensen, K.; Palmfeldt, J.; Johannsen, M., Profiling of Methylglyoxal Blood Metabolism and Advanced Glycation End-Product Proteome Using a Chemical Probe. ACS Chemical Biology 2018, 13 (12), 3294-3305.
43. Rostovtsev, V.; Green, L.; Fokin, V.; Sharpless, K. B., A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angewandte Chemie International Edition 2002, 41 (14), 2596-2599.
44. Kennedy, D.; McKay, C.; Legault, M. C. B.; Danielson, D.; Blake, J.; Pegoraro, A.; Stolow, A.; Mester, Z.; Pezacki, J., Cellular Consequences of Copper Complexes Used To Catalyze Bioorthogonal Click Reactions. Journal of the American Chemical Society 2011, 133 (44), 17993-18001.
45. Yang, M.; Jalloh, A.; Wei, W.; Zhao, J.; Wu, P.; Chen, P., Biocompatible click chemistry enabled compartment-specific pH measurement inside E. coli. Nature Communications 2014, 5 (1), 4981.
46. Howden, A. J. M.; Geoghegan, V.; Katsch, K.; Efstathiou, G.; Bhushan, B.; Boutureira, O.; Thomas, B.; Trudgian, D. C.; Kessler, B. M.; Dieterich, D. C.; Davis, B. G.; Acuto, O., QuaNCAT: quantitating proteome dynamics in primary cells. Nature Methods 2013, 10, 343.
47. Chen, X.; Wu, Y.-W., Selective chemical labeling of proteins. Organic & biomolecular chemistry 2016, 14 (24), 5417-5439.
48. Uttamapinant, C.; Tangpeerachaikul, A.; Grecian, S.; Clarke, S.; Singh, U.; Slade, P.; Gee, K.; Ting, A., Fast, Cell-Compatible Click Chemistry with Copper-Chelating Azides for Biomolecular Labeling. Angewandte Chemie International Edition 2012, 51 (24), 5852-5856.
49. Cavalieri, E. L.; Li, K.-M.; Balu, N.; Saeed, M.; Devanesan, P.; Higginbotham, S.; Zhao, J.; Gross, M. L.; Rogan, E. G., Catechol ortho-quinones: the electrophilic compounds that form depurinating DNA adducts and could initiate cancer and other diseases. Carcinogenesis 2002, 23 (6), 1071-1077.
50. Gallop, P.; Paz, M.; Flückiger, R.; Kagan, H., PQQ, the elusive coenzyme. Trends in biochemical sciences (Regular ed.) 1989, 14 (8), 343-346.
51. Paz, M. A.; Gallop, P. M.; Marina Torrelio, B.; Flückiger, R., The amplefied detection of free and bound methoxatin (PQQ) with nitroblue tetrazolium redox reactions: Insights into the PQQ-locus. Biochemical and Biophysical Research Communications 1988, 154 (3), 1330-1337.
52. Paz, M. A.; Flückiger, R.; Boak, A.; Kagan, H. M.; Gallop, P. M., Specific detection of quinoproteins by redox-cycling staining. Journal of Biological Chemistry 1991, 266 (2), 689-692.
53. Schott, H.; Rudloff, E.; Schmidt, P.; Roychoudhury, R.; Koessel, H., Dihydroxyboryl-substituted methacrylic polymer for the column chromatographic separation of mononucleotides, oligonucleotides, and transfer ribonucleic acid. Biochemistry 1973, 12 (5), 932-938.
54. Weith, H.; Wiebers, J.; Gilham, P., Synthesis of cellulose derivatives containing the dihydroxyboryl group and a study of their capacity to form specific complexes with sugars and nucleic acid components. Biochemistry 1970, 9 (22), 4396-4401.
55. Higa, S.; Suzuki, T.; Hayashi, A.; Tsuge, I.; Yamamura, Y., Isolation of catecholamines in biological fluids by boric acid gel. Analytical biochemistry 1977, 77 (1), 18-24.
56. Barnes, H. H.; Ishimaru, C., Purification of catechol siderophores by boronate affinity chromatography: identification of chrysobactin from Erwinia carotovora subsp. carotovora. BioMetals 1999, 12 (1), 83-87.
57. Haaf, H.; Li, S. A.; Li, J. J., Covalent binding of estrogen metabolites to hamster liver microsomal proteins: inhibition by ascorbic acid and catechol- O -methyl transferase. Carcinogenesis 1987, 8 (2), 209-215.
58. Dawling, S.; Roodi, N.; Mernaugh, R. L.; Wang, X.; Parl, F. F., Catechol-O-Methyltransferase (COMT)-mediated Metabolism of Catechol Estrogens. Comparison of Wild-Type and Variant COMT Isoforms 2001, 61 (18), 6716-6722.
59. Yao, J.; Chang, M.; Li, Y.; Pisha, E.; Liu, X.; Yao, D.; Elguindi, E. C.; Blond, S. Y.; Bolton, J. L., Inhibition of Cellular Enzymes by Equine Catechol Estrogens in Human Breast Cancer Cells:  Specificity for Glutathione S-Transferase P1-1. Chemical Research in Toxicology 2002, 15 (7), 935-942.
60. Heaton, D.; Nittis, T.; Srinivasan, C.; Winge, D. R., Mutational analysis of the mitochondrial copper metallochaperone Cox17. Journal of Biological Chemistry 2000, 275 (48), 37582-37587.
61. Arnesano, F.; Balatri, E.; Banci, L.; Bertini, I.; Winge, D. R., Folding Studies of Cox17 Reveal an Important Interplay of Cysteine Oxidation and Copper Binding. Structure 2005, 13 (5), 713-722.
62. Noriyuki, N., Catalytic Site Cysteines of Thiol Enzyme: Sulfurtransferases. Journal of Amino Acids 2011, 1-7.
63. Beck, H. C.; Nielsen, E. C.; Matthiesen, R.; Jensen, L. H.; Sehested, M.; Finn, P.; Grauslund, M.; Hansen, A. M.; Jensen, O. N., Quantitative Proteomic Analysis of Post-translational Modifications of Human Histones. Molecular & Cellular Proteomics 2006, 5 (7), 1314.
64. Hałasa, M.; Wawruszak, A.; Przybyszewska, A.; Jaruga, A.; Guz, M.; Kałafut, J.; Stepulak, A.; Cybulski, M., H3K18Ac as a Marker of Cancer Progression and Potential Target of Anti-Cancer Therapy. Cells 2019, 8 (5), 485.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-11-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-11-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw