系統識別號 U0026-0409201314511400
論文名稱(中文) 後複製修復在DNA損害修復和鼻咽癌抗藥性的功能研究
論文名稱(英文) The Function of Post-replication Repair in DNA Damage Repair and Drug Resistant Phenotype of Nasopharyngeal Carcinoma (NPC)
校院名稱 成功大學
系所名稱(中) 生命科學系碩博士班
系所名稱(英) Department of Life Sciences
學年度 101
學期 2
出版年 102
研究生(中文) 許森惠
研究生(英文) Sen-Huei Hsu
學號 L56001088
學位類別 碩士
語文別 中文
論文頁數 55頁
口試委員 指導教授-廖泓鈞
中文關鍵字 鼻咽癌  抗藥性  後複製修復  酵母菌  染色體重塑 
英文關鍵字 cancer  drug resistance  PRR  yeast  chromatin remodeling 
中文摘要 環境中的毒物以及細胞代謝所產生的自由基無時不刻造成遺傳物質DNA的損害(DNA damage)。DNA損害造成DNA在複製的過程中,DNA聚合酶無法通過損壞的區域,此時細胞會經過後複製修復(post-replication repair)先跨越DNA受損害區域(bypass DNA lesion),完成DNA複製。因此,這條路徑是維持細胞存活的重要路徑。而先前研究指出在這條路徑的子路徑─模板置換的機制(template switching)中,SHPRH以及HLTF扮演E3泛素連結酶的角色,能夠對proliferating cell nuclear antigen (PCNA)的K63位置進行 polyubiquitination。我們發現SHPRH與HLTF在具有cisplatin抗藥性的鼻咽癌細胞中有大量表現的現象。另外,此具抗藥性鼻咽癌細胞對其他DNA損害藥物,像是mitomycin C (MMC)、 4-Nitroquinoline 1-Oxide (4NQO)、 methyl methanesulfonate (MMS) 同樣具有抗藥性。這些結果顯示此抗藥性的鼻咽癌細胞可能是因為加強了後複製修復系統,而具有抗藥性。的確,在降低SHPRH以及HLTF蛋白表現後,其鼻咽癌細胞對於DNA損害藥物的敏感性提升且降低SHPRH以及HLTF的上游蛋白UBC13的表現也有相同現象。因此,我們認為是由於鼻咽癌細胞中後複製修復能力增強,使其具有抗藥性,而HLTF和SHPRH在癌症研究中扮演著重要的角色。
同時,我們利用酵母系統去看chromatin remodeling complex與後複製修復的關係,可以知道chromatin remodeling complex參與在Rad5加入之前的後複製修復中。 更有趣的是,我們發現在arp8 rad5 雙基因剔除對arp8 單基因剔除有著生長回復現象,值得繼續深入探討。
英文摘要 Post-replication repair (PRR) is the DNA damage tolerance pathway that bypasses DNA lesions without removing the lesions during DNA replication. One pathway of PRR involves the K63-linked polyubiquitination of PCNA mediated by the E3 ubiquitin ligases HLTF and SHPRH that allow bypass of DNA lesions by the template-switching mechanism. We recently discovered that HLTF and SHPRH are highly expressed in the cisplatin resistant nasopharyngeal carcinoma (NPC) cell lines, indicating the importance of HLTF and SHPRH in the drug resistant phenotype. We further demonstrated that the cisplatin resistant NPC is specifically resistant to DNA damaging agents, including mitomycin C (MMC), 4-Nitroquinoline 1-Oxide (4NQO), methyl methanesulfonate (MMS), indicating the cisplatin resistant NPC acquires the enhanced PRR. Indeed, depletion of SHPRH, HLTF, and UBC13 in the cisplatin resistant NPC sensitizes cells to DNA damaging treatment. Our results suggest that cisplatin resistant NPC cells enhance the PRR pathway, thus conferring the NPC cells resistant to cisplatin. In addition, we used yeast model to study the function of chromatin remodeling complexes, including INO80 and SWR1 in post-replication repair. We demonstrated that INO80 plays an important role in DNA repair and regulating cell growth. Interestingly, we discovered that depletion of RAD5 can rescue the growth defect conferred by the arp8 null cells, indicating RAD5 can regulate cell growth in addition to its role in PRR. The detailed mechanism of regulating cell growth by RAD5 needs further investigation.
論文目次 目錄
中文摘要 1
Abstract 3
誌謝 4
目錄 5
圖目錄 6
第一節 前言 7
第二節 實驗目的 16
第三節 實驗方法 17
第四節 結果 29
第五節 討論 36
參考文獻 40
參考文獻 參考文獻

Burgess DJ. Genomic instability: close-up on cancer copy number alterations. Nature reviews Genetics 13: 5, 2012.
Celeste A, et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nature Cell Biology 5: 675-679, 2003.
Chapman JR, et al. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47: 497-510, 2012.
Falbo KB, et al. Involvement of a chromatin remodeling complex in damage tolerance during DNA replication. Nature structural & molecular biology 16: 1167-U1167, 2009.
Friedberg EC. Biological responses to DNA damage: a perspective in the new millennium. Cold Spring Harbor symposia on quantitative biology 65: 593-602, 2000.
Goldman ID, et al. The antifolates: evolution, new agents in the clinic, and how targeting delivery via specific membrane transporters is driving the development of a next generation of folate analogs. Current opinion in investigational drugs 11: 1409-1423, 2010.
Gottesman MM. Mechanisms of cancer drug resistance. Annual review of medicine 53: 615-627, 2002.
Gurova K. New hopes from old drugs: revisiting DNA-binding small molecules as anticancer agents. Future oncology 5: 1685-1704, 2009.
Haico van Attikum1 OFa, and Gasser SM. Distinct roles for SWR1 and INO80 chromatin
remodeling complexes at chromosomal
double-strand breaks. 26: 2007.
Hanane A, et al. Anticancer Drug Metabolism: Chemotherapy Resistance and New Therapeutic Approaches. 2012.
Izbicka E, and Tolcher AW. Development of novel alkylating drugs as anticancer agents. Current opinion in investigational drugs 5: 587-591, 2004.
Jackson SP, and Bartek J. The DNA-damage response in human biology and disease. Nature 461: 1071-1078, 2009.
Jenuwein T, and Allis CD. Translating the histone code. Science 293: 1074-1080, 2001.
Kolodner RD, et al. Maintenance of genome stability in Saccharomyces cerevisiae. Science 297: 552-557, 2002.
Limbo O, et al. Mre11 nuclease activity and Ctp1 regulate Chk1 activation by Rad3ATR and Tel1ATM checkpoint kinases at double-strand breaks. Molecular and cellular biology 31: 573-583, 2011.
Lindahl T, and Barnes DE. Repair of endogenous DNA damage. Cold Spring Harbor symposia on quantitative biology 65: 127-133, 2000.
Loeb LA. Cancer cells exhibit a mutator phenotype. Advances in Cancer Research, Vol 72 72: 25-56, 1998.
Loeb LA, et al. Cancers exhibit a mutator phenotype: clinical implications. Cancer research 68: 3551-3557; discussion 3557, 2008.
Longley DB, et al. 5-fluorouracil: mechanisms of action and clinical strategies. Nature reviews Cancer 3: 330-338, 2003.
Luijsterburg MS, and van Attikum H. Chromatin and the DNA damage response: the cancer connection. Molecular oncology 5: 349-367, 2011.
Misteli T, and Soutoglou E. The emerging role of nuclear architecture in DNA repair and genome maintenance. Nature reviews Molecular cell biology 10: 243-254, 2009.
Motegi A, et al. Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proceedings of the National Academy of Sciences of the United States of America 105: 12411-12416, 2008.
Motegi A, et al. Human SHPRH suppresses genomic instability through proliferating cell nuclear antigen polyubiquitination. Journal of Cell Biology 175: 703-708, 2006.
Myung K, and Kolodner RD. Suppression of genome instability by redundant S-phase checkpoint pathways in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America 99: 4500-4507, 2002.
Oliver TG, et al. Chronic cisplatin treatment promotes enhanced damage repair and tumor progression in a mouse model of lung cancer. Genes & development 24: 837-852, 2010.
Parker WB. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chemical reviews 109: 2880-2893, 2009.
Risinger AL, et al. Microtubule dynamics as a target in oncology. Cancer treatment reviews 35: 255-261, 2009.
Rogakou EP, et al. Megabase Chromatin Domains Involved in DNA Double-Strand Breaks in Vivo. The Journal of Cell Biology 146: 905-916, 1999.
Santos-Rosa H, et al. Active genes are tri-methylated at K4 of histone H3. Nature 419: 407-411, 2002.
Schwartz MF, et al. Rad9 Phosphorylation Sites Couple Rad53 to the Saccharomyces cerevisiae DNA Damage Checkpoint. Molecular cell 9: 1055-1065, 2002.
Shim EY, et al. Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks. The EMBO journal 29: 3370-3380, 2010.
Shroff R, et al. Distribution and Dynamics of Chromatin Modification Induced by a Defined DNA Double-Strand Break. Current biology : CB 14: 1703-1711, 2004.
Socinski MA. Cytotoxic chemotherapy in advanced non-small cell lung cancer: a review of standard treatment paradigms. Clinical cancer research : an official journal of the American Association for Cancer Research 10: 4210s-4214s, 2004.
Ulrich HD. The RAD6 pathway: control of DNA damage bypass and mutagenesis by ubiquitin and SUMO. Chembiochem : a European journal of chemical biology 6: 1735-1743, 2005.
Unk I, et al. Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination. Proceedings of the National Academy of Sciences of the United States of America 105: 3768-3773, 2008.
Unk I, et al. Human SHPRH is a ubiquitin ligase for Mms2-Ubc13-dependent polyubiquitylation of proliferating cell nuclear antigen. Proceedings of the National Academy of Sciences of the United States of America 103: 18107-18112, 2006.
van Attikum H, and Gasser SM. Crosstalk between histone modifications during the DNA damage response. Trends in cell biology 19: 207-217, 2009.
Weinert TA, and Hartwell LH. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241: 317-322, 1988.
Yoshida J, et al. Positive and negative roles of homologous recombination in the maintenance of genome stability in Saccharomyces cerevisiae. Genetics 164: 31-46, 2003.
Zhou BB, and Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature 408: 433-439, 2000.
  • 同意授權校內瀏覽/列印電子全文服務,於2018-09-12起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-09-12起公開。

  • 如您有疑問,請聯絡圖書館