進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0409201623400200
論文名稱(中文) 利用水熱法/電鍍法/化學氣相沉積法製備氧化鋅奈米線應用於可撓式場發射陰極之應用
論文名稱(英文) Characteristics of ZnO nanowires by Hydrothermal/ Electroplating/ Chemical Vapor Deposited Method for Flexible Field Emission Application
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 104
學期 2
出版年 105
研究生(中文) 陳元璋
研究生(英文) Yuan-Jhang Chen
學號 L76034205
學位類別 碩士
語文別 英文
論文頁數 83頁
口試委員 指導教授-林俊宏
口試委員-鄭宗杰
召集委員-李佳翰
口試委員-陳煊燁
中文關鍵字 場發射  奈米線  氧化鋅  水熱法  電鍍法 
英文關鍵字 Field emission  nanowires  ZnO  hydrothermal method  electroplating method 
學科別分類
中文摘要 摘要
在顯示器的發展中,人們除了追求平面化外,更期望它的性能不斷提升,如:重量減化、高的亮度、低成本和低消耗功率等。在這種需求下奈米線場發射陰極顯示照明有符合以上所要求之發展特性。
本研究以水熱法、電鍍法為主要製程成長氧化鋅奈米線,應用於場發射陰極。而我們也製作了相對穩定的製程──化學氣相沉積(CVD)來當作對比組。在電鍍法跟水熱法的前製程中,利用二水醋酸鋅配製成乙醇溶液,並使用旋轉塗佈的方式製作種子層;並用六水合硝酸鋅作為反應溶液去沉積氧化鋅奈米線。此法相較於化學氣相沉積法簡單許多,也可節省很多成本與時間。本文我們將會探討:水熱法在不同成長時間和反應溶液濃度下、電鍍法在不同濃度下、氧化鋅的性質與場發射效應強弱。
針對實驗的結果將利用高解析場發射掃描式電子顯微鏡(UHRFE-SEM)對基材、觸媒及氧化鋅的表面形貌作觀察。也用螢光光譜儀(PL)來判定氧化鋅的品質;450 nm~500 nm波段代表著奈米線材料本身存在有氧空缺,而此缺陷與場發效果呈現負相關也被我們證實。最後我們用本實驗室所架設的場發射量測系統作場發射特性之量測及發光。
結果顯示,雖然水熱法的成長時間相對於電鍍法較長,但無論是場發射效果還是密度與形貌表現都優於電鍍法。而本研究中,場發射因子最好的結果為534,起始電場為8.0 V /μm。雖然此結果沒有優於CVD所成長的;但此製程是較為簡單,且在低溫、大氣環境下就可進行的。也結合了本實驗室的電鍍技術,相信未來一定能有更好的結果產生。
英文摘要 In the development of displays, a large scale systems will begin to downsize and improve its performance, such as weight reduction, high brightness, low cost and low power consumption. The nanowire field emission display/lighting have consistent with the development of the above requirements. ZnO nanowires can be also based on to construct gas sensors, chemical sensors, biosensors, UV sensors, pH sensors and other sensors with different sensing mechanisms.
In this study, hydrothermal method and electroplating method as the main process to grow zinc oxide nanowires used in field emission cathode. The zinc acetate dihydrate was formulated as ethanol solution before the process, and then we coated the seed layer by spin coater, we used zinc nitrate hexahydrate solution to deposit zinc oxide nanowires. Besides, in order to understand the performance of nanowire with hydrothermal method and electroplating method, we also produce a relatively stable process such as chemical vapor deposition (CVD) as contrast. The results that indicated that hydrothermal/electroplating methods are not only simpler than CVD, but also save a lot of cost and time.
In this paper, we also discussed the following parameters: hydrothermal method at different time, growing concentration of the reaction solution, electroplating method at different concentrations and characteristic of zinc oxide and field emission effect. Moreover, in our experiment, high-resolution field emission scanning electron microscope (UHRFE-SEM) was used to measure the morphology of zinc oxide and fluorescence spectroscopy (PL) was used to determine the quality of zinc oxide. Finally, we use field emission measurement system to measure the characteristics of field emission and its optical properties.
In our studies, the result presented that although the growth time of ZnO nanowires by hydrothermal method is longer than the electroplating method, the field emission, density and morphology properties of ZnO film are better than by electroplating method. In our experiment, the best results of field emission enhancement factor is 5340, the turn on field is 8.0 V/μm. Even though this result is not better than the CVD growth; but this process can be performed at a low temperature and atmospheric environment. Therefore, this technique can easily use for low cost field emission and sensor applications. So we invested the ZnO nanowires lighting element to carbon reduction and improving field emission effect.
論文目次 CONTENT
摘要 II
Abstract III
誌謝 V
CONTENT VI
LIST of TABLES VIII
LIST of FIGURES IX
Chapter1 ITRODUCTION 1
1.1 Background of the Research 1
1.2 THE PURPOSE AND MOTIVATION 4
1.3 Organization of the Thesis 5
Chapter2 LITERATURE REVIEW 10
2.1 APPLICATION 10
2.2 FIELD EMISSION 12
2.2.1 THETHEORY OF FIELD EMISSION 13
2.2.2 FIELD EMISSION DISPLAY 16
2.3 NANO MATERIALS 18
2.4 CHARACTERISTIC OF ZnO NANOWIRES 19
2.5 PREPARATION OF ZnO NANOWIRES 20
2.6 CHARACTERISTICS OF FLUORESCENT POWDER 23
Chapter3 EXPERIMENT 38
3.1 ZnO NANOWIRES GROWN BY CHEMICAL VAPOR DEPOSITION 38
3.2 PREPARATION OF THE SEED LAYER 39
3.3 ZnO NANOWIRES GROWN BY HYDROTHERMAL METHOD 40
3.4 ZnO NANOWIRES GROWN BY ELECTROPLATING METHOD 41
3.5 MEASURE TECHNIQUE 42
CHAPTER4 RESULT & DISCUSSION 49
4.1 CVD METHOD 49
4.1.1 MORPHOLOGY OF ZnO NANOWIRES BY CVD METHOD 49
4.1.2 QUALITY OF ZnO NANOWIRES BY CVD METHOD 50
4.1.3 FIELD EMISSION’S MEASUREMENTS OF ZnO NANOWIRES BY CVD METHOD 50
4.2 HYDROTHERMAL METHOD 51
4.2.1 MORPHOLOGY OF HYDROTHERMAL ZnO NANOWIRES 51
4.2.2 QUALITY OF HYDROTHERMAL ZnO NANOWIRES 52
4.2.3 FIELD EMISSION MEASUREMENTS OF HYDROTHERMAL ZnO NANOWIRES 54
4.3 ELECTROPLATING METHOD 55
4.3.1 MORPHOLOGY OF ELECTROPLATING ZnO NANOWIRES 55
4.3.2 CRYSTAL QUALITY OF ELECTROPLATING ZnO NANOWIRES 56
4.3.3 FIELD EMISSION MEASUREMENTS OF ELECTROPLATING ZnO NANOWIRES 58
4.4 COMPARISON OF HYDROTHERMAL METHOD AND ELECTROPLATING METHOD 59
4.5 FLUORESCENT EXPERIMENT 60
CHAPTER5 CONCLUSIONS AND FUTURE PROSPECT 75
5.1 SUMMARY 75
5.2 FUTURE WORK 75
REFERENCES 77


LIST of TABLES
Table. 2- 1 Each product of the number of Flexible sheets. 35
Table. 2- 2 Global Flexible sheets industry output estimated 36
Table. 2- 3 The basic physical properties of zinc oxide 37
Table. 4- 1 The field enhancement factor (β) of CVD method corresponds to the respective growth pressure. 72
Table. 4- 2 The field enhancement factor (β) of Hydrothermal method corresponds to the respective growth concentration. 73
Table. 4- 3 The field enhancement factor (β) of Electrochemical method corresponds to the respective growth concentration. 74



LIST of FIGURES
Fig.1- 1 The category of nanomaterials. 6
Fig.1- 2 The Global lighting display of market research report. [1] 6
Fig.1- 3 The world's major markets lighting products. [2] 7
Fig.1- 4 The intelligence lighting market value estimated by Markets and Markets in 2013-2018 (Unit: US $). [3] 7
Fig.1- 5 The intelligence lighting market value of NPD Display Search estimated in 2013 ~ 2019 (unit: one million US dollars). 8
Fig.1- 6 The schematic layout of the global lighting leader. [5] 8
Fig.1- 7 The market chart of global lighting applications and products.[6] 9
Fig.1- 8 The future global flexible display market estimated shipments. 9
Fig. 2- 1 ITRI global FPC the output value estimated at 2011 to 2015. 26
Fig. 2- 2 The potential energy of no electric field applied. 27
Fig. 2- 3 The potential energy with electric field applied. 27
Fig. 2- 4 (a) Show the electric field distribution and electron trajectories on a the substrate of CNT [trajectories of emitted electrons from the cathode to the anode (top), field distribution (middle), and CNT cathode (bottom)]. (b) Emission image of the CNTs deposited by electrophoresis. The image shows that the emitted electrons are deviated from the center of the electrode. 28
Fig. 2- 5 (a) The plot of field emission density versus electric field of the display, (b) the corresponding FN plot, and (c) the display pattern of the device. 29
Fig. 2- 6 The emission current density from ZnO nanowires grown on silicon substrate at 550 °C. The inset reveals that the field emission follows FN model. 30
Fig. 2- 7 Hydrogen - oxygen of the phase diagram of two yuan. 30
Fig. 2- 8 The emission current density as high as 2.4 mA / cm2 under 31
Fig. 2- 9 XRD spectrum of ZnO layer deposited from DMSO.[74] 31
Fig. 2- 10 PL spectra of ZnO-NAs embedded in AAM. (a) as-prepared; (b) heated at 700 °C for 10 h; (c) heated at 900 °C for 10 h; (d) heated at 300 °C for 35 h. We found in the blue wavelengths (about 450 nm ~ 650 nm) produces oxygen vacancy singly ionized state.[75] 32
Fig. 2- 11 Field emission current density as a function of the applied field for the needle-like sample.[76] 32
Fig. 2- 12 Top viewed SEM images of well-aligned ZnO 33
Fig. 2- 13 The PL spectrum of ZnO nanoneedle array 33
Fig. 2- 14 The PL of the as-prepared sample on the Au/Si substrate. [79] 34
Fig. 3- 1 The Furnace Tube was set up by NDL own assembly (a) The actual image (b) The architecture diagram. 44
Fig. 3- 2 The spin coater we use. 45
Fig. 3- 3 The architecture diagram of Hydrothermal method. 46
Fig. 3- 4 The architecture diagram of Electroplating method. 46
Fig. 3- 5 The Field Emission Measurement System is placed at National Kaohsiung University of Applied Sciences-- Micro Nano element analysis laboratory (KUAS-MNSA) (a) The actual image (b) The architecture diagram. 47
Fig. 3- 6 JEOL GMC 6340F Scanning electron microscopy (SEM). 48
Fig. 4- 1 SEM top-view of the ZnO nanowire arrays grown on ITO PC in (a) 5 torr, (b) 7 torr, (c) 9 torr, and (d) 11torr at low and high magnifications, respectively. 62
Fig. 4- 2 The diameter of different process parameters. 62
Fig. 4- 3 The PL spectra of the ZnO nanowire arrays grown on ITO glasses in 5 (▓), 7(●) , 9(▲) , and 11(▼) torr cases was measured at room temperature using a Xe lamp with an excitation wavelength of 300 nm. 63
Fig. 4- 4 The dependence of the field emission current density J (mA/cm2) on the applied electric field strength E(V/μm) of the ZnO nanowires array. The inset is Fowler-Nordheim relationship of ln⁡(J/V^2 ) – 1/V plot. 63
Fig. 4- 5 SEM top-view of the ZnO nanowire arrays grown on ITO PC by hydrothermal method in 0.01 M Zn(NO3)2•6(H2O) through different times (a) 2 hr, (b) 3 hr, (c) 4 hr, (d) 5 hr and (e) 6 hr at high magnifications, respectively. 64
Fig. 4- 6 The diameter of different times in 0.01M Zn(NO3)2•6(H2O). 64
Fig. 4- 7 SEM top-view of the ZnO nanowire arrays grown on ITO PC by hydrothermal method through four hours in (a) 0.005 M, (b) 0.008 M, (c) 0.01 M, (d) 0.05 M and (e) 0.1 M concentration of Zn(NO3)2•6(H2O) at high magnifications, respectively. 65
Fig. 4- 8 The diameter of different Zn(NO3)2•6(H2O) concentration through four hours. 65
Fig. 4- 9 The PL spectra of the hydrothermal ZnO nanowire arrays grown on ITO PC in 0.005M (▓), 0.01M (●) , 0.1M (▲) cases was measured at room temperature using a Xe lamp with an excitation wavelength of 300 nm. 66
Fig. 4- 10 The PL spectra of the hydrothermal ZnO nanowire arrays grown on ITO PC in 2 Hr (▓), 4 Hr (●) and 6 Hr (▲) cases was measured at room temperature using a Xe lamp with an excitation wavelength of 300 nm. 66
Fig. 4- 11 The XRD diffraction of hydrothermal ZnO nanowires on the substrate. 67
Fig. 4- 12 The dependence of the field emission current density J (mA/cm2) on the applied electric field strength E(V/μm) of the hydrothermal ZnO nanowires array. The inset is Fowler-Nordheim relationship of ln⁡(J/V^2 ) – 1/V plot. 67
Fig. 4- 13 SEM top-view of the electroplating ZnO nanowire arrays grown on ITO PC by hydrothermal method through four hours in (a) 0.0005 M, (b) 0.001 M, (c) 0.005 M, (d) 0.01 M and (e) 0.05 M concentration of Zn(NO3)2•6(H2O) at high magnifications, respectively 68
Fig. 4- 14 The diameter of different Zn(NO3)2•6(H2O) concentration through one hours. 69
Fig. 4- 15 The PL spectra of the electroplating ZnO nanowire arrays grown on ITO PC in 0.0005M (▓), 0.001M (●) , 0.005M (▲) , 0.01M (▼) and0.05M (◄) cases was measured at room temperature using a Xe lamp with an excitation wavelength of 300 nm. 69
Fig. 4- 16 The XRD diffraction of electroplating ZnO nanowires on the substrate. 70
Fig. 4- 17 The dependence of the field emission current density J (mA/cm2) on the applied electric field strength E(V/μm) of the electroplating ZnO nanowires array. The inset is Fowler-Nordheim relationship of ln⁡(J/V^2 ) – 1/V plot. 70
Fig. 4- 18 The hydrothermal optimal parameters as the cathode plate excite electrons emitting fluorescent powder anode plate of the actual view. 71
Fig. 4- 19 A luminous field emission device with a ZnO NW array 71

參考文獻 REFERENCES
[1] Lighting the way:Perspectives on the global lighting market, Mckinsey & Company, pp.15. (2012).
[2] 材料世界網,http://www.materialsnet.com.tw/2013LightingJapan_Exhibit_Tech.aspx.
[3] STPI科技產業資訊室,http://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=7887.
[4] 新電子,http://www.mem.com.tw/seminar_history.asp?sn=1309040001.
[5] 林志勳,LED照明市場現況與趨勢,工研院產經中心。
[6] 林志勳,全球照明市場發展,工研院產經中心。
[7] STPI科技產業資訊室,http://iknow.stpi.narl.org.tw/post/Read.aspx?PostID=8146.
[8] 唐慧琪、江柏風,全球軟板式場發展趨勢,IEK產業情報網。
[9] J. Hu, W. Odom , Acc. Chem. Res. 32435 (1999).
[10] Z. W. Pan, Z. R. Dai and Z. L. Wang, Science 291, 1947 (2001).
[11] P. X. Gao, Y. Ding and Z. L. Wang, Nano Lett. 9, 1315 (2003).
[12] Z. L. Wang, X. Y. Kong and J. M. Zou Phys. Rev. Lett. 91185502 (2003)
[13] J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee and S. T. Lee, Chem. Mater. 15305 (2003).
[14] R. S. Yang, Y. Ding and Z. L. Wang, Nano Lett. 4, 1309 (2004).
[15] C. H. Liu, J. A. Zapien, Y. Yao, X. M. Meng, C. S. Lee, S. S. Fan, Y. Lifshitz and S. T. Lee, Adv. Mater. 15, 838 (2003).
[16] J. S. Jie, G. Z. Wang, Q. T. Wang, Y. M. Chen, X. H. Han and X. P. Wang, Appl. Phys. Lett. 86 198 (2005).
[17] Y. Li, G. W. Meng, L. D. Zhang and F. Phillip, Appl. Phys.Lett. 76 2011 (2002).
[18] G. S. Wu, L. D. Zhang, B. C. Cheng, T. Xie and X. Y. Yuan, Am. Chem. Soc. 126 5976 (2004).
[19] X. D. Wang, C. J. Summers and Z. L. Wang, Nano Lett. 4423 (2004).
[20] C. Y. Geng, Y. Jiang, Y. Yao, X. M. Meng, J. A. Zapien, C. S. Lee, Y. Lifshitz and S. T. Lee, Adv. Funct. Mater. 14 589 (2004).
[21] J. S. Jie, G. Z. Wang, Y. M. Chen, X. H. Han, Q. T. Wang, B. Xu and J. G. Hou, Appl. Phys. Lett. 86, 031909 (2005).
[22] M. Lorenz, E. M. Kaidashev, A. Rahm, Appl. Phys. Lett. 86, 143113 (2005).
[23] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. F. Zhang, R. J. Saykally and P. D. Yang, Angew.Chem. Int. Edn Engl. 42, 3031 (2003).
[24] 趙祖佑、覃禹華,未來軟性電子應用商機研究
[25] C. M. Lieber, Solid State Commun. 107, 607 (1998).
[26] 財經知識庫,http://www.moneydj.com/KMDJ/wiki/WikiViewer.aspx?Title=%E8%BB%9F%E6%9D%BF
[27] L. Vayssieres, Adv. Mater. 15, 464 (2003).
[28] R. H. Fowler, L. Nordheim, JSTOR 119, 173(1928).
[29] J. M. Bonard, K. A. Dean, B. F. coll, and C. Klinke, Phy. Review Lett., 89, 197602 (2002).
[30] P. A. Lewis, B. W. Alphenaar, H. Ahmed, Appl. Phy. Lett. , 79, 3148 (2001).
[31] T. C. Cheng, J. Shieh, W. J. Huang, M. C. Yang, M.H. Cheng, Appl. Phy. Lett. , 88, 263118 (2006).
[32] Y. Uxiang Qin and M. Hu, Appl. Surface Science, 255, 7618 (2009).
[33] http://www.ccunix.ccu.edu.tw/~deptgioom/docs/LFPDT95/chapter%207.pdf
[34] Y. Saito and S. Uemura, Carbon 38, 169 (2000); J. M. Kim,W. B. Choi, N. S. Lee, and J. E. Jung, Diamond Relat. Mater. 9, 1184 (2000).
[35] J. Bonard, H. Kind, T. Stockli, and L. Nilsson, Solid-State Electron. (in press); W. A. de Heer, A. Chaˆtelain, and D. Ugarte, Science 270, 1179 (1995).
[36] D. Chung, S. H. Park, H. W. Lee, J. H. Choi, S. N. Cha, J. W. Kim, J. E. Jang, K. W. Min, S. H. Cho, M. J. Yoon, J. S. Lee, C. K. Lee, J. H. Yoo, J. Kim, J. E. Jung, Y. W. Jin, Y. J. Park, and J. B. You, Appl. Phys. Lett. 80, 4045 (2002).
[37] D. Kim, H. Yang, H. Kang, and H. Lee, Chem. Phys. Lett. 368, 439 (2003).
[38] W. B. Choi, Y. W. Jin, H. Y. Kim, S. J. Lee, M. J. Yun, J. H. Kang, Y. S. Choi, N. S. Park, N. S. Lee, and J. M.Kim, Appl. Phy. Lett. 78, 1547 (2001)
[39] J. M. Kim, H. W. Lee, Y. S. Choi, N. S. Lee, J. E. Jung, J. W. Kim, W. B. Choi, Y. J. Park, J. H. Choi, Y. W. Jin, W. K. Yi, N. S. Park, G. S. Park, and J. K. Chee, J. Vac. Sci. Technol. B 18, 888 (2000).
[40] Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, Science 282, 1105 (1998).
[41] W. B. Choi, N. S. Lee, W. K. Yi, Y. W. Jin, Y. S. Choi, I. T. Han, D. S. Chung, H. Y. Kim, J. H. Kang, Y. J. Lee, M. J. Yun, S. H. Park, S. Yu, J.E. Jang, J. H. You, and J. M. Kim, Society for Information Display 2000, Digest of Technical Papers, 2000, pp. 324–327.
[42] H. Ago, T. Komatsu, S. Ohshima, Y. Kuriki, and M. Yumura, Appl. Phys. Lett. 77, 79 (2000).
[43] K. Zheng, H. Shen , J. Li , D. Sun , G. Chen , Vacuum, 83, 261–264 (2009).
[44] Kai Hou , Chi Li , Wei Lei . Iijima, Nature London 354, 56 (1991).
[45] M. Morales and C. M. Lieber, Science 279, 208 (1998).
[46] Y. B. Li, Y. Bando, T. Sato, and K. Kurashima, Appl. Phys. Lett. 81, 144 (2002).
[47] J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, Science 287, 622 (2000).
[48] A. Kolmakov, Y. Zhang, G. Cheng, and M. Moskovits, Adv. Mater. (Weinheim, Ger.) 15, 997 (2003).
[49] C. Li, D. Zhang, X. Liu, S. Han, T. Tang, J. Han, and C. Zhou, Appl. Phys. Lett. 82, 1613 (2003).
[50] L. Vayssieres, K. Keis, A. Hagfeldt and S. E. Lindquist, Chem. Mater. 13, 4395 (2001).
[51] P. X. Gao, Y. Ding, W. J. Mai, W. L. Hughes, C. S. Lao, Z. L. Wang, Science, 309, 1700 (2005).
[52] X. D. Wang, J. H. Song, P. Li, J. H. Ryou and R. D. Dupuis, C. J.; Wang, Z. L. J. Am. Chem. Soc., 127, 7920 (2005).
[53] M. S. Arnold, P. Avouris, Z. W. Pan, Z. L. Wang, Phys. Chem B, 107, 659 (2003).
[54] X. D. Wang, C. Neff, E. Graugnard, Y. Ding, J. S. King, L. A. Pranger, R. Tannenbaum and Z. L. Wang, C. J. AdV. Mater. 17,(2103).
[55] Bai, X. D.; Wang, E. G.; Gao, P. X.; Wang, Z. L. Nano Lett. , 3,1147 (2003).
[56] Kong, X. Y.; Wang, Z. L. Nano Lett. 2003, 3, 1625. (b) Wang, Z. L.; Song, J. H. Science 2006, 312, 242. (c) Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Science, 316, 102 (2007).
[57] D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, W.C. Harsch, Solid State Commun. 105 399 (1998).
[58] Y. Chen, D.M. Bagnall, H.-J. Koh, K.-T. Park, K. Hiraga, Z.-Q. Zhu, T. Yao, J. Appl. Phys. 84 3912 (1998).
[59] P. Fons, K. Iwata, S. Niki, A. Yamada, K. Matsubara, J. Crystal Growth 201 627 (1999).
[60] R.D. Vispute, V. Talyansky, Z. Trajanovic, S. Choopun, M.Downes, R.P. Sharma, T. Venkatesan, M.C. Woods, R.T. Lareau, K.A. Jones, A.A. Iliadis, Appl. Phys. Lett. 70 2735 (1997).
[61] J. Narayan, K. Dovidenko, A.K. Sharma, S. Oktyabrsky, J.Appl. Phys. 84 2597(1998).
[62] Y. Segawa, A. Ohtomo, M. Kawasaki, H. Koinuma, Z.K. Tang,P. Yu, G.K.L. Wong, Phys. Stat. Sol. 202 669 (1997).
[63] Y. Liu, C.R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen,M. Wraback, J. Electron. Mater. 29 69 (2000).
[64] B. Hahn, G. Heindel, E. Pschoor-Schoberer, W. Gebhardt,Semicond. Sci. Tech. 13 788(1998).
[65] M. Kasuga, S. Ogawa, Jpn. J. Appl. Phys. 22 794 (1983).
[66] N. Takahashi, K. Kaiya, T. Nakamura, Y. Momose, H. Yamamoto,Jpn. J. Appl. Phys. 38 L454 (1999).
[67] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H.Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, Y. Segawa , Appl. Phys. Lett. 72 2466 (1998).
[68] Wang Z L, Kong X Y, Ding Y, Gao P X, HughesW L, Yang R S and Zhang Y, Adv. Funct. Mater. 14 943 (2004).
[69] D. P. Yu, C. S. Lee, I. Bello, N. Wang, and X. S. Sun, Solid State Communications 105, 403 (1998)
[70] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001); K. Govender, D. S. Boyle, P. O’Brien, D. Binks, D. West, and D. Coleman, Adv. Mater. (Weinheim, Ger.) 14, 1221 (2002).
[71] P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. de Heer, Science 283, 1513 (1999).
[72] V. T. Binh and S. T. Purcell, Appl. Surf. Sci. 111, 157 (1997).
[73] K. Ashihara, Y. Saito, S. Tsuchida, H. Nakane, and H. Adachi, Electron. Commun. Jpn. , Part 2: Electron. 81, 52 (1998).
[74] Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang, and D. P. Yu, Appl. Phy. Let. 83, 144 (2003).
[75] D. Gal, G. Hodes, D. Lincot, H.-W. Schock, Thin Solid Films, 361-362 (2000).
[76] Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp , Appl. Phy. Lett. 76, 2011 (2000).
[77] C. J. Lee, T. J. Lee, S. C. Lyu, and Y. Zhang , Appl. Phy. Lett. 3648-2650 (2002).
[78] B. Cao, Y. Li, G. Duan, and W. Cai, American Chemical Society, 1091-1095 (2005).
[79] B. Cao, Y. Li, G. Duan, and W. Cai, INSTITUTE OF PHYSICS PUBLISHING, 2567–2574 (2005)
[80] L. Li, S. Pan, X. Dou, Y. Zhu, X. Huang, Y. Yang, G. Li, and L. Zhang, J. Phys. Chem., 111, 7288-7291 (2007)
[81] Y. Fang, K. Mun Wong and Y. Lei, Nanoscale Research Letters, 7:197(2012)
[82] 涂國平,台北科技大學,碩士論文 (2006)。
[83] L. E. Shea, The Electrochemical Society, vol.7, pp.24-27 (1998).
[84] H. C. Swart, T. A. Trottier, J. S. Sebastian, S. L. Jones and P. H. Holloway, Appl. Phys. 83, 4578 (1998)
[85] H. Shionoya, W. M. Yen, H. Yamamoto, CRC Press , 1080 (1999).
[86] F. L. Zhang, S. Yang, C. Stoffers, J. Penczek, P. N. Yocom, D. Zaremba, B. K. Wagner and C. J. Summers, Appl. Phys. Lett. 72, 2226 (1998).
[87] J. C. Souriau, Y. D. Jiang, J. Penczek and H. G. Paris, Christopher J. Summers, Materials Science and Engineering, B76 165–168 (2000).
[88] K. Tanaka, S. Okamoto, H. Kominami, Y. Nakanishi, X. Du and A. Yoshikawa, Appl. Phys. 92, 834 (2002).
[89] Y. R. Do, Electrochemical Society, volume 147,issue 4, 1597-1600 (2000).
[90] S. Yang, C. Stoffers, F. Zhang, Applied Physics Letters, vol.72, 158-160 (1998).
[91] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant and J. A. Voigt, Appl. Phys. Lett. 68, 403 (1996).
[92] T. Pauporte, D. Lincot, Electrochemical Society, volume 148,issue 4, C310-C314 (2001).
[93] M. H. Jung, M.J. Chu, J. Mater. Chem. C,2,6675-6682 (2014)
[94] A. B. Djurisic, W. C. Choy and V. A. Roy, Adv. Funct. Mater., 14, 856 (2004)
[95] H. J. Egelhaaf , D. Oelkrug and J. Cryst. Growth, 161, 190 (1996)
[96] A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath and T. S. Turner, Harrison NM: Stability of polar oxide surfaces. Phys Rev Lett, 86:3811-3814 (2001).
[97] T. Pauporté, O. Lupan, J. Zhang, T. Tugsuz, I. Ciofini, F. Labat and B. Viana, ACS Appl. Mater. Interfaces, 7, 11871 (2015).
[98] J. Elias, R. Tena-Zaera and C. Le´vy-Cle´ment, Journal of Electroanalytical Chemistry 621, 171 (2008).
[99] H. R. Moutinho, M. M. Al-Jassim, D. H. Levi, P. Dippo, L. L. Kazmersk and J. Vac. Sci. Technol. A 16, 1251 (1998).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw