進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0408202013463100
論文名稱(中文) 通電對英高鎳合金之性質與微結構影響之研究
論文名稱(英文) Effects of current stressing on properties and microstructure of Inconel 600 alloy
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 李汶容
研究生(英文) Wen-Jung Li
學號 N56074130
學位類別 碩士
語文別 中文
論文頁數 110頁
口試委員 指導教授-林光隆
口試委員-郭瑞昭
口試委員-吳子嘉
中文關鍵字 鎳鉻合金  電遷移  循環通電  應變強化  晶粒成長 
英文關鍵字 Inconel 600  Electromigration  current stressing  Strain hardening  Grain growth  dislocation 
學科別分類
中文摘要 本研究探討電流對鎳鉻合金(Inconel 600)之微結構與性質變化機制。將鎳鉻合金薄帶施以固定電流密度7000A/cm²之直流電,以循環通電方式將通電時間(tD)及通電次數(N)以一變數tD/N進行討論,觀察不同通電條件下材料機械性質及電性的改變,並藉由微結構之觀察了解電流對材料影響的機制。通電後以X光繞射、電子微探儀與能量散射光譜儀確認無第二相及析出物生成,再以電子背向散射繞射分析微結構,其結果顯示通電後之試片產生晶粒成長與雙晶生成現象,高角度晶界比例亦上升表示再結晶與晶粒成長之發生,並利用穿透式電子顯微鏡進行觀察,發現電子風力對晶格產生擾動進而影響差排密度,不同通電條件受電流及熱能影響造成差排消弭及新生。而通電試片之微硬度值增降與差排密度有高度關聯性,其變化是由於應變強化機制,電阻率則是受到雙晶比例與晶粒尺寸影響有不同程度之下降,但晶粒成長為主導電阻率變化之因。
英文摘要 This study investigated the mechanism of the properties and microstructure variation on Inconel 600 alloy after current stressing. The strip specimens were subjected to a fixed 7000 A/cm² D.C current with different stressing time (tD) and stressing cycles (N) combination. The specimens were rapidly quenched with liquid nitrogen after current stressing to freeze the microstructure for investigation. The variation of properties and microstructure were discussed with the stressing parameter tD/N. The results of XRD, EPMA and EDS confirmed second phase and precipitate would not emerge under current stressing. EBSD figures showed grain growth and twin formation after current stressing. The increase of the fraction of high angle grain boundaries also indicated the potential of recrystallization and grain growth. The lattice arrangement which was observed with HRTEM was disturbed by the electron wind force and influenced the dislocation density. Different stressing conditions (stressing time and stressing cycles) that provided Joule heat and electron wind force resulted in the elimination and rebirth of the dislocation. The mechanical and electrical properties of the Inconel 600 strips were investigated using Vickers micro-hardness tester and 4-point probe, respectively. The variation of micro-hardness was highly related to the dislocation. Micro-hardness variation was ascribed to strain hardening. The resistivity declined to different extent after current stressing. The resistivity was affected by the grain size and twin formation but the former dominated the variation.
論文目次 中文摘要 I
Extended Abstract II
誌謝 XVIII
總目錄 XIX
圖目錄 XXII
第壹章、 簡介 1
1.1 電遷移理論及其效應 1
1.1.1 電遷移之驅動力 1
1.1.2 通電伴隨之焦耳熱效應 6
1.2 電流對材料的影響 7
1.2.1 電流對晶格結構之影響 7
1.2.2 電流對材料微結構之影響 14
1.2.3 電流對材料性質之影響 25
1.3 實驗材料介紹 34
1.3.1 鎳鉻合金 34
1.3.2 通電對鎳基材料影響之相關研究 35
1.4 研究動機 44
第貳章、 實驗流程 45
2.1 實驗構想 45
2.2 試片前處理 47
2.3 通電實驗 47
2.4 電流密度之選用 52
2.5 試片分析 54
2.5.1 微硬度分析 54
2.5.2 電性分析 55
2.5.3 X光繞射(X-ray Diffraction, XRD) 分析 57
2.5.4 電子背向散射繞射分析(Electron Back Scatter Diffraction, EBSD) 57
2.5.5 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 58
2.5.6 電子微探儀分析(Electron Probe Microanalyzer, EPMA) 59
2.5.7 能量散射光譜儀分析(Energy Dispersive Spectrometer, EDS) 59
第參章、 結果與討論 61
3.1 通電前試片觀察 61
3.2 電流對機械性質及電性之影響 70
3.2.1 通電循環對微硬度之影響 70
3.2.2 通電循環對電阻率之影響 73
3.3 通電循環對微結構之影響 75
3.3.1 晶粒取向及尺寸變化 75
3.3.2 內部差排密度變化 85
3.3.3 相與析出分析 89
3.4 電流對性質影響之機制探討 94
3.4.1 電流影響機械性質變化之機制 94
3.4.2 電流影響電性變化之機制 101
第肆章、 結論 105
參考文獻 106
參考文獻 [1] P. S. Ho, and T. Kwok, "Electromigration in metals," Reports on Progress in Physics, vol. 52, 301-348, 1989.
[2] J. R. Black, "Physics of electromigration," IEEE International Reliability Physics Symposium, 142-149, 1974.
[3] M. T. Jens Lienig, Fundamentals of electromigration-aware integrated circuit design: fundamentals of electromigration. Springer International Publishing, 13-60, 2018.
[4] A. Scorzoni, B. Neri, C. Caprile, and F. Fantini, "Electromigration in thin-film interconnection lines: models, methods and results," Materials Science Reports, vol. 7, 143-220, 1991.
[5] P. Kumar, Handbook of solid state diffusion: electromigration in metallic materials and its role in whiskering. Elsevier, vol. 2, 173-206, 2017.
[6] C. A. Volkert, Encyclopedia of materials: science and technology: electromigration. Elsevier, 2548-2556, 2001.
[7] S. Strehle, S. Menzel, A. Jahn, U. Merkel, J. W. Bartha, and K. Wetzig, "Electromigration in electroplated Cu(Ag) alloy thin films investigated by means of single damascene Blech structures," Microelectronic Engineering, vol. 86, 2396-2403, 2009.
[8] S. H. Voldman, Electrical overstress (EOS): devices, circuits and systems. Wiley, p.79, 2013.
[9] F.-Y. Ouyang, K. N. Tu, and Y.-S. Lai, "Effect of electromigration induced joule heating and strain on microstructural recrystallization in eutectic SnPb flip chip solder joints," Materials Chemistry and Physics, vol. 136, 210-218, 2012.
[10] P. R. Rios, F. Siciliano Jr, H. R. Z. Sandim, R. L. Plaut, and A. F. Padilha, "Nucleation and growth during recrystallization," Materials Research, vol 8, 225-238, 2005.
[11] K. C. Chen, C. N. Liao, W. W. Wu, and L. J. Chen, "In situ transmission electron microscope observations of electromigration in copper lines at room temperature," Applied Physics Letters, vol. 87, 141903, 2005.
[12] K. L. Lin, H. C. Huang, and A. T. Wu, "Disruption of crystalline structure of Sn3.5Ag induced by electric current," Journal of Applied Physics, vol. 119, 115102, 2016.
[13] C.L. Liang, S.W. Lee, and K.L. Lin, "The mechanism of an increase in electrical resistance in Al thin film induced by current stressing," Thin Solid Films, vol. 636, 164-170, 2017.
[14] R. F. Zhu, J. N. Liu, G. Y. Tang, S. Q. Shi, M. W. Fu, and Z. T. H. Tse, "The improved superelasticity of NiTi alloy via electropulsing treatment for minutes," Journal of Alloys and Compounds, vol. 584, 225-231, 2014.
[15] Z. Zhao, G. Wang, Y. Zhang, Y. Wang, and H. Hou, "Fast recrystallization and phase transformation in ECAP deformed Ti–6Al–4V alloy induced by pulsed electric current," Journal of Alloys and Compounds, vol. 786, 733-741, 2019.
[16] W. J. Lu, and R. S. Qin, "Stability of martensite with pulsed electric current in dual-phase steels," Materials Science and Engineering: A, vol. 677, 252-258, 2016.
[17] Y. T. Chiu, K. L. Lin, and Y. S. Lai, "Dissolution of Sn in a SnPb solder bump under current stressing," Journal of Applied Physics, vol. 111, 043517, 2012.
[18] D. Waryoba, Z. Islam, B. Wang, and A. Haque, "Low temperature annealing of metals with electrical wind force effects," Journal of Materials Science & Technology, vol. 35, 465-472, 2019.
[19] P. Liang, and K.L. Lin, "Non-deformation recrystallization of metal with electric current stressing," Journal of Alloys and Compounds, vol. 722, 690-697, 2017.
[20] Y. H. Liao, C. L. Liang, K. L. Lin, and A. T. Wu, "High dislocation density of tin induced by electric current," AIP Advances, vol. 5, p.127210, 2015.
[21] R. A. Fard, and M. Kazeminezhad, "Effect of electropulsing on microstructure and hardness of cold-rolled low carbon steel," Journal of Materials Research and Technology, vol. 8, 3114-3125, 2019.
[22] L. Chen, S. Li, X. Chu, G. Zhao, and J. Gao, "Grain refinement and strength enhancing of hot extruded Mg alloy by application of electric pulse," Materials Letters, vol. 241, 104-107, 2019.
[23] W. Jin, J. Fan, H. Zhang, Y. Liu, H. Dong, and B. Xu, "Microstructure, mechanical properties and static recrystallization behavior of the rolled ZK60 magnesium alloy sheets processed by electropulsing treatment," Journal of Alloys and Compounds, vol. 646, 1-9, 2015.
[24] M. J. Kim, M. G. Lee, K. Hariharan, S. T. Hong, I. S. Choi, D. Kim, K. H. Oh, and H. N. Han, "Electric current–assisted deformation behavior of Al-Mg-Si alloy under uniaxial tension," International Journal of Plasticity, vol. 94, 148-170, 2017.
[25] A. A. Shibkov, A. A. Denisov, M. A. Zheltov, A. E. Zolotov, M. F. Gasanov, and S. S. Kochegarov, "Direct current induced suppression of the Portevin-Le Chatelier serrated deformation in the aluminum-magnesium alloy 5056," Physics of the Solid State, vol. 57, 239-248, 2015.
[26] J. R. Lloyd, "Electromigration induced resistance decrease in Sn conductors," Journal of Applied Physics, vol. 94, 6483-6486, 2003.
[27] A. T. Wu, A. M. Gusak, K. N. Tu, and C. R. Kao, "Electromigration-induced grain rotation in anisotropic conducting beta tin," Applied Physics Letters, vol. 86, p.241902, 2005.
[28] I. S. Valeev, A. K. Valeeva, R. R. Ilyasov, O. S. Sitdikov, and M. V. Markushev, "Structure and hardness of cold-rolled nickel after single and multiple electric pulse treatment," Letters on Materials, vol. 9, 447-450, 2019.
[29] F. J. Humphreys, and M. Hatherly, Recrystallization and related annealing phenomena (second edition): recrystallization textures. Elsevier, 379-413, 2004.
[30] R. Ji, Z. Yang, H. Jin, Y. Liu, H. Wang, Q. Zheng, W. Cheng, B. Cai, and X. Li, "Surface nanocrystallization and enhanced surface mechanical properties of nickel-based superalloy by coupled electric pulse and ultrasonic treatment," Surface and Coatings Technology, vol. 375, 292-302, 2019.
[31] T. Tański, and W. Borek, Study of grain boundary character: character distribution of grain boundaries. IntechOpen, p.66, 2017.
[32] S. S. Hwang, Y. S. Lim, S. W. Kim, D. J. Kim, and H. P. Kim, "Role of grain boundary carbides in cracking behavior of ni base alloys," Nuclear Engineering and Technology, vol. 45, 73-80, 2013.
[33] F. J. H. a. M. Hatherly, Recrystallization and related annealing phenomena: the structure and energy of grain boundaries. Elsevier, 91-119, 2004.
[34] K. Wandelt, Surface and interface science: surface characterization. Wiley, p.112, 2020.
[35] L. E. MURR, "Stacking-fault anomalies and the measurement of stacking-fault free energy in f.c.c. thin films," Thin Solid Films, vol. 4, 389-412, 1969.
[36] Y. Jin, M. Bernacki, A. Agnoli, B. Lin, G. S. Rohrer, A. D. Rollett, and N. Bozzolo, "Evolution of the annealing twin density during delta-supersolvus grain growth in the nickel-based superalloy inconel (TM) 718," Metals, vol. 6, p.5, 2016.
[37] X. M. Chen, Y. C. Lin, and F. Wu, "EBSD study of grain growth behavior and annealing twin evolution after full recrystallization in a nickel-based superalloy," Journal of Alloys and Compounds, vol. 724, 198-207, 2017.
[38] Z. –H. Sung, M. Wang, A. A. Polyanskii, C. Santosh, S. Balachandran, C. Compton, D. C. Larbalestier, T. R. Bieler, and P. J. Lee, "Development of low angle grain boundaries in lightly deformed superconducting niobium and their influence on hydride distribution and flux perturbation," Journal of Applied Physics, vol. 121, p.193903, 2017.
[39] T. Chart, F. P. Iand, and A. Dinsdale, "Calculated phase equilibria for the Cr-Fe-Ni-Si system — Ⅰ Ternary equilibria," Calphad, vol. 4, 27-46, 1980.
[40] W. D. Callister, and D. G. Rethwisch, "Materials science and engineering: an introduction," Wiley New York, 174-206, 2005.
[41] O. Bouaziz, S. Allain, C. P. Scott, P. Cugy, and D. Barbier, "High manganese austenitic twinning induced plasticity steels: a review of the microstructure properties relationships," Current Opinion in Solid State and Materials Science, vol. 15, 141-168, 2011.
[42] E. Ganin, Y. Komem, and A. Rosen, "Shock induced hardness in α-Iron," Materials Science and Engineering, vol. 33, 1-4, 1978.
[43] R. Pallás-Areny, and J. G. Webster, Sensors and signal conditioning: strain gages.Wiley, 80-85, 2012.
[44] R. Landauer, "Spatial variation of currents and fields due to localized scatterers in metallic conduction," Ibm Journal of Research and Development, vol. 1, 223-231, 1957.
[45] M. Cesar, D. P. Liu, D. Gall, and H. Guo, "Calculated resistances of single grain boundaries in copper," Physical Review Applied, vol. 2, p.044007, 2014.
[46] L. Lu, Y. F. Shen, X. H. Chen, L. H. Qian, and K. Lu, "Ultrahigh strength and high electrical conductivity in copper," Science, vol. 304, 422-426, 2004.
[47] F. Mayadas, M. Shatzkes, and J. F. Janak, "Electrical resistivity model for polycrystalline films: the case of specular reflection at external surfaces," Applied Physics Letters, vol. 14, p.345, 1969.
[48] R A Brown, "Electrical resistivity of dislocations in metals," Journal of Physics F: Metal Physics, vol. 7, p.1283, 1977.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-08-15起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-08-15起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw