進階搜尋


下載電子全文  
系統識別號 U0026-0409201818230700
論文名稱(中文) DMDs均光照明系統優化與製作
論文名稱(英文) Fabrication and Optimisation of Fly’s Eye UV LED Homogenizer for DMDs
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 維克拉姆
研究生(英文) Vikram Sachan
電子信箱 vikram.sachan111@gmail.com
學號 N16057211
學位類別 碩士
語文別 英文
論文頁數 72頁
口試委員 指導教授-李永春
口試委員-林昌進
口試委員-施士塵
中文關鍵字 none 
英文關鍵字 UV LED homogenizer  moulding  microlens array  Digital micro mirror devices (DMDs)  Zemax optics studio  energy efficiency. 
學科別分類
中文摘要 none
英文摘要 Many applications in UV photolithography manufacturing like semiconductor lithography, micro-machining, micro-structuring or material analysis require a homogeneous intensity distribution of the UV light over its complete profile. Periodic microlens arrays are widely used to transform Gaussian or non-uniform beam profile into a uniform “flat-top”. Each microlens element samples the input beam and spreads it over a given angular distribution. Incoherent beams that are either temporally or spatially incoherent can produce very uniform intensity profiles. UV machining techniques are almost ubiquitous in industry for micro- to nanoscale fabrication. It is essential for the advancement of the field that is faster and cheaper to processes. Enhancements in speed and fidelity of production can be made to both additive and subtractive writing techniques by using Digital Micro Mirror Devices (DMD).
A UV LED homogenizer is fabricated by the moulding process which can homogenize Intensity distribution of the non-collimated UV LED light source for Digital Micro Mirror Devices (DMDs). The PDMS Microlens arrays of sag height 100 μm are fabricated on the surface of Quartz plate which is thick as 10 mm. An illumination system (upside down) has been developed which can produce the intensity distribution of homogenised UV LED light source. The illumination system consists of UV LED light source, three aspherical lenses, Microlens homogenizer, Fourier lens and energy metre connected to the pinhole power analyser. The pinhole power analyser is fixed on the XY moving stage. Finally, the homogenized and collimated UV LED light source profile is recorded by the pinhole power analyser. The recorded data is plotted and analysed in Matlab and then compared with the Zemax simulation results. An integrated sphere is then used to analyse the power output of UV LED light, power before homogenization and at the homogenization plane. Energy efficiency is then calculated to compare with simulated results. Measured uniformity of the flattop intensity profile is measured as ± 3.1 % experimentally.
論文目次 I. Abstract……………………………………………………….…………….1
II. Acknowledgement……………………………………....……………….…3
III. List of Tables……………………………………………………………….6
IV. List of Figures………………………………………………………………7
1 CHAPTER - INTRODUCTION .................................................................................... 12
1.1 HISTORY OF HOMOGENIZER ........................................................................................ 12
1.1.1 Laser Beam Homogenizer ................................................................................ 12
1.1.2 Geometrical description of microlens beam homogenizer ............................... 13
1.1.3 Fly’s Eye Homogeniser Application (Laser Micro Machining) ....................... 17
1.2 FREEFORM MICROLENS ARRAY HOMOGENIZER FOR EXCIMER LASER BEAM SHAPING .. 19
1.2.1 Design considerations of microlens array homogenizer ................................... 19
1.2.2 Basic design considerations .............................................................................. 20
1.3 MASKLESS LITHOGRAPHY BASED ON DMD ................................................................ 21
1.4 PROBLEM STATEMENT ................................................................................................ 24
2 CHAPTER - SIMULATION AND FABRICATION OF UV LED FLY’S EYE HOMOGENIZER .................................................................................................................... 25
2.1 LENS SIMULATION IN ZEMAX OPTICS STUDIO (PROCESS DESCRIPTION IN DETAIL) ....... 26
2.2 DESIGN AND FABRICATION OF FLY’S EYE HOMOGENIZER MOLD AND MOLDING SYSTEM IN SOLIDWORKS. .................................................................................................................. 37
2.3 FABRICATION OF FLY’S EYE HOMOGENIZER SYSTEM AND MOLDING PROCESS ............. 39
2.3.1 Molding process ............................................................................................... 41
2.4 HOMOGENIZER’S MICROLENS PROFILE MEASUREMENTS AND COMPARISON WITH SIMULATED ZEMAX MICROLENS PROFILE ............................................................................. 42
2.4.1 Profile Comparison of profiles of a steel mold diagonal cross section with the simulated profile of microlens in the Zemax optics studio ............................................ 43
2.4.2 Profile comparison of homogenizer single lens profile with corresponding mold microlens profile (5 different positions) and Zemax microlens function .............. 44
3 CHAPTER - EXPERIMENTAL SETUP ....................................................................... 47
3.1 OPTICAL SYSTEM ........................................................................................................ 47
3.1.1 UV LED ............................................................................................................ 48
3.1.2 Fly’s eye of homogenizer ................................................................................. 50
3.1.3 Pinhole (0.50 μm) Power Analyser .................................................................. 51
3.2 AUTOMATIC STAGE SYSTEM ........................................................................................ 52
3.3 PROJECTION SYSTEM ................................................................................................... 55
4 CHAPTER - EXPERIMENTAL RESULTS .................................................................. 57
4.1 COMPARISON OF OPTIMIZED ZEMAX OPTICS SIMULATED RESULTS WITH EXPERIMENTAL RESULTS...................................................................................................... 60
4.2 ENERGY EFFICIENCY MEASUREMENT OF HOMOGENIZER ............................................ 62
4.2.1 Simulated Energy Efficiency ............................................................................ 62
4.2.2 Experimental Energy Efficiency ...................................................................... 62
4.3 METHODOLOGY USED FOR CALCULATING ENERGY EFFICIENCY ................................ 63
4.3.1 Reason for the difference in simulated and experimental energy efficiency analysis - ......................................................................................................................... 64
4.4 UNIFORMITY IN THE TARGETED AREA ......................................................................... 65
4.5 ANGULAR DISTRIBUTION ON THE HOMOGENIZATION PLANE ....................................... 66
5 CHAPTER - CONCLUSION AND FUTURE WORK ................................................. 69
5.1 CONCLUSION ............................................................................................................... 69
5.2 FUTURE WORK ............................................................................................................ 69
6 - REFERENCES AND LINKS ...................................................................................... 71
參考文獻 1. R. Völkel, H. P. Herzig, P. Nussbaum and R. Dändliker, “Microlensarray imaging system for photolithography,” Optical Engineering 45 (11), 3323 – 3330 (1996).
2. U. Popp, Th. Neudecker, U. Engel, M. Geiger, “Excimer Laser Texturing of Hard Coated Cold Forging Tools - Investigations on Tool Life, “Advanced Technology of Plasticity 2002, Vol. II., 1633-1638 (2002).
3. J. A. Hoffnagle and C. M. Jefferson, “Design and Performance of a Refractive Optical System that Converts a Gaussian to a Flattop Beam, “Appl. Opt. 39, 5488-5499 (2000).
4. T. Kajava, M. Kaivola, J. Turunen, P. Paakkoned, M. Kuittinen, P. Laakkonen and J. Simonen, “Excimer laser beam shaping using diffractive optics, “Lasers and Electro-Optics Europe, 2000. Conference Digest. 2000 Conference on Volume, Issue, 2000 Page(s): 1 pp. (2000).
5. I. Harder, M. Lano, N. Lindlein and J. Schwider, “Homogenization and beam shaping with micro lens arrays,” Photon n Management, Proceedings of SPIE, 5456, 99-107 (2004).
6. K. Räntsch, L. Bertele, H. Sauer and A. Merz, “Illuminating System,” US-Patent 2186123, United States Patent Office (1940).
7. A. Büttner and U. Zeitner, “Wave optical analysis of light-emitting diode beam shaping using microlens arrays, “Optical Engineering 41 (10), 2393 – 2401 (2002).
8. F.M. Dickey and S.C. Holswade, Laser Beam Shaping: Theory and Techniques, Publisher: Marcel Dekker, (2000).
9. F. M. Dickey, Laser Beam Shaping: Theory and Techniques, 2nd ed. (CRC Press, 2014).
10. M. Zimmermann, N. R. V. Lindlein, and K. J. Weible, “Microlens laser beam homogenizer—from theory to application,” Proc. SPIE 6663, 666302 (2007).
11. A. Buttner and U. D. Zeitner, “Wave optical analysis of light-emitting diode beam shaping using microlens arrays,” Opt. Eng. 41(10), 2393–2401 (2002).
12. D. Dudley, W. M. Duncan, and J. Slaughter: “Emerging digital micromirror device (DMD) applications,” Proc. SPIE4985, (2003).
13. K. Takahashi, J. Setoyama: “An UV-exposure system using DMD”. Transactions of the Institute of Electronics, Information and communication Engineers J82-C-2(3), pp 92-94, (in Japanese) (1999).
14. K. F. Chan et al: “High-Resolution Maskless Lithography”, Journal of Micro/Nanolithography, MEMS, and MOEMS, Vol. 2, pp 331-339 (2003).
15. M.V. Kesseles, C. Nassour, P. Grosso, “Direct write of Optical Diffractive elements and planar waveguides with a digital micromirror device based UV photoplotter”, Journal of Optics Communications, Vol. 283, pp 3089-3094 (2010),
16. https://en.wikipedia.org/wiki/Aspheric_lens#cite_note-Pruss-3.
17.http://customers.zemax.com/os/resources/learn/knowledgebase/how-to-use-the-boolean-object-and-the-combine-obje
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-09-07起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-09-07起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw