進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0409201801241700
論文名稱(中文) 非對稱之注入強度對於兩個相互耦合半導體雷射的效應
論文名稱(英文) Effects of injection strength asymmetry on two mutually coupled lasers
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 106
學期 2
出版年 107
研究生(中文) 廖彬凱
研究生(英文) Bin-Kai Liao
學號 L76051215
學位類別 碩士
語文別 英文
論文頁數 70頁
口試委員 指導教授-黃勝廣
口試委員-曾碩彥
口試委員-徐旭政
口試委員-魏明達
中文關鍵字 半導體雷射  相互耦合  積體光學  雷射非線性動態  雷射穩定態 
英文關鍵字 semiconductor laser  mutually delay coupling  photonic integrated circuit  nonlinear laser dynamics  laser stability diagram 
學科別分類
中文摘要 此論文以數值模擬的方式探討非對稱之注入強度對於兩個相互耦合半導體雷射的效應。考慮到此系統對通訊系統的應用並希望與已發展成熟的單向耦合半導體雷射技術對應,我們著重探討週期一動態和穩定動態。首先,我們探討了此系統在各個條件下的動態演變,並且著重在動態豐富的短延遲系統做討論。此外,本研究中發現延遲時間在積體化尺度的系統,也就是極短延遲系統,其性質相似於短延遲系統在特定條件下的現象,因此首先討論短延遲系統可以更全面的討論此系統的性質。接著,關於動態的應用我們首先討論了週期一動態。探討的內容為其生成的微波頻率、微波功率以及邊代的不對稱性,以證實此系統有全光式的微波生成應用潛力。儘管相互耦合半導體雷射許多動態性質與現已高度發展的單向耦合半導體雷射技術相反,但本研究證實在特定的不對稱性是可以達到相同的優點的。最後本論文還探討了穩定態的性質,並著重在穩定輸出之頻率與其直接調製之頻率響應,證實此系統可以輸出與輸入差異極大之穩定可調輸出頻率,且也能生成較為調製帶寬大且平坦的頻率響應。
英文摘要 In this thesis, we present a numerical investigation of mutually injected semi-conductor lasers when the injection strength is asymmetric. For the purpose of ap-plications on communication system, the investigation focuses on period-one dy-namics and stable dynamics. First of all, the dynamics scenario of short delay sys-tem is studied to serve as a complete view of the dynamics changing. In order to study the effect on chip-scale mutually injected devices, we investigate the ul-tra-short delay system. Besides, the period-one dynamics is investigated in micro-wave fundamental frequency, sideband to carrier ratio and sideband rejection ratio and the potential of all-optical microwave generation is illustrated. Though symmet-ric mutual injection system is contract with unidirectional injection system, mutual injection systems share the same useful characteristic when proper asymmetry is presence. Finally, the stable dynamics is investigated in oscillation frequency and direct modulation response. The tunable high frequency oscillation and the condi-tions of flat frequency response is discovered.
論文目次 Abstract I
List of tables IV
List of figures V
Chapter 1. Introduction 1
1.1 Background 1
1.2 Research purpose 3
1.3 Dissertation outline 6
Chapter 2. Simulation Model 7
2.1 Basic Concept of laser dynamic 7
2.1.1 Nonlinear Mechanism 8
2.1.2 Rate Equation approach 9
2.2 Model of Mutually injected semiconductor lasers 12
Chapter 3. Dynamics of Mutually Injected System 18
3.1 Dynamical behavior under symmetric injection strength 18
3.2 Dynamical maps under symmetric injection strength 24
3.3 Dynamical maps under different delay time 29
3.4 Dynamical maps under asymmetric injection strength 32
Chapter 4. Period-one dynamics of mutually injected lasers 39
4.1 Fundamental frequency of Period-one dynamic in two mutually injected lasers under asymmetric injection strength 40
4.2 Microwave power of Period-one dynamic in two mutually injected lasers under asymmetric injection strength 46
4.3 Sideband rejection ratio of Period-one dynamic in two mutually injected lasers under asymmetric injection strength 50
Chapter 5. Stable dynamics of mutually injected lasers 54
5.1 Oscillation frequency of stable dynamics in two mutually injected lasers under asymmetric injection strength 56
5.2 Frequency response of stable dynamics in two mutually injected lasers under asymmetric injection strength 59
Chapter 6. Conclusion 64
References 67
參考文獻 1. Soriano, Miguel C., García-Ojalvo, Jordi, Mirasso, Claudio R., Fischer, Ingo, Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers. Reviews of Modern Physics. 85(1): p. 421-470 , 2013.
2. R. Broom, E. Mohn, C. Risch, R. Salathe, Microwave self-modulation of a diode laser coupled to an external cavity. IEEE Journal of Quantum Electronics. 6(6): p. 328-334 , 1970.
3. Hwang, S.K. and J.M. Liu, Dynamical characteristics of an optically injected semiconductor laser. Optics Communications. 183(1): p. 195-205, 2000.
4. T. B. Simpson, J. M. Liu, K. F. Huang, K. Tai, Nonlinear dynamics induced by external optical injection in semiconductor lasers. Quantum and Semiclassical Optics: Journal of the European Optical Society Part B. 9(5): p. 765, 1997.
5. Okajima, Y., S.K. Hwang, and J.M. Liu, Experimental observation of chirp reduction in bandwidth-enhanced semiconductor lasers subject to strong optical injection. Optics Communications. 219(1): p. 357-364, 2003.
6. J. M. Liu, H. F. Chen, X. J. Meng, T. B. Simpson, Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking. IEEE Photonics Technology Letters. 9(10): p. 1325-1327, 1997.
7. Hwang, S.K., J.M. Liu, and J.K. White, 35-GHz intrinsic bandwidth for direct modulation in 1.3-/spl mu/m semiconductor lasers subject to strong injection locking. IEEE Photonics Technology Letters. 16(4): p. 972-974, 2004.
8. Hwang, Sheng-Kwang, Chan, Sze-Chun, Hsieh, Shie-Chin, Li, Cheng-Yu., Photonic microwave generation and transmission using direct modulation of stably injection-locked semiconductor lasers. Optics Communications. 284(14): p. 3581-3589, 2011.
9. Hwang, S.-K., H.-F. Chen, and C.-Y. Lin, All-optical frequency conversion using nonlinear dynamics of semiconductor lasers. Optics Letters. 34(6): p. 812-814, 2009.
10. Sheng-Kwang, H., L. Jia-Ming, and J.K. White, Characteristics of period-one oscillations in semiconductor lasers subject to optical injection. IEEE Journal of Selected Topics in Quantum Electronics. 10(5): p. 974-981, 2004.
11. Chan, S.-C., S.-K. Hwang, and J.-M. Liu, Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser. Optics Express. 15(22): p. 14921-14935, 2007.
12. Sze-Chun, C. and L. Jia-Ming, Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics. IEEE Journal of Selected Topics in Quantum Electronics. 10(5): p. 1025-1032, 2004.
13. Colet, P. and R. Roy, Digital communication with synchronized chaotic lasers. Optics Letters. 19(24): p. 2056-2058, 1994.
14. Heil, Tilmann, Fischer, Ingo, Elsässer, Wolfgang, Mulet, Josep, Mirasso, Claudio R., Chaos Synchronization and Spontaneous Symmetry-Breaking in Symmetrically Delay-Coupled Semiconductor Lasers. Physical Review Letters. 86(5): p. 795-798, 2001.
15. Josep, Mulet, Claudio, Mirasso, Tilmann, Heil, Ingo, Fischer, Synchronization scenario of two distant mutually coupled semiconductor lasers. Journal of Optics B: Quantum and Semiclassical Optics. 6(1): p. 97, 2004.
16. Argyris, Apostolos, Syvridis, Dimitris, Larger, Laurent, Annovazzi-Lodi, Valerio, Colet, Pere, Fischer, Ingo, García-Ojalv,, Jordi, Mirasso, Claud, o R. , Pesquera, Luis, Shore, K. Alan, Chaos-based communications at high bit rates using commercial fibre-optic links. Nature. 438: p. 343, 2005.
17. Rogister, F. and M. Blondel, Dynamics of two mutually delay-coupled semiconductor lasers. Optics Communications. 239(1): p. 173-180, 2004.
18. Leandro, J. and A.C.G. Jason, Stability diagrams for continuous wide-range control of two mutually delay-coupled semiconductor lasers. New Journal of Physics. 17(5): p. 053038, 2015.
19. Argyris, Apostolos, Grivas, Evangellos, Hamacher, Michael, Bogris, Adonis, Syvridis, Dimitris, Chaos-on-a-chip secures data transmission in optical fiber links. Optics Express. 18(5): p. 5188-5198, 2010.
20. C. Y. Chien, Y. H. Lo, Y. C. Wu, S. C. Hsu, H. R. Tseng, C. C. Lin, Compact Photonic Integrated Chip for Tunable Microwave Generation. IEEE Photonics Technology Letters. 26(5): p. 490-493, 2014.
21. Lo, Yen-Hua, Wu, Yu-Chang, Hsu, Shun-Chieh, Hwang, Yi-Chia, Chen, Bai-Ci, Lin, Chien-Chung, Tunable microwave generation of a monolithic dual-wavelength distributed feedback laser. Optics Express. 22(11): p. 13125-13137, 2014.
22. Liu, Dong, Sun, Changzheng, Xiong, Bing, Luo, Yi, Nonlinear dynamics in integrated coupled DFB lasers with ultra-short delay. Optics Express. 22(5): p. 5614-5622, 2014.
23. A. Tauke-Pedretti, G. A. Vawter, E. J. Skogen, G. Peake, M. Overberg, C. Alford, W. W. Chow, Z. S. Yang, D. Torres, F. Cajas, Mutual Injection Locking of Monolithically Integrated Coupled-Cavity DBR Lasers. IEEE Photonics Technology Letters. 23(13): p. 908-910, 2011.
24. C. Sun, D. Liu, B. Xiong, Y. Luo, J. Wang, Z. Hao, Y. Han, L. Wang, H. Li, Modulation Characteristics Enhancement of Monolithically Integrated Laser Diodes Under Mutual Injection Locking. IEEE Journal of Selected Topics in Quantum Electronics. 21(6): p. 628-635, 2015.
25. Eric Wille, Michael Peil, Ingo Fischer, Wolfgang Elsaber Dynamical scenarios of mutually delay-coupled semiconductor lasers in the short coupling regime. in Photonics Europe. SPIE. 2004
26. Erzgräber, H., Lenstra, D. , Krauskopf, B. , Wille, E. , Peil, M. , Fischer, I. , Elsäßer, W., Mutually delay-coupled semiconductor lasers: Mode bifurcation scenarios. Optics Communications. 255(4): p. 286-296, 2005.
27. Erzgräber, H., B. Krauskopf, and D. Lenstra, Compound Laser Modes of Mutually Delay-Coupled Lasers. SIAM Journal on Applied Dynamical Systems. 5(1): p. 30-65, 2006.
28. Seeds, A.J. and K.J. Williams, Microwave Photonics. Journal of Lightwave Technology. 24(12): p. 4628-4641, 2006.
29. Feiste, U., D.J. As, and A. Ehrhardt, 18 GHz all-optical frequency locking and clock recovery using a self-pulsating two-section DFB-laser. IEEE Photonics Technology Letters. 6(1): p. 106-108, 1994.
30. Yao-Zhong, Dong, Fu-Chun, Hsiao, Yi-Chia, Huang, Chien-Chung, Lin, et al. The microwave signal linewidth in a monolithically integrated two-section DFB laser under controllable feedback. in 2016 International Semiconductor Laser Conference (ISLC). 2016.
31. Liu, J.-M., H.-F. Chen, and S. Tang, Dynamics and Synchronization of Semiconductor Lasers for Chaotic Optical Communications, in Digital Communications Using Chaos and Nonlinear Dynamics, L.E. Larson, L.S. Tsimring, and J.-M. Liu, Editors, Springer New York: New York, NY. p. 285-340. 2006.
32. Arecchi, F. T., Lippi, G. L. , Puccioni, G. P. , Tredicce, J. R., Deterministic chaos in laser with injected signal. Optics Communications. 51(5): p. 308-314, 1984.
33. Liu, J.M., H.F. Chen, and S. Tang, Optical-communication systems based on chaos in semiconductor lasers. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. 48(12): p. 1475-1483, 2001.
34. Simpson, T.B. and J.M. Liu, Spontaneous emission, nonlinear optical coupling, and noise in laser diodes. Optics Communications. 112(1): p. 43-47, 1994.
35. Jia-Ming, L. and T.B. Simpson, Four-wave mixing and optical modulation in a semiconductor laser. IEEE Journal of Quantum Electronics. 30(4): p. 957-965, 1994.
36. Wünsche, H. J., Bauer, S. , Kreissl, J. , Ushakov, O. , Korneyev, N. , Henneberger, F. , Wille, E. , Erzgräber, H. , Peil, M. , Elsäßer, W. , Fischer, I., Synchronization of Delay-Coupled Oscillators: A Study of Semiconductor Lasers. Physical Review Letters. 94(16): p. 163901, 2005.
37. Chan, S.C., Analysis of an Optically Injected Semiconductor Laser for Microwave Generation. IEEE Journal of Quantum Electronics. 46(3): p. 421-428, 2010.
38. Hung, Y.H., T.Y. Chen, and S.K. Hwang. Radio-over-fiber DSB-to-SSB conversion using period-one dynamics of semiconductor lasers. in 2013 13th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). 2013.
39. Gliese, U., S. Norskov, and T.N. Nielsen, Chromatic dispersion in fiber-optic microwave and millimeter-wave links. IEEE Transactions on Microwave Theory and Techniques. 44(10): p. 1716-1724, 1996.
40. Meslener, G., Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection. IEEE Journal of Quantum Electronics. 20(10): p. 1208-1216, 1984.
41. Lang, R., Injection locking properties of a semiconductor laser. IEEE Journal of Quantum Electronics. 18(6): p. 976-983, 1982.
42. Simpson, T.B., J.M. Liu, and A. Gavrielides, Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers. IEEE Photonics Technology Letters. 7(7): p. 709-711, 1995.
43. Simpson, T.B., J.M. Liu, and A. Gavrielides, Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection. IEEE Journal of Quantum Electronics. 32(8): p. 1456-1468, 1996.
44. Lang, R. and K. Kobayashi, External optical feedback effects on semiconductor injection laser properties. IEEE Journal of Quantum Electronics. 16(3): p. 347-355, 1980.
45. Han, H. and K.A. Shore, Analysis of high-frequency oscillations in mutually-coupled nano-lasers. Optics Express. 26(8): p. 10013-10022, 2018.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-09-06起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw