進階搜尋


下載電子全文  
系統識別號 U0026-0409201714453800
論文名稱(中文) 利用超臨界二氧化碳電鍍法於經熱處理之陽極氧化鋁模板進行奈米孔銅金屬沉積之研究
論文名稱(英文) Application of supercritical carbon dioxide electrodeposition for copper filling into nano-holes in heat-treated anodic aluminum oxide template
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 林德瑋
研究生(英文) De-Wei Lin
學號 n56041022
學位類別 碩士
語文別 中文
論文頁數 96頁
口試委員 指導教授-蔡文達
口試委員-陳炳宏
口試委員-陳嘉勻
口試委員-張仍奎
中文關鍵字 奈米孔洞  銅金屬電沉積  陽極氧化鋁陣列  超臨界二氧化碳電鍍 
英文關鍵字 metal filling  high aspect ratio nano-hole  anodic aluminum oxide template  supercritical carbon dioxide electrodeposition 
學科別分類
中文摘要 本研究以熱處理的方法將陽極氧化鋁模板進行改質以降低其親水後,利用乳化超臨界二化碳電鍍法進行高深寬比奈米孔洞之金屬填充。經過陽極氧化後之鋁模板在860 oC/24h熱處理後,其厚度約為5 m,孔洞直徑約為60 nm,深寬比為83左右。銅金屬電鍍填孔是在50 oC、10 MPa的壓力下於含有約40%的乳化超臨界二氧化碳流體及60%硫酸銅水溶液之電解液中進行。電沈積之後,利用掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)及能譜散射分析儀(EDS)對試片進行分析。實驗結果顯示:乳化超臨界二氧化碳電鍍法可以在疏水性的高深寬比奈米孔洞中有效進行金屬銅電鍍沉積,優於常壓下之傳統電鍍。
英文摘要 Copper metal filling into heat-treated anodized aluminum oxide (AAO) nano-array holes was attempted by electrodeposition involving emulsified supercritical carbon dioxide (sc-CO2) fluid, in comparison with that performed using conventional process at ambient pressure. The AAO template was likely hydrophobic in nature after being heat treated at 860 oC/24h. It had a dimension of about 5 um in thickness with an average hole-size of 60 nm and an aspect ratio of 83. Copper electrodeposition was conducted at 50 oC and at a pressure of 10 Mpa in an electrolyte consisting of 40 vol% of sc-CO2 and 60 vol% of CuSO4 aqueous solution. Both constant potential (-0.4 VPt, -0.5 VPt, -0.6 VPt) and constant current density (-10 mA/cm2) conditions were applied for metal filling. After electrodeposition, the extent of metal filling was examined using a scanning electron microscope (SEM) , and a transmission electron microscope (TEM), both coupled with an energy dispersive spectrometer (EDS). When as-anodized AAO template was used, a higher filling efficiency (in terms of cross section area percentage) was found in sc-CO2 bath than in conventional bath. When heat-treated AAO template was used, copper filling into the high aspect ratio nano-holes could be successfully achieved by sc-CO2 electrodeposition, while it was not possible in conventional bath. The advantage of sc-CO2 electrodeposition over that of conventional process was mainly attributed to the change of hydrophobicity of AAO template induced by heat treatment.
論文目次 總目錄
摘要……………………………………………………………………………I
Extended Abstract……………………………………………………….……II
致謝…………………………………………………………………….XIII
總目錄…………………………………………………………………...…XV
表目錄……………………………………………………………...……XVIII
圖目錄……………………………………………………………………XIX
第一章 前言…………………………………………………………………1
第二章 文獻回顧……………………………………………………………4
2-1陽極氧化鋁(Anodic Aluminum Oxide, AAO)…………………4
2-1-1 陽極氧化鋁生長機制……………………………………4
2-1-2 製備陽極氧化鋁模板……………………………………5
2-1-3 陽極氧化鋁表面性質與改質……………………………8
2-2 超臨界流體概論………………………………………………10
2-2-1 超臨界二氧化碳流體之性質及應用…………………11
2-2-2 微乳化機制……………………………………………12
2-2-3 界面活性劑所扮演的角色……………………………12
2-3 高深寬比電鍍填孔…………………………………………14
2-3-1 一般常壓電鍍填孔……………………………………15
2-3-2 超臨界二氧化碳電鍍填孔……………………………16
2-4 定電位電鍍與定電流密度電鍍之差異……………………..17

第三章 實驗步驟…………………………………………………………39
3-1 多孔陽極氧化鋁模板製備…………………………………39
3-1-1試片前處理……………………………………………39
3-1-2電解拋光………………………………………………39
3-1-3 兩階段陽極處理………………………………………39
3-1-4 披覆保護層……………………………………………40
3-1-5 移除鋁基材……………………………………………40
3-1-6 移除阻絕層……………………………………………41
3-1-7 移除保護層……………………………………………41
3-2 陽極氧化鋁片熱處理…………………………………………41
3-3 披覆導電層及電鍍陰極製備…………………………………42
3-4 填孔處理………………………………………………………42
3-4-1 超臨界槽體電鍍設備…………………………………43
3-4-2 CV測試………………………………………………43
3-4-3 填孔處理………………………………………………44
3-5樣品分析………………………………………………………44
3-5-1 陽極氧化鋁結構組織鑑定……………………………44
3-5-2 填孔鑑定………………………………………………45
3-5-3 潤濕性分析……………………………………………45
3-6 移除陽極氧化鋁模板以獲得奈米線…………………………45
第四章 結果與討論………………………………………………………53
4-1 陽極氧化鋁模板分析………………………………………53
4-1-1 陽極氧化鋁模板………………………………………53
4-1-2 陽極氧化鋁模板接觸角量測…………………………54
4-2 填孔分析……………………………………………………54
4-2-1循環伏安法測試…………………………………………54
4-2-2 電位對還原電流影響…………………………………55
4-2-3 定電位填孔結果分析…………………………………56
4-2-4 電位、電流對填孔結果的影響………………………59
4-2-5定電流密度填孔分析……………………………………60
4-3 綜合討論………………………………………………………62
4-4 移除氧化鋁基板及銅奈米線結構觀察………………………64
第五章 結論………………………………………………………………90
第六章 未來研究方向……………………………………………………91
參考文獻…………………………………………………………………….92
參考文獻 1. Cerrina F and Marrian C, A path to nanolithography, MRS Bull. 21,pp.56-62,1996.
2. H. Choi and S. Park, Seedless Growth of Free-Standing Copper
Nanowires by Chemical Vapor Deposition, J. Am. Chem. Soc., vol. 126,
pp.6248-6249, 2004.
3. Gyu-Chul Yi, Semiconductor Nanostructures for Optoelectronic Devices,
Springer-Verlag Berlin Heidelberg.
4. J. Sarkar, G.G Khan and AbasuMallick, Nanowires: properties,
applications and synthesis via porous anodic aluminium oxide template, Bull. Mater. Sci., vol. 30, pp.271-290, 2007.
5. Z.Wang, M.Brust, Fabrication of nanostructure via self-assembly of nanowires within the AAO template, Nanoscale Res Lett, vol. 2, pp. 34-39, 2007.
6. T. Gao, G. Meng, Y. Wang, S. Sun and L. Zhang, Electrochemical synthesis of copper nanowires, J. Phys.: Condens. Matter, vol.14, pp.355-363, 2002.
7. C. Li, J. Yang, W. Tsai, C. Lin, T. Chang, M. Sone, High aspect ratio micro-hole filling employing emulsified supercritical CO2 electrolytes, J. of Supercritical Fluids, vol.109, pp.61–66, 2016.
8. Masanori Hayase, Munemasa Taketani, Koji Aizawa, Takeshi Hatsuzawa, Keisuke Hayabusa, Copper Bottom-up Deposition by Breakdown of PEG-Cl Inhibition, Electrochemical and Solid-State Letters, 5 ,C98-C101, 2002.
9. James J. Kelly, Alan C. West, Copper Deposition in the Presence of Polyethylene Glycol, Journal of The Electrochemical Society, 145, pp.3477-3481,1998.
10. Chang Hwa Lee, Sang Chul Lee, and Jae Jeong Kim, Improvement of Electrolessly Gap-Filled Cu Using 2,2-Dipyridyl and Bis-(3-sulfopropyl)-disulfide (SPS), Electrochemical and Solid-state Letter, 8, C110-C113,2005.
11. Qianwen Chen, Zheyao Wang, Jian Cai, Litian Liu, Microelectronic Engineering, 87, pp.527-531, 2010.
12. Hideo Yoshida, Masato Sone, Hiroaki Wakabayashi, Hao Yan, Kentaro Abe, Xu Tang Tao, Aya Mizushima, Shoji Ichihara, Seizo Miyata, New electroplating method of nickel in emulsion of supercritical carbon dioxide and electroplating solution to enhance uniformity and hardness of plated film, Thin Solid Films, 446, pp.194–199, 2004.
13. 鄭祺霖,利用超臨界二氧化碳電鍍法於高深寬比奈米孔洞進行銅金屬沉積之研究, 2016.
14. H. Masuda, K. Nishio, M. Adachi and D.J. Lockwood, Self-organized Nanoscale Materials, (2006), Springer Science+Business Media, Inc.
15. S. Ju, A. Facchetti., Y. Xuan, J. Liu, F. Ishikawa, P. Ye, C Zhou, T. J. Marks and D. B. James, Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat. Nanotechnol., vol.2, pp.378 – 384, 2007.
16. M. Karlson, Nano-Porous Aluminia, a Potential Bone Implant Coating. Comprehensive Summaries of Uppsala Dissertations,The Faculty Of Science And Technology, Acta Universitatis Upsaliensis, Kiruna ,997, 2004.
17. L.G. Parkinson, N.L. Giles, K.F. Adcroft, M.W. Fear, F.M. Wood, and G.E. Poinern. Tissue Engineering Part A, vol.15, pp.3753-3763, 2009.
18. G. E. J. Poinern, D. Fawcett, Y. J. Ng, N. Ali, R. K. Brundavanam, Z.T. Jiang, Nanoengineering a biocompatible inorganic scaffold for skin wound healing, J. BioMed. Nanotech, vol.6, pp. 497-510, 2010.
19. G.E.J. Poinern, N. Ali, and D. Fawcett, Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development. Materials, vol. 4, pp.487-526, 2011.
20. O. Jessensky, F. Müller and U. Gösele, Self-organized formation of hexagonal pore arrays in anodic alumina, Appl. Phys. Lett. ,vol. 72, pp. 1173-1175, 1998.
21. O'Sullivan, J.P. and Wood, G.C., The Morphology and Mechanism of Formation of Porous Anodic Films on Aluminum , Proc. Roy. Soc. Lond. A, vol. 317,pp. 511-543, 1970.
22. A. P. Li, F. Müller, A. Birner, K. Nielsch and U. Gösele, Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic aluminaJ. Appl. Phys., vol.84, pp.6023-6026, 1998.
23. F.Li, L.Zhang, and R.M. Metzger, On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide, Chem. Mater., vol. 10, pp. 2470-2480, 1998.
24. Grzegorz D. Sulka, Nanostructured Materials in Electrochemistry, (2008), Wiley-VCH Verlag GmbH & Co. KGaA.
25. A. Belwalkar, E. Grasing, W. V.Geertruyden, Z. Huang, and W.Z. Misiolek, Effect of Processing Parameters on Pore Structure and Thickness of Anodic Aluminum Oxide (AAO) Tubular Membranes, J Memb Sci. ,vol.319, pp.192-198, 2008.
26. M. Ghorbani , F. Nasirpouri , A. Iraji zad, A. Saedi, On the growth sequence of highly ordered nanoporous anodic aluminium oxide, Materials and Design, vol.27, pp.983-988 ,2006.
27. J.Zhang, J.E. Kielbasa, D. L. Carroll, Controllable fabrication of porous alumina templates for nanostructures synthesis, Materials Chemistry and Physics , vol. 122, pp. 295-300, 2010.
28. I. Pastore, R. Poplausks, I. Apsite, I. Pastare, F. Lombardi and D. Erts, Fabrication of ultra thin anodic aluminium oxide membranes by low anodization voltages, Materials Science and Engineering , vol. 23, pp.012-025 ,2011.
29. Terry T. Xu, Richard D. Piner, and Rodney S. Ruoff, An Improved Method To Strip Aluminum from Porous Anodic Alumina Films, Langmuir, vol.19, pp.1443–1445, 2003.
30. J. Cui, Y. Wu, Y. Wang, H. Zheng, G. Xu, X. Zhang, A facile and efficient approach for pore-opening detection of anodic aluminum oxide membrane, Applied Surface Scienc, vol. 258, pp.5305-5311, 2012.
31. N. Itoh , K. Kato , T. Tsuji , M. Hongo, Preparation of a tubular anodic aluminum oxide membrane, Journal of Membrane Science , vol.117,pp.189-196, 1996.
32. K. Itaya, S. Sugawara, K. Arai and S. Saito, Properties of anodic aluminum oxide films as membrane, Journal of Chemical Engineering of Japan, vol. 17, pp.514-520, 1984.
33. Z. Su and W. Zhou, Formation Mechanism of Porous Anodic Aluminium and Titanium Oxides, Adv. Mater., vol.20, pp.3663–3667, 2008.
34. Małgorzata Norek, Andrzej Krasiński, Controlling of water wettability by structural and chemical modification of porous anodic alumina (PAA): Towards super-hydrophobic surfaces, Surface & Coatings Technology 276, pp.464-470, 2015.
35. M.E. Mata-Zamora and J.M. Saniger, Thermal evolution of porous anodic aluminas: a comparative study, Revista Mexicana de fi’sica , vol.51, pp.502-509, 2005.
36. G. Xiong, J.W. Elam, H. Feng,|C.Y. Han, H. Wang, L.E. Iton, L.A. Curtiss, M.J. Pellin, M.Kung,|H. Kung, and P.C. Stair, Effect of Atomic Layer Deposition Coatings on the Surface Structure of Anodic Aluminum Oxide Membranes, J. Phys. Chem. B, vol.109,pp. 14059-14063, 2005.
37. P.P. Mardilovicha, A.N. Govyadinovb, N. I. Mukhurovb, A.M. Rzhevskiic, R.Paterson, New and modified anodic alumina membranes Part I. Thermotreatment of anodic alumina membranes, Journal of Membrane Science, vol.98, pp. 131-142, 1995.
38. M. Kylan McQuaig Jr., Alejandro Toro, William Van Geertruyden, Wojciech Z. Misiolek, The effect of high temperature heat treatment on the structure and properties of anodic aluminum oxide, J master sci, 46, pp.243-253, 2011.
39. T. Clifforo, “Fundamentals of supercritical fluids”, Unitied Kingdom: Oxford University Press, 1999.
40. R. C. Reid, J. M. P., B. E. Poling, “The Properties of Gases and Liquids”, New York: McGraw-Hill, 1986
41. J. R. Williams, A.A.C., S. H. R. Al-Saidi, “Supercritical Fluids and Their Applications in Biotechnology and Related Areas”, Molecular Biotechnology, 22, 263, 2002.
42. J. A. Darr, M. Poliakoff., “New Directions in Inorganic and Meta-Organic Coordination Chemistry in Supercritical Fuilds”, Chemical Reviews, 99, pp.495-542, 1999.
43. M. Lora, L.K., “Polymer processing with supercritical fluid: an overview”, Separation and purification methods, 28, 179, 1999.
44. B. Subramaniam, R.A.R., K. Snavely, “Pharmaceutical Processing with Supercritical Carbon Dioxide”, Journal of Pharmaceutical Science, 86, 885, 1997.
45. G. L. Weibel, C.K.O., “An overview of supercritical CO2 applications in microelectronics processing”, Microelectronic Engineering, 65, 145, 2003.
46. P.Raveendran, Y.I., S. Wallen, “Polar Attributes of supercritical Carbon Dioxide”, Accounts of Chemical Research, 38, 478, 2005.
47. W. Ryoo, S.E.W., K. P. Johnston, “Water-in-Carbon Dioxide Microemulsions with Methylated Branched Hydrocarbon Surfactants”, Industrial and Engineering Chemistry Research, 42, 6348, 2003.
48. S. Kaneshina, O.S., M. Nakamura, “Effect of pressure on the cloud point of nonionic surfactant solutions and the solubilization of hydrocarbons”, Bulletin of the Chemical Society of Japan, 52, 42, 1979.
49. Einaga, Y., “Phase Diagram of Dilute Micelle Solutions of Polyoxyethylene Alkyl Ethers”, Polymer Journal, 39, 1082, 2007.
50. Kazuo Kondo, Toshihiro Yonezawa, “High-Aspect-Ratio Copper-Via-Filling for Three-Dimensional Chip Stacking”, Journal of The Electrochemical Society, 152, H173-H177, 2005.
51. N. Shinoda, T. Shimizu, T. Chang, A. Shibata, M. Sone, Filling of nanoscale holes with high aspect ratio by Cu electroplating using suspension of supercritical carbon dioxide in electrolyte with Cu particles, Microelectronic Engineering, vol. 97,pp. 126-129, 2012.
52. N. Shinoda, T. Shimizu, T. Chang, A. Shibata, M. Sone, Cu electroplating using suspension of supercritical carbon dioxide in copper-sulfate-based electrolyte with Cu particles, Thin Solid Films, vol.529,pp. 29-33, 2013.
53. 楊竣傑,以乳化超臨界二氧化碳流體進行高深寬比奈米孔洞填充之研究, 2015.
54. H. Chuang, G. Hong, J. Sanchez, Fabrication of high aspect ratio copper nanowires using supercritical CO2 fluids electroplating technique in AAO template, Materials Science in Semiconductor Processing, vol.45, pp.17-26, 2016.
55. G.E. Thompson and G.C. Wood, Porous anodic film formation on alumina, Nature, Vol.290, 1981.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-09-10起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-09-10起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw