進階搜尋


下載電子全文  
系統識別號 U0026-0408202013423000
論文名稱(中文) 船難事件發生時之海象分析
論文名稱(英文) Analysis on the Sea States of Shipwrecks
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 吳柏緯
研究生(英文) Bo-Wei Wu
學號 N86071227
學位類別 碩士
語文別 中文
論文頁數 84頁
口試委員 指導教授-董東璟
口試委員-陳文俊
口試委員-黃偉柏
中文關鍵字 船難  海象  波譜  譜尖參數  方向分散參數 
英文關鍵字 shipwreck  sea state  wave spectrum  peakedness factor  directional spreading 
學科別分類
中文摘要 全世界有近九成的貨物是依靠船運送往世界各角落,隨著船隻活動日漸頻繁,船難的發生頻率也逐年提升。海氣象狀況是發生船難的原因之一。台灣周遭海域時常發生船難,本研究蒐集2004年至2019年間一共120起因海氣象因素造成之船難事件作為本文研究對象。
本研究從波譜的角度探討船難成因,根據波譜型態,本文獲得船難發生時,波浪之頻譜主要出現單雙峰交互演化以及雙成分單峰譜兩種型態。本研究參考前人研究,歸納因海象造成之船難可能與波浪能量集中有關,以兩個波譜參數來描述波能集中情形,包含譜尖參數(Qp)與方向分散參數(σθ),它們分別代表波譜在頻率域以及方向域上能量的集中程度,Qp愈大或σθ愈小都代表波浪能量愈集中。本文將船難事件的波譜參數繪製在Qp-σθ二維關係圖上,分析結果顯示,出現第一種單雙峰譜交互演化的船難海象時,在事件發生前,Qp、σθ兩參數關係位於第二象限(Qp小σθ大),在船難事件發生時,其關係轉移至第四象限(Qp大σθ小),此證實了船難發生時波能有顯著集中的趨勢,隨後再回復船難前的海象特徵。而另外一種船難則出現在雙成分單峰譜海況下,船難發生時的波浪能譜為單頻,但能量卻來自兩個方向,因兩成分波頻率接近使波能在波浪系統間傳遞效應更為顯著,有些案例在船難發生前後兩成分波波能有一增一減的趨勢發生。上述兩種船難海象都屬於波浪間的交互作用,只是交互用用的機制不同,但都是造成船難的海象特徵。本文也分析了Qp、σθ在船難發生前後變化率,發現兩參數的變化率平均分別為34%與36%,期望後續研究可以運用此變化率來建立海況危險程度之指標。
英文摘要 With the number of maritime transport increased, navigation safety has become a major concern. Ship accidents usually cause huge economic losses, human casualties and environmental pollution. Meanwhile, news often broadcasted that marine accidents occurred frequently around Taiwan waters. The marine weather and meteorological conditions play a significant role in maritime safety. However, the conditions of typical sea states that trigger shipping accidents are not well understood. This study collected 120 marine accidents in a 16-year (2004~2019) ship accidents dataset. First, we classified the types of wave spectra into one-peaked spectra and double-peaked spectra when the accidents happened. In this thesis, using the trajectory in the Qp σθ diagram to graphically represent the temporal change of the directional spectrum during ship accidents. The higher Qp and lower σθ represent the more concentrated wave energy in frequency fetch and direction fetch, respectively. Under the unimodal sea conditions, the diagram scatter plot between Qp and σθ move from upper left to lower right. This results showed the positive correlation between the shipwreck and seas with more concentrated wave energy. Under the bimodal sea conditions, the shipwreck occurred at the diagram of upper right. The frequency of two components is nearly the same, but comes from different direction. The wave-wave interaction between two components with same frequency lead to one of the reasons for shipwrecks. To conclude, no matter the number of wave components, shipwrecks occurred with the spectrum more concentrated at frequency during ship accidents. The study also discusses the Qp and σθ rate of change, and found that the rate of change is 0.3 approximately. Future study could use the change rate between Qp and σθ to build the early warning of the freakish sea state.
論文目次 目錄
摘要 I
Abstract II
致謝 VII
目錄 IX
表目錄 XI
圖目錄 XII
第一章 緒論 1
1-1 研究背景 1
1-2 前人研究 2
1-3 研究目的 4
1-4 本文架構 4
第二章 船難事件分析 6
2-1 全球船難事件 6
2-2 台灣附近海域船難事件 7
2-2-1 船難事件蒐集 7
2-2-2 船難事件統計 9
2-3 船難事件發生時之實測海象分析 15
第三章 海象數值模式與驗證 18
3-1 波浪作用力平衡方程式 18
3-2 源函數項 19
3-2-1 風浪成長項Sin 20
3-2-2 能量消散項Sds 23
3-2-3 波波非線性交互作用Snl 25
3-2-4 底床摩擦項Sbot 27
3-2-5 源函數波譜形狀選取 27
3-3 模式驗證 29
第四章 船難發生時之海況模擬 32
4-1 模擬條件設定 32
4-2海況模擬結果分析 34
4-3 重大案例分析 37
第五章 結果與討論 66
5-1 波譜參數特徵 66
5-1-1 譜尖參數(peakedness parameter, Qp) 66
5-1-2 方向分散參數(directional spreading, σθ) 68
5-2 船難發生時之海象特徵 69
5-2-1 單雙峰譜演化之船難海象 71
5-2-2雙成分單峰譜之船難海象 75
第六章 結論與建議 77
6-1 結論 77
6-2 建議 78
參考文獻 79
參考文獻 [1] 張紘聞,「應用WWIII波浪模式於極端波高模擬之研究」,國立成功大學水利及海洋工程研究所碩士論文,2019
[2] Babanin, A. V., Banner, M. L., Young, I. R., & Donelan, M. A. (2007). Wave-follower field measurements of the wind-input spectral function. Part III: Parameterization of the wind-input enhancement due to wave breaking. Journal of Physical Oceanography, 37(11), 2764-2775.
[3] Babanin, A. (2009). Breaking of ocean surface waves. Acta Physica Slovaca. Reviews and Tutorials, 59(4), 305-535.
[4] Babanin, A. (2011). Breaking and dissipation of ocean surface waves. Cambridge University Press.
[5] Banner, M. L. & Peirson, W. L. (1998). Tangential stress beneath wind-driven air–water interfaces. Journal of Fluid Mechanics, 364, 115-145.
[6] Banner, M. L., Babanin, A. V., & Young, I. R. (2000). Breaking probability for dominant waves on the sea surface. Journal of Physical Oceanography, 30(12), 3145-3160.
[7] Benjamin, T. B. & Feir, J. E. (1967). The disintegration of wave trains on deep water. J. Fluid Mech, 27, 417.
[8] Bitner-Gregersen, E. M., & Toffoli, A. (2014). Occurrence of rogue sea states and consequences for marine structures. Ocean Dynamics, 64(10), 1457-1468.
[9] Boukhanovsky, A. V., Lopatoukhin, L. J., & Soares, C. G. (2007). Spectral wave climate of the North Sea. Applied Ocean Research, 29(3), 146-154.
[10] Bouws, E. & Komen, G. J. (1983). On the balance between growth and dissipation in an extreme depth-limited wind-sea in the southern North Sea. Journal of Physical Oceanography, 13(9), 1653-1658.
[11] Cartwright, D. E., & Longuet-Higgins, M. S. (1956). The statistical distribution of the maxima of a random function. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 237(1209), 212-232.
[12] Cavaleri, L., Bertotti, L., Torrisi, L., Bitner‐Gregersen, E., Serio, M., & Onorato, M. (2012). Rogue waves in crossing seas: The Louis Majesty accident. Journal of Geophysical Research: Oceans, 117(C11).
[13] Donelan, M. A., Babanin, A. V., Young, I. R., & Banner, M. L. (2006). Wave-follower field measurements of the wind-input spectral function. Part II: Parameterization of the wind input. Journal of physical oceanography, 36(8), 1672-1689.
[14] Dysthe, K., Krogstad, H. E., & Müller, P. (2008). Oceanic rogue waves. Annu. Rev. Fluid Mech., 40, 287-310.
[15] Faulkner, D. (2003). Shipping safety: a matter of concern. In Proceedings-Institute of Marine Engineering Science and Technology Part B Journal of Marine Design and Operations (pp. 37-56). IMAREST PUBLICATIONS.
[16] Fedele, F., Lugni, C., & Chawla, A. (2017). The sinking of the El Faro: predicting real world rogue waves during Hurricane Joaquin. Scientific reports, 7(1), 1-15.
[17] Forristall, G. Z., & Ewans, K. C. (1998). Worldwide measurements of directional wave spreading. Journal of Atmospheric and oceanic technology, 15(2), 440-469.
[18] Goda, Y. (1970). Numerical experiments on wave statistics with spectral simulation. Report Port Harbour Res. Inst., 9, 3-57.
[19] Gramstad, O., & Trulsen, K. (2010). Can swell increase the number of freak waves in a wind sea?. Journal of Fluid Mechanics, 650, 57-79.
[20] Gramstad, O., Bitner-Gregersen, E., Trulsen, K., & Nieto Borge, J. C. (2018). Modulational instability and rogue waves in crossing sea states. Journal of Physical Oceanography, 48(6), 1317-1331.
[21] Hargreaves, J. C. & J. D. Annan, 1998: Integration of source terms in WAM. in Proceedings of the 5th International Workshop on Wave Forecasting and Hindcasting, pp. 128–133.
[22] Hargreaves, J. C., & Annan, J. D. (2001). Comments on “Improvement of the short-fetch behavior in the wave ocean model (WAM)”. Journal of Atmospheric and Oceanic Technology, 18(4), 711-715.
[23] Hasselmann, K. (1962). On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory. Journal of Fluid Mechanics, 12(4), 481-500.
[24] Hasselmann, K. (1963a). On the non-linear energy transfer in a gravity wave spectrum Part 2. Conservation theorems; wave-particle analogy; irrevesibility. Journal of Fluid Mechanics, 15(2), 273-281.
[25] Hasselmann, K. (1963b). On the non-linear energy transfer in a gravity-wave spectrum. Part 3. Evaluation of the energy flux and swell-sea interaction for a Neumann spectrum. Journal of Fluid Mechanics, 15(3), 385-398.
[26] Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, A., Müller, P., Olbers, D. J., Richter, K., Sell, W., & Walden., H. (1973). Measurement of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergänzungsheft 8-12.
[27] Hasselmann, S., Hasselmann, K., Allender, J. H., & Barnett, T. P. (1985). Computations and parameterizations of the nonlinear energy transfer in a gravity-wave specturm. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. Journal of Physical Oceanography, 15(11), 1378-1391.
[28] Hwang, P. A. (2011). A note on the ocean surface roughness spectrum. Journal of Atmospheric and Oceanic Technology, 28(3), 436-443.
[29] Janssen, P. A. (2003). Nonlinear four-wave interactions and freak waves. Journal of Physical Oceanography, 33(4), 863-884.
[30] Kharif, C., & Pelinovsky, E. (2003). Physical mechanisms of the rogue wave phenomenon. Eur. J.Mech. (B/Fluids) 22 (6), 603–634.
[31] Kharif, C., Pelinovsky, E., & Slunyaev, A. (2009). Rogue Waves in the Ocean (Advances in Geophysical and Environmental Mechanics and Mathematics).
[32] Komen, G. J., Hasselmann, K., & Hasselmann, K. (1984). On the existence of a fully developed wind-sea spectrum. Journal of physical oceanography, 14(8), 1271-1285.
[33] Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., & Janssen, P. A. E. M. (1996). Dynamics and modelling of ocean waves. Dynamics and Modelling of Ocean Waves, by GJ Komen and L. Cavaleri and M. Donelan and K. Hasselmann and S. Hasselmann and PAEM Janssen, pp. 554. ISBN 0521577810. Cambridge, UK: Cambridge University Press, August 1996., 554.
[34] Luxmoore, J. F., Ilic, S., & Mori, N. (2019). On kurtosis and extreme waves in crossing directional seas: a laboratory experiment. Journal of Fluid Mechanics, 876, 792-817.
[35] Mori, N., & Janssen, P. A. (2006). On kurtosis and occurrence probability of freak waves. Journal of Physical Oceanography, 36(7), 1471-1483.
[36] Mori, N., Onorato, M., & Janssen, P. A. (2011). On the estimation of the kurtosis in directional sea states for freak wave forecasting. Journal of Physical Oceanography, 41(8), 1484-1497.
[37] Onorato, M., Osborne, A. R., & Serio, M. (2006). Modulational instability in crossing sea states: A possible mechanism for the formation of freak waves. Physical review letters, 96(1), 014503.
[38] Onorato, M., Proment, D., & Toffoli, A. (2010). Freak waves in crossing seas. The European Physical Journal Special Topics, 185(1), 45-55.
[39] Petrova, P. G., & Soares, C. G. (2009). Probability distributions of wave heights in bimodal seas in an offshore basin. Applied Ocean Research, 31(2), 90-100.
[40] Phillips, O. M. (1984). On the response of short ocean wave components at a fixed wavenumber to ocean current variations. Journal of Physical Oceanography, 14(9), 1425-1433.
[41] Prasada Rao, C. X. K. (1988). Spectral width parameter for wind-generated ocean waves. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 97, 173-181.
[42] Reul, N., Branger, H., & Giovanangeli, J. P. (1999). Air flow separation over unsteady breaking waves. Physics of Fluids, 11(7), 1959-1961.
[43] Rogers, W. E., Babanin, A. V., & Wang, D. W. (2012). Observation-consistent input and whitecapping dissipation in a model for wind-generated surface waves: Description and simple calculations. Journal of Atmospheric and Oceanic Technology, 29(9), 1329-1346.
[44] Sabatino, A. D., & Serio, M. (2015). Experimental investigation on statistical properties of wave heights and crests in crossing sea conditions. Ocean Dynamics, 65(5), 707-720.
[45] Serio, M., Onorato, M., Osborne, A. R., & Janssen, P. A. E. M. (2005). On the computation of the Benjamin-Feir Index.
[46] Shemdin, O., Hasselmann, K., Hsiao, S. V., & Herterich, K. (1978). Nonlinear and linear bottom interaction effects in shallow water. In Turbulent fluxes through the sea surface, wave dynamics, and prediction (pp. 347-372). Springer, Boston, MA.
[47] Snyder, R. L., Dobson, F. W., Elliott, J. A., & Long, R. B. (1981). Array measurements of atmospheric pressure fluctuations above surface gravity waves. Journal of Fluid mechanics, 102, 1-59.
[48] Tamura, H., Waseda, T., & Miyazawa, Y. (2009). Freakish sea state and swell‐windsea coupling: Numerical study of the Suwa‐Maru incident. Geophysical Research Letters, 36(1).
[49] Toffoli, A., Lefevre, J. M., Bitner-Gregersen, E., & Monbaliu, J. (2005). Towards the identification of warning criteria: analysis of a ship accident database. Applied Ocean Research, 27(6), 281-291.
[50] Toffoli, A., Bitner‐Gregersen, E. M., Osborne, A. R., Serio, M., Monbaliu, J., & Onorato, M. (2011). Extreme waves in random crossing seas: Laboratory experiments and numerical simulations. Geophysical Research Letters, 38(6).
[51] Tolman, H. L. (1991). A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents. Journal of Physical Oceanography, 21(6), 782-797.
[52] Tolman, H. L. (1992). Effects of numerics on the physics in a third-generation wind-wave model. Journal of physical Oceanography, 22(10), 1095-1111.
[53] Tolman, H. L. & Chalikov, D. (1996). Source terms in a third-generation wind wave model. Journal of Physical Oceanography, 26(11), 2497-2518.
[54] Tolman, H. L. (2002). Validation of WAVEWATCH III version 1.15 for a global domain. Tech. Note 213, NOAA/NWS/NCEP/OMB.
[55] Tolman, H. L. (2003). Optimum discrete interaction approximations for wind waves. Part 1: Mapping using inverse modeling. Tech. Note 227, NOAA/NWS/NCEP/MMAB, 57 pp.+ Appendices.
[56] Trulsen, K., Nieto Borge, J. C., Gramstad, O., Aouf, L., & Lefèvre, J. M. (2015). Crossing sea state and rogue wave probability during the P restige accident. Journal of Geophysical Research: Oceans, 120(10), 7113-7136.
[57] Tsagareli, K. N., Babanin, A. V., Walker, D. J., & Young, I. R. (2010). Numerical investigation of spectral evolution of wind waves. Part I: Wind-input source function. Journal of Physical Oceanography, 40(4), 656-666.
[58] WAMDIG. (1988). The WAM model—A third generation ocean wave prediction model. Journal of Physical Oceanography, 18(12), 1775-1810.
[59] Waseda, T., Kinoshita, T., & Tamura, H. (2009). Evolution of a random directional wave and freak wave occurrence. Journal of Physical Oceanography, 39(3), 621-639.
[60] Waseda, T., Tamura, H., & Kinoshita, T. (2012). Freakish sea index and sea states during ship accidents. Journal of marine science and technology, 17(3), 305-314.
[61] Waseda, T., In, K., Kiyomatsu, K., Tamura, H., Miyazawa, Y., & Iyama, K. (2014). Predicting freakish sea state with an operational third-generation wave model. Natural Hazards and Earth System Sciences, 14(4), 945.
[62] Young, I. R., Banner, M. L., Donelan, M. A., McCormick, C., Babanin, A. V., Melville, W. K., & Veron, F. (2005). An integrated system for the study of wind-wave source terms in finite-depth water. Journal of Atmospheric and Oceanic Technology, 22(7), 814-831.
[63] Zieger, S., Babanin, A. V., Rogers, W. E., & Young, I. R. (2015). Observation-based source terms in the third-generation wave model WAVEWATCH. Ocean Modelling, 96, 2-2
[64] Zhang, Z., & Li, X. M. (2017). Global ship accidents and ocean swell-related sea states. Natural Hazards and Earth System Sciences, 17(11).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-14起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-14起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw