進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0408202016083400
論文名稱(中文) 以不同方法在氧化石墨稀上還原金之亞硝酸鹽感測電極
論文名稱(英文) Reduction methods of gold on graphene oxide for nitrite sensing
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 黃盈甄
研究生(英文) Ying-Chen Huang
學號 N36074495
學位類別 碩士
語文別 中文
論文頁數 124頁
口試委員 指導教授-楊明長
口試委員-何國川
口試委員-杜景順
口試委員-鄧熙聖
口試委員-林家裕
中文關鍵字 金還原  氧化石墨烯  電化學感測器  亞硝酸鹽 
英文關鍵字 gold reduction  graphene oxide  electrochemical sensors  nitrite 
學科別分類
中文摘要 亞硝酸鹽 (Nitrite, NO2-) 是普遍存在的陰離子,存在於食品、廢水、生理系統中,有諸多用途,例如肥料、食品添加劑以及腐蝕抑制劑。過量的亞硝酸鹽對於人體卻是有害的,會提高罹患胃癌、食道癌等風險,因為癌症容易晚被診斷出來,會延遲治療時間。亞硝酸鹽感測器的開發,能為我們在食品及飲用水上把關,減少因外在因素所造成的癌症機率。
本研究分別以定電壓、循環伏安法、硼氫化鈉三種不同方法將金還原在氧化石墨烯修飾電極上,亞硝酸鹽靈敏度受電極上金含量與Au(111)粒徑大小影響。金含量越多,靈敏度越高,但須避免金粒子團聚,以得到較小的Au(111)粒徑。以定電壓及循環伏安法所製備的電極金含量是硼氫化鈉製備電極的10倍左右;所得的Au(111)粒徑由大到小排序為循環伏安法>定電壓>硼氫化鈉製備的電極。
本研究中,以 -3V(vs. Ag/AgCl)電鍍200秒製備的金/氧化石墨烯修飾電極,可得最高亞硝酸鹽靈敏度150.23 µA/mM(0.7665µAµM-1 cm-2),偵測下限為0.01 mM(S/N=3)。循環伏安法在0.35V/s下掃描100圈製備的金/氧化石墨烯修飾電極,可得較佳亞硝酸鹽靈敏度139.83 µA/mM(0.7134µAµM-1 cm-2),偵測下限為0.02mM(S/N=3)。含有50 µM硼氫化鈉、10 µM四氯化金酸及100 mg氧化石墨烯的乙二醇溶液所製備的金-氧化石墨烯修飾電極,其亞硝酸鹽靈敏度為118.1 µA/mM(0.6026µAµM-1 cm-2),偵測下限為0.02 mM(S/N=3),三種電極線性濃度範圍皆為0.01~0.4 mM。
在干擾物質PO43-、CO32-、Cl-的添加下,三種感測電極感測的氧化峰電流皆不受影響,具良好的選擇性。在自來水測試中,背景電流增大,只有定電壓製備的金/氧化石墨烯修飾電極仍能維持90%的回收率,具較好的穩定性,其他兩種電極感測電流會受背景電流影響而變小,導致回收率下降到80%。
英文摘要 Fabrications of gold on graphene oxide modified electrode (Au/GO/SPCE) were performed by constant voltage, cyclic voltammetry, and sodium borohydride reduction. The highest nitrite sensitivity in linear range of 0.01-0.4 mM was obtained when Au/GO/SPCE was prepared at constant voltage -3V (vs. Ag/AgCl) for 200s. Compared with gold on screen-printed carbon elecctrode (SPCE), and grapheen oxide (GO), the Au/GO/SPCE had the highest oxidation peak current to background current ratio for nitrite detection. The sensitivity of nitrite is affected by the gold content on the electrode and the Au(111) grain size. Although higher gold content, gave higher sensitivity, the agglomeration of gold particles must be avoided to obtain smaller Au(111) grain sizes, so as to have a larger surface area and a higher sensitivity.
論文目次 摘要 I
致謝 X
目錄 XI
圖目錄 XIV
表目錄 XX
第一章 緒論 1
1.1前言 1
1.2感測器 2
1.2.1感測器發展 2
1.2.2感測器原理 3
1.2.3轉換元件 3
1.2.3.1電化學感測器 4
1.2.3.2光電感測器 8
1.2.3.3壓電晶體感測器 8
1.2.3.4離子選擇性場效電晶體感測器 9
1.2.3.5熱感式感測器 10
1.3亞硝酸鹽 11
1.3.1化學特性 11
1.3.2檢測方法 12
1.3.2.1分光光度法(Spectrophotometry) 12
1.3.2.2高效能液相層析法(High-performance liquid chromatography, HPLC) 12
1.3.2.3氣相層析法(Gas chromatography, GC) 13
1.3.2.4毛細管電泳法(Capillary electrophoresis, CE) 13
1.3.2.5電化學感測法 14
第二章 原理與文獻回顧 16
2.1電化學原理 16
2.1.1電化學反應程序 16
2.1.2循環伏安法 18
2.1.3微分脈衝伏安法 23
2.2感測電極基材 24
2.2.1玻璃碳電極(Glassy carbon electrode, GCE) 24
2.2.1網版印碳電極(Sereen-printed electrode, SPE) 24
2.3石墨烯及氧化石墨烯 25
2.3.1石墨烯及氧化石墨烯製備方法 26
2.3.2氧化石墨烯表面修飾 27
2.3.2.1元素摻雜 27
2.3.2.2金屬奈米粒子修飾 27
2.4金奈米粒子合成方法 28
2.4.1化學方法 29
2.4.2生物合成方法 29
2.4.3播種方法 29
2.3.4電化學方法 30
2.5結晶(CRYSTALLIZATION) 30
2.6研究動機 32
第三章 實驗方法 33
3.1實驗藥品 33
3.2實驗儀器 34
3.3實驗步驟 34
3.3.1溶液配置 34
3.3.2氧化石墨烯修飾電極(GO/SPCE)製備 35
3.3.3金/氧化石墨烯修飾電極製備 35
3.3.3.1定電壓法 35
3.3.3.2循環掃描電壓法 36
3.3.3.3硼氫化鈉法 36
3.3.4電化學系統 37
3.3.5感測器之電化學分析 37
3.4電極特性分析 39
3.4.1掃描式電子顯微鏡分析(Scanning electron microscopy, SEM) 39
3.4.2能量散射光譜儀(Energy dispersive spectrometer, EDS) 39
3.4.3 X光繞射儀(X-ray diffratometer, XRD) 39
3.4.4重量分析儀(Thermogravimetric analysis, TGA) 39
第四章 結果與討論 40
4.1定電壓金/氧化石墨烯修飾電極 40
4.1.1掃描式電子顯微鏡分析(SEM)及能量散射光譜儀(EDS) 40
4.1.2 X光繞射儀分析(XRD) 43
4.1.3熱重分析(TGA) 48
4.1.4電化學感測行為 51
4.1.4.1掃描速率對感測能力的影響 51
4.1.4.2循環伏安法(CV)與微分脈衝伏安法(DPV) 53
4.1.4.3裸電極與修飾電極 54
4.1.4.4微分脈衝伏安法參數之探討 55
4.1.4.5還原金參數之靈敏度探討 59
4.2循環掃描電壓金/氧化石墨烯修飾電極 67
4.2.1掃描式電子顯微鏡分析(SEM)及能量散射光譜儀(EDS) 67
4.2.2 X光繞射儀分析(XRD) 72
4.2.3熱重分析(TGA) 77
4.2.4電化學感測行為 80
4.2.4.1電極製備之參數探討 80
4.2.4.2還原金參數之靈敏度探討 83
4.3硼氫化鈉金-氧化石墨烯修飾電極 91
4.3.1掃描式電子顯微鏡分析(SEM)及能量散射光譜儀(EDS) 91
4.3.2 X射線繞射分析(XRD) 96
4.3.3靈敏度探討 99
4.4三種電極之比較 105
4.4.1靈敏度評估 105
4.4.2電極製備再現性測試 106
4.4.3電極重複性測試 107
4.4.4干擾物測試 109
4.4.5自來水實測和回收率 112
4.4.6與文獻的比較 114
第五章 結論 115
參考文獻 117
參考文獻 [1] 衛生福利部, " https://dep.mohw.gov.tw/DOS/cp-4927-54466-113.html," 2020.
[2] C. C. M. Martinez, E. F. Treo, R. E. Madrid, and C. C. Felice, "Real-time measurement of glucose using chrono-impedance technique on a second generation biosensor," Biosensors and Bioelectronics, vol. 29, no. 1, pp. 200-203, 2011.
[3] S. P. Mohanty and E. Kougianos, "Biosensors: a tutorial review," Ieee Potentials, vol. 25, no. 2, pp. 35-40, 2006.
[4] C. Karunakaran, R. Rajkumar, and K. Bhargava, "Introduction to biosensors," in Biosensors and bioelectronics: Elsevier, 2015, pp. 1-68.
[5] A. Bratov, N. Abramova, and A. Ipatov, "Recent trends in potentiometric sensor arrays—A review," Analytica chimica acta, vol. 678, no. 2, pp. 149-159, 2010.
[6] J. Saurina, E. López-Aviles, A. Le Moal, and S. Hernández-Cassou, "Determination of calcium and total hardness in natural waters using a potentiometric sensor array," Analytica Chimica Acta, vol. 464, no. 1, pp. 89-98, 2002.
[7] R. Koncki, "Recent developments in potentiometric biosensors for biomedical analysis," Analytica chimica acta, vol. 599, no. 1, pp. 7-15, 2007.
[8] K. Cammann, U. Lemke, A. Rohen, J. Sander, H. Wilken, and B. Winter, "Chemical sensors and biosensors—principles and applications," Angewandte Chemie International Edition in English, vol. 30, no. 5, pp. 516-539, 1991.
[9] V. Sacks, I. Eshkenazi, T. Neufeld, C. Dosoretz, and J. Rishpon, "Immobilized parathion hydrolase: An amperometric sensor for parathion," Analytical chemistry, vol. 72, no. 9, pp. 2055-2058, 2000.
[10] A. E. Shvarev, D. A. Rantsan, and K. N. Mikhelson, "Potassium-selective conductometric sensor," Sensors and Actuators B: Chemical, vol. 76, no. 1-3, pp. 500-505, 2001.
[11] G. R. Mauze and B. Curry, "Optical sensor for sensing multiple analytes," ed: Google Patents, 2002.
[12] 吳沛璇, "電化學氧化之2,2-聯氮-二(3-乙基-苯并噻唑啉-6-磺酸)作為尿液肌酸酐光學檢測之感測元件," 成功大學, 2017.
[13] J. R. Askim, M. Mahmoudi, and K. S. Suslick, "Optical sensor arrays for chemical sensing: the optoelectronic nose," Chemical Society Reviews, vol. 42, no. 22, pp. 8649-8682, 2013.
[14] R. L. Bunde, E. J. Jarvi, and J. J. Rosentreter, "Piezoelectric quartz crystal biosensors," Talanta, vol. 46, no. 6, pp. 1223-1236, 1998.
[15] P. Skládal, "Piezoelectric quartz crystal sensors applied for bioanalytical assays and characterization of affinity interactions," Journal of the brazilian chemical society, vol. 14, no. 4, pp. 491-502, 2003.
[16] S. V. Dzyadevych, A. P. Soldatkin, V. Anna, C. Martelet, and N. Jaffrezic-Renault, "Enzyme biosensors based on ion-selective field-effect transistors," Analytica chimica acta, vol. 568, no. 1-2, pp. 248-258, 2006.
[17] J. Sanchez, A. Beltran, J. Alonso, C. Jiménez, and M. Del Valle, "Development of a new ion-selective field-effect transistor sensor for anionic surfactants: Application to potentiometric titrations," Analytica chimica acta, vol. 382, no. 1-2, pp. 157-164, 1999.
[18] H. Yang et al., "Soft thermal sensor with mechanical adaptability," Advanced Materials, vol. 28, no. 41, pp. 9175-9181, 2016.
[19] 台灣自來水公司, "https://www4.water.gov.tw/04_services/ser_F_con.asp?bull_id=6122," 2020.
[20] B. A. Kilfoy et al., "Dietary nitrate and nitrite and the risk of thyroid cancer in the NIH‐AARP Diet and Health Study," International journal of cancer, vol. 129, no. 1, pp. 160-172, 2011.
[21] N. S. M. Noor, L. L. Tan, L. Y. Heng, K. F. Chong, and S. N. Tajuddin, "Acrylic microspheres-based optosensor for visual detection of nitrite," Food Chemistry, vol. 207, pp. 132-138, 2016.
[22] H.-S. Lo, K.-W. Lo, C.-F. Yeung, and C.-Y. Wong, "Rapid visual and spectrophotometric nitrite detection by cyclometalated ruthenium complex," Analytica Chimica Acta, vol. 990, pp. 135-140, 2017.
[23] K. M. Miranda, M. G. Espey, and D. A. Wink, "A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite," Nitric oxide, vol. 5, no. 1, pp. 62-71, 2001.
[24] V. Di Matteo and E. Esposito, "Methods for the determination of nitrite by high-performance liquid chromatography with electrochemical detection," Journal of Chromatography A, vol. 789, no. 1-2, pp. 213-219, 1997.
[25] H. Li, C. J. Meininger, and G. Wu, "Rapid determination of nitrite by reversed-phase high-performance liquid chromatography with fluorescence detection," Journal of Chromatography B: Biomedical Sciences and Applications, vol. 746, no. 2, pp. 199-207, 2000.
[26] M. J. Moorcroft, J. Davis, and R. G. Compton, "Detection and determination of nitrate and nitrite: a review," Talanta, vol. 54, no. 5, pp. 785-803, 2001.
[27] P. N. Bories, E. Scherman, and L. Dziedzic, "Analysis of nitrite and nitrate in biological fluids by capillary electrophoresis," Clinical biochemistry, vol. 32, no. 1, pp. 9-14, 1999.
[28] 胡啟章, "電化學原理與方法," 台北市: 五南圖書, 2002.
[29] F. Harnisch and S. Freguia, "A basic tutorial on cyclic voltammetry for the investigation of electroactive microbial biofilms," Chemistry–An Asian Journal, vol. 7, no. 3, pp. 466-475, 2012.
[30] D. H. Evans, K. M. O'Connell, R. A. Petersen, and M. J. Kelly, "Cyclic voltammetry," ed: ACS Publications, 1983.
[31] A. J. Bard and L. R. Faulkner, "Fundamentals and applications," Electrochemical Methods, vol. 2, no. 482, pp. 580-632, 2001.
[32] C. M. Brett, O. Brett, and A. Electrochemistry, "Principles, methods and applications," p. 185, 1993.
[33] J. G. Osteryoung and M. M. Schreiner, "Recent advances in pulse voltammetry," CRC Critical Reviews in Analytical Chemistry, vol. 19, no. sup1, pp. S1-S27, 1988.
[34] Q. A. Khan, A. Shaur, T. A. Khan, Y. F. Joya, and M. Awan, "Characterization of reduced graphene oxide produced through a modified Hoffman method," Cogent Chemistry, vol. 3, no. 1, p. 1298980, 2017.
[35] A. K. Geim and P. Kim, "Carbon wonderland," Scientific American, vol. 298, no. 4, pp. 90-97, 2008.
[36] Y. Zhu et al., "Graphene and graphene oxide: synthesis, properties, and applications," Advanced materials, vol. 22, no. 35, pp. 3906-3924, 2010.
[37] S. Pei and H.-M. Cheng, "The reduction of graphene oxide," Carbon, vol. 50, no. 9, pp. 3210-3228, 2012.
[38] O. C. Compton and S. T. Nguyen, "Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon‐based materials," small, vol. 6, no. 6, pp. 711-723, 2010.
[39] X. Huang, X. Qi, F. Boey, and H. Zhang, "Graphene-based composites," Chemical Society Reviews, vol. 41, no. 2, pp. 666-686, 2012.
[40] K. S. Novoselov et al., "Electric field effect in atomically thin carbon films," science, vol. 306, no. 5696, pp. 666-669, 2004.
[41] H. C. Schniepp et al., "Functionalized single graphene sheets derived from splitting graphite oxide," The Journal of Physical Chemistry B, vol. 110, no. 17, pp. 8535-8539, 2006.
[42] N. A. Kotov, I. Dékány, and J. H. Fendler, "Ultrathin graphite oxide–polyelectrolyte composites prepared by self‐assembly: Transition between conductive and non‐conductive states," Advanced Materials, vol. 8, no. 8, pp. 637-641, 1996.
[43] H. J. Shin et al., "Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance," Advanced Functional Materials, vol. 19, no. 12, pp. 1987-1992, 2009.
[44] C.-C. Chou, C.-H. Hsieh, and B.-H. Chen, "Hydrogen generation from catalytic hydrolysis of sodium borohydride using bimetallic Ni–Co nanoparticles on reduced graphene oxide as catalysts," Energy, vol. 90, pp. 1973-1982, 2015.
[45] Y. Liu, Y. Zhang, G. Ma, Z. Wang, K. Liu, and H. Liu, "Ethylene glycol reduced graphene oxide/polypyrrole composite for supercapacitor," Electrochimica Acta, vol. 88, pp. 519-525, 2013.
[46] C. Xu, R.-s. Yuan, and X. Wang, "Selective reduction of graphene oxide," New Carbon Materials, vol. 29, no. 1, pp. 61-66, 2014.
[47] G. Li et al., "Recent developments on graphene-based electrochemical sensors toward nitrite," Journal of the Electrochemical Society, vol. 166, no. 12, p. B881, 2019.
[48] G. M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, and R. Mülhaupt, "Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki− Miyaura coupling reaction," Journal of the American Chemical Society, vol. 131, no. 23, pp. 8262-8270, 2009.
[49] S. Guo, S. Dong, and E. Wang, "Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation," ACS nano, vol. 4, no. 1, pp. 547-555, 2010.
[50] J. Yang, C. Tian, L. Wang, and H. Fu, "An effective strategy for small-sized and highly-dispersed palladium nanoparticles supported on graphene with excellent performance for formic acid oxidation," Journal of Materials Chemistry, vol. 21, no. 10, pp. 3384-3390, 2011.
[51] E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, and I. Honma, "Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface," Nano letters, vol. 9, no. 6, pp. 2255-2259, 2009.
[52] Y.-G. Zhou, J.-J. Chen, F.-b. Wang, Z.-H. Sheng, and X.-H. Xia, "A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells," Chemical Communications, vol. 46, no. 32, pp. 5951-5953, 2010.
[53] S. Guo, D. Wen, Y. Zhai, S. Dong, and E. Wang, "Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing," ACS nano, vol. 4, no. 7, pp. 3959-3968, 2010.
[54] S. Zhang, Y. Shao, H. Liao, M. H. Engelhard, G. Yin, and Y. Lin, "Polyelectrolyte-induced reduction of exfoliated graphite oxide: a facile route to synthesis of soluble graphene nanosheets," Acs Nano, vol. 5, no. 3, pp. 1785-1791, 2011.
[55] R. Muszynski, B. Seger, and P. V. Kamat, "Decorating graphene sheets with gold nanoparticles," The Journal of Physical Chemistry C, vol. 112, no. 14, pp. 5263-5266, 2008.
[56] Y. Wang et al., "Self assembly of acetylcholinesterase on a gold nanoparticles–graphene nanosheet hybrid for organophosphate pesticide detection using polyelectrolyte as a linker," Journal of Materials Chemistry, vol. 21, no. 14, pp. 5319-5325, 2011.
[57] W. Hong, H. Bai, Y. Xu, Z. Yao, Z. Gu, and G. Shi, "Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors," The Journal of Physical Chemistry C, vol. 114, no. 4, pp. 1822-1826, 2010.
[58] Y. Fang, S. Guo, C. Zhu, Y. Zhai, and E. Wang, "Self-assembly of cationic polyelectrolyte-functionalized graphene nanosheets and gold nanoparticles: a two-dimensional heterostructure for hydrogen peroxide sensing," Langmuir, vol. 26, no. 13, pp. 11277-11282, 2010.
[59] X.-Y. Zhang, H.-P. Li, X.-L. Cui, and Y. Lin, "Graphene/TiO 2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting," Journal of Materials Chemistry, vol. 20, no. 14, pp. 2801-2806, 2010.
[60] H. Qin, Y. Xu, J. Kim, T. Hwang, and T. Kim, "The effect of structure on the photoactivity of a graphene/TiO2 composite," Materials Science and Engineering: B, vol. 184, pp. 72-79, 2014.
[61] B. Li, H. Cao, J. Shao, M. Qu, and J. H. Warner, "Superparamagnetic Fe 3 O 4 nanocrystals@ graphene composites for energy storage devices," Journal of Materials Chemistry, vol. 21, no. 13, pp. 5069-5075, 2011.
[62] D. Chen, J. Jiang, and X. Du, "Electrocatalytic oxidation of nitrite using metal-free nitrogen-doped reduced graphene oxide nanosheets for sensitive detection," Talanta, vol. 155, pp. 329-335, 2016.
[63] F. Zhang, Y. Yuan, Y. Zheng, H. Wang, T. Liu, and S. Hou, "A glassy carbon electrode modified with gold nanoparticle-encapsulated graphene oxide hollow microspheres for voltammetric sensing of nitrite," Microchimica Acta, vol. 184, no. 6, pp. 1565-1572, 2017.
[64] S. Zhang, Q. Sheng, and J. Zheng, "Synthesis of Au nanoparticles dispersed on halloysite nanotubes–reduced graphene oxide nanosheets and their application for electrochemical sensing of nitrites," New Journal of Chemistry, vol. 40, no. 11, pp. 9672-9678, 2016.
[65] B.-S. He and D.-D. Yan, "One-pot preparation of wavy graphene/Au composites and their application for highly sensitive detection of nitrite," Analytical Methods, vol. 10, no. 29, pp. 3654-3659, 2018.
[66] E. K. Beloglazkina, A. G. Majouga, R. B. Romashkina, N. V. Zyk, and N. S. Zefirov, "Gold nanoparticles modified with coordination compounds of metals: synthesis and application," Russian Chemical Reviews, vol. 81, no. 1, p. 65, 2012.
[67] A. Afkhami, A. Bahiraei, and T. Madrakian, "Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium," Materials Science and Engineering: C, vol. 59, pp. 168-176, 2016.
[68] H. Ershadifar, M. Akhond, and G. Absalan, "Gold nanoparticle decorated multiwall carbon nanotubes/ionic liquid composite film on glassy carbon electrode for sensitive and simultaneous electrochemical determination of dihydroxybenzene isomers," IEEE Sensors Journal, vol. 17, no. 16, pp. 5030-5037, 2017.
[69] X. Xu et al., "Fast steroid hormone metabolism assays with electrochemical liver microsomal bioreactor based on polydopamine encapsulated gold-graphene nanocomposite," Electrochimica Acta, vol. 258, pp. 1365-1374, 2017.
[70] L. Shangguan, Y. Zhao, L. Mi, L. Jiang, and S. Liu, "Direct electrochemistry and electrocatalysis of cytochrome P450s immobilized on gold/graphene-based nanocomposites," Journal of Electroanalytical Chemistry, vol. 772, pp. 46-51, 2016.
[71] M. Choudhary, R. Brink, D. Nandi, S. Siwal, and K. Mallick, "Gold nanoparticle within the polymer chain, a multi-functional composite material, for the electrochemical detection of dopamine and the hydrogen atom-mediated reduction of Rhodamine-B, a mechanistic approach," Journal of Materials Science, vol. 52, no. 2, pp. 770-781, 2017.
[72] Z. Zhu, L. Shi, H. Feng, and H. S. Zhou, "Single domain antibody coated gold nanoparticles as enhancer for Clostridium difficile toxin detection by electrochemical impedance immunosensors," Bioelectrochemistry, vol. 101, pp. 153-158, 2015.
[73] T. Xiao, J. Huang, D. Wang, T. Meng, and X. Yang, "Au and Au-Based nanomaterials: Synthesis and recent progress in electrochemical sensor applications," Talanta, vol. 206, p. 120210, 2020.
[74] E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, "Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity," Small, vol. 1, no. 3, pp. 325-327, 2005.
[75] M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, "Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system," Journal of the Chemical Society, Chemical Communications, no. 7, pp. 801-802, 1994.
[76] H. Schlesinger, H. C. Brown, A. Finholt, J. R. Gilbreath, H. R. Hoekstra, and E. K. Hyde, "Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen1," Journal of the American Chemical Society, vol. 75, no. 1, pp. 215-219, 1953.
[77] Y. Xiao, B. Shlyahovsky, I. Popov, V. Pavlov, and I. Willner, "Shape and color of Au nanoparticles follow biocatalytic processes," Langmuir, vol. 21, no. 13, pp. 5659-5662, 2005.
[78] R. Bali and A. T. Harris, "Biogenic synthesis of Au nanoparticles using vascular plants," Industrial & engineering chemistry research, vol. 49, no. 24, pp. 12762-12772, 2010.
[79] T. Beveridge and R. Murray, "Sites of metal deposition in the cell wall of Bacillus subtilis," Journal of bacteriology, vol. 141, no. 2, pp. 876-887, 1980.
[80] N. Friis and P. Myers‐Keith, "Biosorption of uranium and lead by Streptomyces longwoodensis," Biotechnology and Bioengineering, vol. 28, no. 1, pp. 21-28, 1986.
[81] S. He, Z. Guo, Y. Zhang, S. Zhang, J. Wang, and N. Gu, "Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata," Materials Letters, vol. 61, no. 18, pp. 3984-3987, 2007.
[82] N. R. Jana, L. Gearheart, and C. J. Murphy, "Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles," Chemistry of materials, vol. 13, no. 7, pp. 2313-2322, 2001.
[83] N. Jagtap, V. Shelke, M. Nimase, S. Jadhav, S. Shankarwar, and T. Chondhekar, "Electrochemical synthesis of tetra alkyl ammonium salt stabilized gold nanoparticles," Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, vol. 42, no. 10, pp. 1369-1374, 2012.
[84] P. G. Vekilov, "Nucleation and growth mechanisms of protein crystals," in Handbook of Crystal Growth: Elsevier, 2015, pp. 795-871.
[85] D. M. Stefanescu, "Methodologies for modeling of solidification microstructure and their capabilities," Isij International, vol. 35, no. 6, pp. 637-650, 1995.
[86] J. D. Hunt, "Steady state columnar and equiaxed growth of dendrites and eutectic," Materials science and engineering, vol. 65, no. 1, pp. 75-83, 1984.
[87] S. Flood and J. Hunt, "Columnar and equiaxed growth: II. Equiaxed growth ahead of a columnar front," Journal of Crystal Growth, vol. 82, no. 3, pp. 552-560, 1987.
[88] M. C. Flemings, "Solidification processing," Metallurgical transactions, vol. 5, no. 10, pp. 2121-2134, 1974.
[89] M. Acik et al., "The role of intercalated water in multilayered graphene oxide," ACS nano, vol. 4, no. 10, pp. 5861-5868, 2010.
[90] D. Rao, Q. Sheng, and J. Zheng, "Self-assembled preparation of gold nanoparticles decorated 1-pyrenemethylamine functionalized graphene oxide-carbon nanotubes composites for highly sensitive detection of nitrite," Anal. Methods, 2016.
[91] J.-M. Jian, L. Fu, J. Ji, L. Lin, X. Guo, and T. L. Ren, "Electrochemically reduced graphene oxide/gold nanoparticles composite modified screen-printed carbon electrode for effective electrocatalytic analysis of nitrite in foods," Sens. Actuators B:Chemical 265, pp. 125-136, 2018.
[92] A. Shaikh, S. Parida, and S. Böhm, "One step eco-friendly synthesis of Ag–reduced graphene oxide nanocomposite by phytoreduction for sensitive nitrite determination," RSC Adv., 6, 2016.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-07-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-07-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw