進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0408202009591800
論文名稱(中文) 摩擦發電機不同微結構摩擦層的力學靈敏度研究以及應用
論文名稱(英文) A study on the mechanical sensitivity of different microstructured triboelectric nanogenerators and its application
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 紀華倫
研究生(英文) Hua-Lun Chi
學號 N16074849
學位類別 碩士
語文別 中文
論文頁數 145頁
口試委員 指導教授-鍾震桂
口試委員-吳博雄
口試委員-何青原
口試委員-蔡有仁
中文關鍵字 摩擦發電機  摩擦層形貌  雷射加工  力學靈敏度  COMSOL模擬  流速(量)感測器 
英文關鍵字 triboelectric nanogenerator  tribo-layer morphology  laser ablation  mechanical sensitivity  COMSOL simulation  flow rate sensor 
學科別分類
中文摘要 由於全球能源危機與地球暖化,人類對於使用綠能的意識提升。摩擦發電機(Triboelectric nanogenerator, TENG)屬於乾淨能源並具備自供電、高電壓信號與高靈敏度響應的特性,因此具有很大的潛力製作成自供電的傳感器且TENG的發電性能與其力學靈敏度息息相關。
因此本文探討具不同微結構(緊鄰微針、分離微針、平台狀及重疊微錐)摩擦層TENG的力學靈敏度並分析其適用的範圍,透過上述分析製作能偵測不同流速(量)的感測器,其成功偵測人體單次呼氣的流量為67.2~96.6 L/min,具有潛力成為人體健康監測設備。在單位面積上具最高密度的結構為緊鄰其可摩擦表面積與輸出性能皆最優異,在製作摩擦層結構的方法有昂貴的半導體微奈米加工與便宜的雷射加工,因此本文選用具經濟效益的CO2雷射製作微結構,有別於傳統雷射加工利用單一參數控制形貌,本文提出新複合參數能加速找到製作緊鄰微針結構的雷射參數,其相較於平坦無結構的可摩擦表面積增加547.53%,另外分離微針結構及平台狀結構則分別僅增加254.08%及211.24%;在電動缸為100 N、頻率5 Hz的作動下開路電壓峰值分別增加548.78%、 495.12%及484.14%。此外尺寸5×5 cm2的緊鄰微針、分離微針及平台狀結構在0-3 N的力學靈敏度分別為0.368、0.258及0.015 VN-1。接著將緊鄰微針摩擦層的尺寸增加至7×7cm2在0-3 N的力學靈敏度則會提升至1.521 VN-1相較尺寸為5×5 cm2增加413.3%。
功率密度在較大作動能量損耗的電動缸為100 N且頻率5 Hz下量測:尺寸為5×5 cm2的緊鄰微針、分離微針及平台狀結構摩擦層,功率密度分別為7.61、5.18及4.80 mW/m2;若在較高作動效率的氣動缸5 Hz下量測:5×5 cm2和7×7 cm2的緊鄰微針結構開路電壓峰值分別提升至28.7及47.2 V且輸出功率密度分別提升至42.44及122.74 mW/m2。越高的作動頻率也會有越大的輸出性能,因此將氣動缸頻率調至9 Hz,7×7 cm2的緊鄰微針摩擦層開路電壓峰值則提升至115.5 V並能點亮110顆LED。接著利用COMSOL模擬輔助驗證性能變化趨勢與摩擦層表面積的關係,藉由Origin繪製電流峰值圖並積分底下面積得到短路電荷Qsc且藉由理論計算得到相對應的表面電荷密度後,用平行電容板見模並模擬不同微結構摩擦層TENG的開路電壓峰值。
最後將具最佳力學靈敏度的微結構製作成流速(量)感測器,基於流速越快能使摩擦層與電極之間接觸分離的頻率與作用力隨之提升並造成電性能的增加。此感測器最低能偵測的流速為88.8 m/s並成功感測人體吐氣的信號。在流速為317.5 m/s下能成功點亮20顆LED,具有成為的自供電的人體健康監測設備潛力。
英文摘要 This article discusses the mechanical sensitivity with different microstructures (adjacent microneedle, separated microneedle, microplatform and overlapped microcone) in the friction layer of TENG and analyzes its applicable range. Then, it can be made into a sensor and detect different flow rates (or quantities). The sensor successfully detects the flow quantity of a single exhalation of the human body at 67.2-96.6 L/min, which has the potential to become a human health monitoring device.
Using the new composite parameters proposed in this article can accelerate the finding of the laser parameters for making the adjacent microneedle structure. Compared with the flat and unstructured friction surface area, it increases 547.53%. In addition, the separated microneedle structure and the microplatform only increase 254.08% and 211.24%, respectively. In addition, the mechanical sensitivities of the adjacent microneedles, separated microneedles and microplatform with a size of 5×5 cm2 at 0-3 N are 0.368, 0.258, and 0.015 VN-1, respectively. Then the size of the adjacent microneedle friction layer is increased to 7×7 cm2. The mechanical sensitivity at 0-3 N will increase to 1.521 VN-1 compared to the size of 5×5 cm2, increase 413.3%.
The power density of the adjacent microneedles, separated microneedles, and microplatform friction layer with a size of 5×5 cm2 are 7.61, 5.18, and 4.80 mW/m2. If measured in a pneumatic cylinder with higher operating efficiency: the peak open circuit voltage of the 5×5 cm2 adjacent microneedle structure increased to 28.7 V and the power density increased to 42.44 mW/m2. Adjusting the pneumatic cylinder frequency from 5 Hz to 9 Hz, the peak open circuit voltage of the 7×7 cm2 adjacent microneedle friction layer increases to 115.5 V and can light up 110 LEDs. Then use COMSOL simulation to assist in verifying the relationship between the performance change trend and the surface area of the friction layer.
Finally, the microstructure with the best mechanical sensitivity is fabricated into a flow rate (quantity) sensor. This sensor can detect the minimum flow velocity of 88.8 m/s. It can successfully light up 20 LEDs at a flow rate of 317.5 m/s, which has the potential to become a self-powered human health monitoring device.
論文目次 摘要 II
誌謝 IX
圖目錄 XIII
表目錄 XXII
第一章 緒論 1
1-1前言 1
1-2研究動機 4
1-3本文架構 5
第二章 文獻回顧 8
2-1摩擦發電機的基本原理及四種常見模式 8
2-1-1垂直接觸分離模式 9
2-1-2橫向滑移模式 10
2-1-3單電極模式 12
2-1-4獨立式摩擦電層模式 13
2-2影響摩擦發電機的輸出性能:材料與形貌結構 14
2-2-1摩擦層及電極材料選擇 16
2-2-2摩擦層形貌結構 18
2-2-3摩擦層的表面改質與材料添加 20
2-3摩擦發電機的應用 24
2-3-1力與壓力(觸覺)感測器 25
2-3-2流速(呼吸)感測器 28
2-3-3自供電的無線傳輸設備 33
2-3-4人機介面(Human–machine interfacing, HMI) 36
2-4 CO2雷射加工應用於製作PMMA母模並翻模成PDMS微結構 38
第三章 實驗方法:實驗材料、實驗設備及數值模擬 41
3-1實驗材料 41
3-2 實驗設備 42
3-3設備與系統組裝 49
3-3-1 往復運動設備(電動缸)與力量感測器(荷重元)組合 49
3-3-2 流速感測器設計 50
3-4 TENG摩擦層製作 52
3-5 數值模擬:COMSOL 52
3-5-1 理論推導 52
3-5-2 模組建模 57
第四章 結果與討論 69
4-1探討CO2雷射加工因子與母模翻模後形貌變化 69
4-1-1 Energy per unit structure複合參數 69
4-1-2利用複合參數快速找到緊鄰微針(Adjacent microneedle, AMN) 結構的雷射加工參數 69
4-1-3複合參數的形貌預測與實際結果 72
4-2不同摩擦層形貌對應的開路電壓 73
4-2-1 平台狀(Micro-platform, MPF)結構製作 73
4-2-2常見的微針(Microneedle, MN)與重疊微錐(Overlapped microcone, OLMC )結構製作 74
4-2-2開路電壓 75
4-2-3不同微結構相對於平面無結構摩擦層增加的表面積 78
4-3不同摩擦層微結構外力對開路電壓圖及力學靈敏度分析 80
4-3-1尺寸為5×5 cm2的AMN摩擦層力學靈敏度分析 81
4-3-2尺寸為5×5 cm2的MN摩擦層力學靈敏度分析 83
4-3-3尺寸為5×5 cm2的MPF摩擦層力學靈敏度分析 85
4-3-4尺寸為5×5 cm2的OLMC摩擦層力學靈敏度分析 87
4-3-5小結 89
4-4緊鄰微針摩擦層在不同尺寸與外力下的開路電壓及力學靈敏度分析 90
4-4-1開路電壓 90
4-4-2尺寸為6×6 cm2的AMN摩擦層力學靈敏度分析 92
4-4-3尺寸為7×7 cm2的AMN摩擦層力學靈敏度分析 94
4-4-4小結 96
4-5 功率以及功率密度 96
4-5-1尺寸為5×5 cm2的AMN摩擦層 97
4-5-2尺寸為5×5 cm2的MN摩擦層 99
4-5-3尺寸為5×5 cm2的MPF摩擦層 101
4-5-4尺寸為5×5 cm2的OLMC摩擦層 103
4-5-5小結 105
4-6電動缸與氣動缸的輸出性能差異 106
4-6-1電動缸VS氣動缸開路電壓 106
4-6-2 5×5 cm2的AMN摩擦層於氣動缸作動下的功率以及功率密度 109
4-6-3 6×6 cm2的AMN摩擦層於氣動缸作動下的功率以及功率密度 111
4-6-4 7×7 cm2的AMN摩擦層於氣動缸作動下的功率以及功率密度 113
4-6-5 7×7 cm2的AMN摩擦層的氣動缸作動頻率提升至9 Hz 115
4-6-6小結 117
4-7 COMSOL模擬 117
4-7-1 5×5 cm2的AMN摩擦層於電動缸做動下的開路電壓模擬 117
4-7-2 5×5 cm2的MN摩擦層於電動缸做動下的開路電壓模擬 119
4-7-2 5×5 cm2的MPF摩擦層於電動缸做動下的開路電壓模擬 121
4-7-3小結 123
4-8 流速(量)感測器 124
4-8-1白努力定律 124
4-8-2流速對應電信號的靈敏度分析 126
4-8-偵測人體呼氣流量和點亮LED燈泡 128
第五章 結論與未來工作 130
5-1 結論與本論文貢獻 130
5-2 未來工作 132
參考文獻 134
參考文獻 [1] F. R. Fan, Z. Q. Tian, & Z. L. Wang, “Flexible triboelectric generator,” Nano energy, vol. 1(2), pp. 328-334, 2012.
[2] F. R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, & Z. L. Wang, “Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films,” Nano letters, vol. 12(6), pp. 3109-3114, 2012.
[3] G. Zhu, C. Pan, W. Guo, C. Y. Chen, Y. Zhou, R. Yu, & Z. L. Wang, “Triboelectric-generator-driven pulse electrodeposition for micropatterning,” Nano letters, vol. 12(9), pp. 4960-4965, 2012.
[4] S. Wang, L. Lin, & Z. L. Wang, “Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics,” Nano letters, vol. 12(12), 6339-6346, 2012.
[5] G. Zhu, Z. H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang, Y.S. Zhou, & Wang, Z. L, “Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator,” Nano letters, vol. 13(2), pp. 847-853, 2013.
[6] P. Bai, G. Zhu, Z. H. Lin, Q. Jing, J. Chen, G. Zhang, J. Ma, & Z. L. Wang, “Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions,” ACS nano, vol. 7(4), pp. 3713-3719, 2013.
[7] X. S. Zhang, M. D. Han, R. X. Wang, F. Y. Zhu, Z. H. Li, W. Wang, & H. X. Zhang, “Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems,” Nano letters, vol. 13(3), pp. 1168-1172, 2013.
[8] G. Zhu, J. Chen, Y. Liu, P. Bai, Y. S. Zhou, Q. Jing, C. F. Pan, & Z. L. Wang, “Linear-grating triboelectric generator based on sliding electrification,” Nano letters, vol. 13(5), pp. 2282-2289, 2013.
[9] S. Wang, L. Lin, Y. Xie, Q. Jing, S. Niu, & Z. L. Wang, “Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism,” Nano letters, vol. 13(5), pp. 2226-2233, 2013.
[10] L. Lin, S. Wang, Y. Xie, Q. Jing, S. Niu, Y. Hu, & Z. L. Wang, “Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy,” Nano letters, vol. 13(6), pp. 2916-2923, 2013.
[11] Z. L. Wang, T. Jiang, & L. Xu, “ Toward the blue energy dream by triboelectric nanogenerator networks,” Nano Energy, vol. 39, pp. 9-23, 2017.
[12] M. Lai, B. Du, H. Guo, Y. Xi, H. Yang, C. Hu, J. Wang & Z. L. Wang, “Enhancing the output charge density of TENG via building longitudinal paths of electrostatic charges in the contacting layers,” ACS applied materials & interfaces, vol. 10(2), pp. 2158-2165, 2018.
[13] Y. Wu, Q. Liu, J. Cao, K. Li, G. Cheng, Z. Zhang, J. Ding & S. Jiang, “Design and output performance of vibration energy harvesting triboelectric nanogenerator,” Acta Physica Sinica, vol. 68(19), 2019.
[14] J. Chen, G. Zhu, W. Yang, Q. Jing, P. Bai, Y. Yang, T. C. Hou, & Z. L. Wang, “Harmonic‐resonator‐based triboelectric nanogenerator as a sustainable power source and a self‐powered active vibration sensor,” Advanced materials, vol. 25(42), pp. 6094-6099, 2013.
[15] W. Yang, J. Chen, G. Zhu, J. Yang, P. Bai, Y. Su, Q. Jing, X. Cao, & Z. L. Wang, “Harvesting energy from the natural vibration of human walking,” ACS nano, vol. 7(12), pp. 11317-11324, 2013.
[16] Y. Yang, H. Zhang, Z. H. Lin, Y. S. Zhou, Q. Jing, Y. Su, J. Yang, J. Chen, C. Hu, & Z. L. Wang, “Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system,” ACS nano, vol. 7(10), pp. 9213-9222, 2013.
[17] X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, & Z. L. Wang, “Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing,” Science advances, vol. 3(5), e1700015, 2017.
[18] X. Chen, Y. Song, Z. Su, H. Chen, X. Cheng, J. Zhang, M. Han, & H. Zhang, “Flexible fiber-based hybrid nanogenerator for biomechanical energy harvesting and physiological monitoring,” Nano Energy, vol. 38, pp. 43-50, 2017.
[19] R. Cao, X. Pu, X. Du, W. Yang, J. Wang, H. Guo, S. Zhao, Z. Yuan, C. Zhang, C. Li, & Z. L. Wang, “Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human–machine interaction,” ACS nano, vol. 12(6), pp. 5190-5196, 2018.
[20] S. L. Zhang, Y. C. Lai, X. He, R. Liu, Y. Zi, & Z. L. Wang, “Auxetic foam‐based contact‐mode triboelectric nanogenerator with highly sensitive self‐powered strain sensing capabilities to monitor human body movement,” Advanced Functional Materials, vol. 27(25), 2017.
[21] K. Dong, J. Deng, W. Ding, A. C. Wang, P. Wang, C. Cheng, Y.C. Wang, L. Jin, B. Gu, B. Sun, & Z. L. Wang, “Versatile core–sheath yarn for sustainable biomechanical energy harvesting and real‐time human‐interactive sensing,” Advanced Energy Materials, vol. 8(23), 2018.
[22] J. Chen, H. Guo, X. Pu, X. Wang, Y. Xi, & C. Hu, “Traditional weaving craft for one-piece self-charging power textile for wearable electronics,” Nano Energy, vol. 50, pp. 536-543, 2018.
[23] L. Lin, Y. Xie, S. Wang, W. Wu, S. Niu, X. Wen, & Z. L. Wang, “Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging,” ACS nano, vol. 7(9), pp. 8266-8274, 2013.
[24] P. K. Yang, Z. H. Lin, K. C. Pradel, L. Lin, X. Li, X. Wen, J. H. He, & Z. L. Wang, “based origami triboelectric nanogenerators and self-powered pressure sensors,” ACS nano, vol. 9(1), vol. 901-907, 2015.
[25] X. Wang, H. Zhang, L. Dong, X. Han, W. Du, J. Zhai, C. Pan, & Z. L. Wang, “Self‐powered high‐resolution and pressure‐sensitive triboelectric sensor matrix for real‐time tactile mapping,” Advanced materials, vol. 28(15), pp. 2896-2903, 2016.
[26] H. Zhang, Y. Yang, Y. Su, J. Chen, K. Adams, S. Lee, S. Lee, C. Hu, & Z. L. Wang, “Triboelectric nanogenerator for harvesting vibration energy in full space and as self‐powered acceleration sensor,” Advanced Functional Materials, vol. 24(10), pp. 1401-1407, 2014.
[27] F. Yi, L. Lin, S. Niu, J. Yang, W. Wu, S. Wang, Q. Liao, Y. Zhang, & Z. L. Wang, “Self‐powered trajectory, velocity, and acceleration tracking of a moving object/body using a triboelectric sensor,” Advanced Functional Materials, vol. 24(47), pp. 7488-7494, 2014.
[28] W. Ding, A. C. Wang, C. Wu, H. Guo, & Z. L. Wang, “Human–machine interfacing enabled by triboelectric nanogenerators and tribotronics,” Advanced Materials Technologies, vol. 4(1), 2019.
[29] T. He, Z. Sun, Q. Shi, M. Zhu, D. V. Anaya, M. Xu, T. Chen, M. R. Yuce, A. V.-Y. Thean, & C. Lee, “Self-powered glove-based intuitive interface for diversified control applications in real/cyber space,” Nano Energy, vol. 58, pp. 641-651, 2019.
[30] B. Zhang, Y. Tang, R. Dai, H. Wang, X. Sun, C. Qin, Z. Pan, E. Liang, & Y. Mao, “Breath-based human–machine interaction system using triboelectric nanogenerator,” Nano Energy, vol. 64, pp. 103953, 2019.
[31] Q. Shi, Z. Zhang, T. Chen, & C. Lee, “Minimalist and multi-functional human machine interface (HMI) using a flexible wearable triboelectric patch,” Nano Energy, vol. 62, pp. 355-366, 2019.
[32] Y. Tang, H. Zhou, X. Sun, N. Diao, J. Wang, B. Zhang, C. Qin, E. Liang, & Y. Mao, “Triboelectric Touch‐Free Screen Sensor for Noncontact Gesture Recognizing,” Advanced Functional Materials, vol. 30(5), pp. 1907893, 2020.
[33] A. Chandrasekhar, V. Vivekananthan, G. Khandelwal, & S. J. Kim, “Sustainable human-machine interactive triboelectric nanogenerator toward a smart computer mouse,” ACS Sustainable Chemistry & Engineering, vol. 7(7), pp. 7177-7182, 2019.
[34] Y. Jie, X. Jia, J. Zou, Y. Chen, N. Wang, Z. L. Wang, & X. Cao, “Natural leaf made triboelectric nanogenerator for harvesting environmental mechanical energy,” Advanced Energy Materials, vol. 8(12), pp. 1703133, 2018.
[35] X. He, Y. Zi, H. Yu, S. L. Zhang, J. Wang, W. Ding, H. Zou, W. Zhang, C. Lu, & Z. L. Wang, “An ultrathin paper-based self-powered system for portable electronics and wireless human-machine interaction,” Nano Energy, vol. 39, pp. 328-336, 2017.
[36] H. J. Kim, E. C. Yim, J. H. Kim, S. J. Kim, J. Y. Park, & I. K. Oh, “Bacterial nano‐cellulose triboelectric nanogenerator,” Nano Energy, vol. 33, pp. 130-137, 2017.
[37] X. Z. Jiang, Y. J. Sun, Z. Fan, & T. Y. Zhang, “Integrated flexible, waterproof, transparent, and self-powered tactile sensing panel,” Acs Nano, vol. 10(8), pp. 7696-7704, 2016.
[38] P. Maharjan, R. M. Toyabur, & J. Y. Park, “A human locomotion inspired hybrid nanogenerator for wrist-wearable electronic device and sensor applications,” Nano Energy, vol. 46, pp. 383-395, 2018.
[39] H. Wang, H. Wu, D. Hasan, T. He, Q. Shi, & C. Lee, “Self-powered dual-mode amenity sensor based on the water–air triboelectric nanogenerator,” ACS nano, vol. 11(10), pp. 10337-10346, 2017.
[40] W. Ding, C. Wu, Y. Zi, H. Zou, J. Wang, J. Cheng, A. C. Wang, & Z. L. Wang, “Self-powered wireless optical transmission of mechanical agitation signals,” Nano Energy, vol. 47, pp. 566-572, 2018.
[41] J. Shi, S. Liu, L. Zhang, B. Yang, L. Shu, Y. Yang, M. Ren, Y. Wang, J. Chen, W. Chen, Y. Chai, & X. Tao, “Smart Textile‐Integrated Microelectronic Systems for Wearable Applications,” Advanced Materials, vol. 32(5), pp. 1901958, 2020.
[42] K. Zhao, G. Gu, Y. Zhang, B. Zhang, F. Yang, L. Zhao, M. Zheng, G. Chen & Z. Du, “The self-powered CO2 gas sensor based on gas discharge induced by triboelectric nanogenerator,” Nano energy, vol. 53, pp. 898-905, 2018.
[43] H. Chen, L. Bai, T. Li, C. Zhao, J. Zhang, N. Zhang, G. Song, Q. Gan & Y. Xu, “Wearable and robust triboelectric nanogenerator based on crumpled gold films,” Nano Energy, vol. 46, pp. 73-80, 2018.
[44] X. Cui, C. Zhang, W. Liu, Y. Zhang, J. Zhang, X. Li, L. Gen & X. Wang, “Pulse sensor based on single-electrode triboelectric nanogenerator,” Sensors and Actuators A: Physical, vol. 280, pp. 326-331, 2018.
[45] Y. Khan, A. E. Ostfeld, C. M. Lochner, A. Pierre, & A. C. Arias, “Monitoring of vital signs with flexible and wearable medical devices,” Advanced Materials, vol. 28, pp. 4373-4395, 2016.
[46] D. Y. Park, D. J. Joe, D. H. Kim, H. Park, J. H. Han, C. K. Jeong, H. Park, J. G. Park, B. Joung & K. J. Lee, “Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors,” Advanced Materials, vol. 29, pp. 1702308, 2017.
[47] H. Ouyang, J. Tian, G. Sun, Y. Zou, Z. Liu, H. Li, L. Zhao, B. Shi, Y. Fan, Z. Li & Wang, Z. L. “Self-powered pulse sensor for antidiastole of cardiovascular disease,” Advanced Materials, vol. 29, pp. 1703456, 2017.
[48] Z. Lin, J. Yang, X. Li, Y. Wu, W. Wei, J. Liu, J. Chen & J. Yang, “Large-scale and washable smart textiles based on triboelectric nanogenerator arrays for self-powered sleeping monitoring,” Advanced Functional Materials, vol. 28, pp. 1704112, 2018.
[49] N. Wu, X. Cheng, Q. Zhong, J. Zhong, W. Li, B. Wang, B. Hu & J. Zhou, “Cellular polypropylene piezoelectret for human body energy harvesting and health monitoring,” Advanced Functional Materials, vol. 25, pp. 4788-4794, 2015.
[50] Q. Zhang, Q. Liang, Z. Zhang, Z. Kang, Q. Liao, Y. Ding, M. Ma, F. Gao, X. Zhao & Y. Zhang, “Electromagnetic shielding hybrid nanogenerator for health monitoring and protection,” Advanced Functional Materials, vol. 28, pp. 1703801, 2018.
[51] Y. Feng, L. Zhang, Y. Zheng, D. Wang, F. Zhou & W. Liu, “Leaves based triboelectric nanogenerator (TENG) and TENG tree for wind energy harvesting,” Nano Energy, vol. 55, pp. 260-268, 2019.
[52] H. Zhang, J. Wang, Y. Xie, G. Yao, Z. Yan, L. Huang, S. Chen, T. Pan, L. Wang, Y. Su, Y. Lin & W. Yang, “Self-powered, wireless, remote meteorologic monitoring based on triboelectric nanogenerator operated by scavenging wind energy,” ACS applied materials & interfaces, vol. 8, pp. 32649-32654, 2016.
[53] D. Y. Kim, H. S. Kim, D. S. Kong, M. Choi, H. B. Kim, J. H. Lee, G. Murillo, M. Lee, S. S. Kim & J. H. Jung, “Floating buoy-based triboelectric nanogenerator for an effective vibrational energy harvesting from irregular and random water waves in wild sea,” Nano Energy, vol. 45, pp. 247-254, 2018.
[54] A. Ahmed, I. Hassan, I. M. Mosa, E. Elsanadidy, G. S. Phadke, M. F. El-Kady, J. F. Rusling, P. R. Selvaganapathy & R. B. Kaner, “All printable snow-based triboelectric nanogenerator,” Nano Energy, vol. 60, pp. 17-25, 2019.
[55] C. Sun, Q. Shi, D. Hasan, M. S. Yazici, M. Zhu, Y. Ma, B. Dong, Y. Liu & C. Lee, “Self-powered multifunctional monitoring system using hybrid integrated triboelectric nanogenerators and piezoelectric microsensors,” Nano Energy, vol. 58, pp. 612-623, 2019.
[56] S. Wang, G. Xie, H. Tai, Y. Su, B. Yang, Q. Zhang, X. Du & Y. Jiang, “Ultrasensitive flexible self-powered ammonia sensor based on triboelectric nanogenerator at room temperature,” Nano Energy, vol. 51, pp. 231-240, 2018.
[57] S. Cui, Y. Zheng, T. Zhang, D. Wang, F. Zhou & W. Liu, “Self-powered ammonia nanosensor based on the integration of the gas sensor and triboelectric nanogenerator,” Nano Energy, vol. 49, pp. 31-39, 2018.
[58] S. Wang, Y. Jiang, H. Tai, B. Liu, Z. Duan, Z. Yuan, H. Pan, G. Xie, X. Du & Y. Su, “An integrated flexible self-powered wearable respiration sensor,” Nano Energy, vol. 63, pp. 103829, 2019.
[59] S. Wang, H. Tai, B. Liu, Z. Duan, Z. Yuan, H. Pan, Y. Su, G. Xie, X. Du & Y. Jiang, “A facile respiration-driven triboelectric nanogenerator for multifunctional respiratory monitoring,” Nano Energy, vol. 58, pp. 312-321, 2019.
[60] H. Xue, Q. Yang, D. Wang, W. Luo, W. Wang, M. Lin, D. Liang & Q. Luo, “A wearable pyroelectric nanogenerator and self-powered breathing sensor,” Nano Energy, vol. 38, pp. 147-154, 2017.
[61] H. Zhang, J. Zhang, Z. Hu, L. Quan, L. Shi, J. Chen, W. Xuan, Z. Zhang, S. Dong & J. Luo, “Waist-wearable wireless respiration sensor based on triboelectric effect,” Nano Energy, vol. 59, pp. 75-83, 2019.
[62] Z. Zhang, J. Zhang, H. Zhang, H. Wang, Z. Hu, W. Xuan, S. Dong & J. Luo, “A Portable Triboelectric Nanogenerator for Real-Time Respiration Monitoring,” Nanoscale research letters, vol. 14, pp. 354, 2019.
[63] C. K. Jeong, K. M. Baek, S. Niu, T. W. Nam, Y. H. Hur, D. Y. Park, G. T. Hwang, M. Byun, Z. L. Wang, Y. S. Juan & K. J. Lee, “Topographically-designed triboelectric nanogenerator via block copolymer self-assembly,” Nano letters, vol. 14, pp. 7031-7038, 2014.
[64] S. Lee, W. Ko, Y. Oh, J. Lee, G. Baek, Y. Lee, J. Sohn, S. Cha, J. Kim, J. Park & J. Hong, “Triboelectric energy harvester based on wearable textile platforms employing various surface morphologies,” Nano Energy, vol. 12, pp. 410-418, 2015.
[65] H. Y. Li, L. Su, S. Y. Kuang, C. F. Pan, G. Zhu & Z. L. Wang, “Significant enhancement of triboelectric charge density by fluorinated surface modification in nanoscale for converting mechanical energy,” Advanced Functional Materials, vol. 25, pp. 5691-5697, 2015.
[66] Z. Li, J. Chen, J. Zhou, L. Zheng, K. C. Pradel, X. Fan, H. Guo, Z. Wen, M. H. Yeh, C. Yu & Z. L. Wang, “High-efficiency ramie fiber degumming and self-powered degumming wastewater treatment using triboelectric nanogenerator,” Nano Energy, vol. 22, pp. 548-557, 2016.
[67] D. Zhu, S. H. Wang & X. Zhou, “Recent progress in fabrication and application of polydimethylsiloxane sponges,” Journal of Materials Chemistry A, vol. 5, pp. 16467-16497, 2017.
[68] H. S. Wang, C. K. Jeong, M. H. Seo, D. J. Joe, J. H. Han, J. B. Yoon & K. J. Lee, “Performance-enhanced triboelectric nanogenerator enabled by wafer-scale nanogrates of multistep pattern downscaling,” Nano Energy, vol. 35, pp. 415-423, 2017.
[69] D. Jang, Y. Kim, T. Y. Kim, K. Koh, U. Jeong & J. Cho, “Force-assembled triboelectric nanogenerator with high-humidity-resistant electricity generation using hierarchical surface morphology,” Nano Energy, vol. 20, pp. 283-293, 2016.
[70] X. J. Zhao, S. Y. Kuang, Z. L. Wang & G. Zhu, “Highly adaptive solid–liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy,” ACS nano, vol. 12, pp. 4280-4285, 2018.
[71] B. Dudem, N. D. Huynh, W. Kim, D. H. Kim, H. J. Hwang, D. Choi & J. S. Yu, “Nanopillar-array architectured PDMS-based triboelectric nanogenerator integrated with a windmill model for effective wind energy harvesting,” Nano Energy, vol. 42, pp. 269-281, 2017.
[72] V. L. Trinh & C. K. Chung, “Harvesting mechanical energy, storage, and lighting using a novel PDMS based triboelectric generator with inclined wall arrays and micro-topping structure,” Applied Energy, vol. 213, pp. 353-365, 2018.
[73] C. K. Chung & K. H. Ke, “High contact surface area enhanced Al/PDMS triboelectric nanogenerator using novel overlapped microneedle arrays and its application to lighting and self-powered devices,” Applied Surface Science, vol. 508, pp. 145310, 2020.
[74] P. Bai, G. Zhu, Y. Liu, J. Chen, Q. Jing, W. Yang, J. Ma, G. Zhang & Z. L. Wang, “Cylindrical rotating triboelectric nanogenerator,” ACS nano, vol. 7, pp. 6361-6366, 2013.
[75] B. Zhang, J. Chen, L. Jin, W. Deng, L. Zhang, H. Zhang, M. Zhu, W. Yang & Z. L. Wang, “Rotating-disk-based hybridized electromagnetic–triboelectric nanogenerator for sustainably powering wireless traffic volume sensors,” ACS nano, vol. 10, pp. 6241-6247, 2016.
[76] G. Cheng, Z. H. Lin, Z. L. Du & Z. L. Wang, “Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator,” Acs Nano, vol. 8, pp. 1932-1939, 2014.
[77] Z. Quan, C. B. Han, T. Jiang & Z. L. Wang, “Robust thin films-based triboelectric nanogenerator arrays for harvesting bidirectional wind energy,” Advanced Energy Materials, vol. 6, pp. 1501799, 2016.
[78] H. Yong, J. Chung, D. Choi, D. Jung, M. Cho & S. Lee, “Highly reliable wind-rolling triboelectric nanogenerator operating in a wide wind speed range,” Scientific reports, vol. 6, pp. 33977, 2016.
[79] X. Xia, G. Liu, L. Chen, W. Li, Y. Xi, H. Shi & C. Hu, “Foldable and portable triboelectric-electromagnetic generator for scavenging motion energy and as a sensitive gas flow sensor for detecting breath personality,” Nanotechnology, vol. 26, pp. 475402, 2015.
[80] X. S. Zhang, M. D. Han, R. X. Wang, B. Meng, F. Y. Zhu, X. M. Sun, W. Hu, Z. H. Li & H. X. Zhang, “High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment,” Nano Energy, vol. 4, pp. 123-131, 2014.
[81] J. Chun, B. U. Ye, J. W. Lee, D. Choi, C. Y. Kang, S. W. Kim, Z. L. Wang & J. M. Baik, “Boosted output performance of triboelectric nanogenerator via electric double layer effect,” Nature communications, vol. 7, pp. 1-9, 2016.
[82] M. Han, X. S. Zhang, B. Meng, W. Liu, W. Tang, X. Sun, W. Wang & H. Zhang, “r-Shaped hybrid nanogenerator with enhanced piezoelectricity,” ACS nano, vol. 7, pp. 8554-8560, 2013.
[83] J. Chun, J. W. Kim, W. S. Jung, C. Y. Kang, S. W. Kim, Z. L. Wang & J. M. Baik, “Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments,” Energy & Environmental Science, vol. 8, pp. 3006-3012, 2015.
[84] T. Huang, C. Wang, H. Yu, H. Wang, Q. Zhang & M. Zhu, “Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers,” Nano Energy, vol. 14, pp. 226-235, 2015.
[85] J. Chen, H. Guo, X. He, G. Liu, Y. Xi, H. Shi & C. Hu, “Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film,” ACS applied materials & interfaces, vol. 8, pp. 736-744, 2016.
[86] X. S. Zhang, M. D. Han, B. Meng & H. X. Zhang, “High performance triboelectric nanogenerators based on large-scale mass-fabrication technologies,” Nano Energy, vol. 11, pp. 304-322, 2015.
[87] Y. Yang, G. Zhu, H. Zhang, J. Chen, X. Zhong, Z. H. Lin, Y. Su, P. Bai, X. Wen & Z. L. Wang, “Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system,” ACS nano, vol. 7, pp. 9461-9468, 2013.
[88] S. Park, H. Kim, M. Vosgueritchian, S. Cheon, H. Kim, J. H. Koo, T. R. Kim, S. Lee, G. Schwartz, H. Cheng & Z. Bao, “Stretchable energy-harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes,” Advanced Materials, vol. 26, pp. 7324-7332, 2014.
[89] B. U. Hwang, J. H. Lee, T. Q. Trung, E. Roh, D. I. Kim, S. W. Kim, & N. E. Lee, “Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities,” ACS nano, vol. 9, pp. 8801-8810, 2015.
[90] J. Yang, J. Chen, Y. Liu, W. Yang, Y. Su & Z. L. Wang, “Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing,” ACS nano, vol. 8, pp. 2649-2657, 2014.
[91] H. Zhang, Y. Yang, Y. Su, J. Chen, K. Adams, S. Lee, C. Hu & Z. L. Wang, “Triboelectric nanogenerator for harvesting vibration energy in full space and as self-powered acceleration sensor,” Advanced Functional Materials, vol. 24, pp. 1401-1407, 2014.
[92] R. Yu, C. Pan, J. Chen, G. Zhu & Z. L. Wang, “Enhanced Performance of a ZnO Nanowire-Based Self-Powered Glucose Sensor by Piezotronic Effect,” Advanced Functional Materials, vol. 23, pp. 5868-5874, 2013.
[93] X. Liao, Q. Liao, Z. Zhang, X. Yan, Q. Liang, Q. Wang, M. Li & Y. Zhang, “A Highly Stretchable ZnO@ Fiber-Based Multifunctional Nanosensor for Strain/Temperature/UV Detection,” Advanced Functional Materials, vol. 26, pp. 3074-3081, 2016.
[94] P. Bai, G. Zhu, Q. Jing, J. Yang, J. Chen, Y. Su & Z. L. Wang, “Membrane-based self-powered triboelectric sensors for pressure change detection and its uses in security surveillance and healthcare monitoring,” Advanced Functional Materials, vol. 24, pp. 5807-5813, 2014.
[95] Z. L. Wang, “Triboelectric nanogenerators as new energy technology and self-powered sensors–Principles, problems and perspectives,” Faraday discussions, vol. 176, pp. 447-458, 2015.
[96] J. Yang, J. Chen, Y. Yang, H. Zhang, W. Yang, P. Bai, Y. Su & Z. L. Wang, “Broadband vibrational energy harvesting based on a triboelectric nanogenerator,” Advanced Energy Materials, vol. 4, pp. 1301322, 2014.
[97] Y. Xie, S. Wang, L. Lin, Q. Jing, Z. H. Lin, S. Niu, Z. Wu & Z. L. Wang, “Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy,” ACS nano, vol. 7, pp. 7119-7125, 2013.
[98] G. Zhu, Y. S. Zhou, P. Bai, X. S. Meng, Q. Jing, J. Chen & Z. L. Wang, “A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification,” Advanced materials, vol. 26, pp. 3788-3796, 2014.
[99] Y. C. Lai, J. Deng, S. L. Zhang, S. Niu, H. Guo & Z. L. Wang, “Single-thread-based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth-based self-powered human-interactive and biomedical sensing,” Advanced Functional Materials, vol. 27, pp. 1604462, 2017.
[100] A. R. Mule, B. Dudem, H. Patnam, S. A. Graham & J. S. Yu, “Wearable Single-Electrode-Mode Triboelectric Nanogenerator via Conductive Polymer-Coated Textiles for Self-Power Electronics,” ACS Sustainable Chemistry & Engineering, vol. 7, pp. 16450-16458, 2019.
[101] S. Wang, Y. Xie, S. Niu, L. Lin, & Z. L. Wang, “Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes,” Advanced materials, vol. 26, pp. 2818-2824, 2014.
[102] Z. L. Wang, “Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors,” ACS nano, vol. 7, pp. 9533-9557, 2013.
[103] H. Wang, M. Shi, K. Zhu, Z. Su, X. Cheng, Y. Song, X. Chen, Z. Liao, M. Zhang & H. Zhang, “High performance triboelectric nanogenerators with aligned carbon nanotubes,” Nanoscale, vol. 8, pp. 18489-18494, 2016.
[104] S. J. Kim, W. Song, Y. Yi, B. K. Min, S. Mondal, K. S. An & C. G. Choi, “High durability and waterproofing rGO/SWCNT-fabric-based multifunctional sensors for human-motion detection,” ACS applied materials & interfaces, vol. 10, pp. 3921-3928, 2018.
[105] D. K. Davies, “Charge generation on dielectric surfaces,” Journal of Physics D: Applied Physics, vol. 2, pp. 1533, 1969.
[106] A. F. Diaz & R. M. Felix-Navarro, “A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties,” Journal of Electrostatics, vol. 62, pp. 277-290, 2014.
[107] H. Y. Li, L. Su, S. Y. Kuang, C. F. Pan, G. Zhu, & Z. L. Wang, “Significant enhancement of triboelectric charge density by fluorinated surface modification in nanoscale for converting mechanical energy,” Advanced Functional Materials, vol. 25, pp. 5691-5697, 2015.
[108] Y. J. Fan, X. S. Meng, H. Y. Li, S. Y. Kuang, L. Zhang, Y. Wu, Z. L. Wang & G. Zhu, “Stretchable Porous Carbon Nanotube-Elastomer Hybrid Nanocomposite for Harvesting Mechanical Energy,” Advanced Materials, vol. 29, pp. 1603115, 2017.
[109] W. Seung, M. K. Gupta, K. Y. Lee, K. S. Shin, J. H. Lee, T. Y. Kim, S. Kim, J. Lin, J. H. Kim & S. W. Kim, “Nanopatterned textile-based wearable triboelectric nanogenerator,” ACS nano, vol. 9, pp. 3501-3509, 2015.
[110] M. Wang, J. Zhang, Y. Tang, J. Li, B. Zhang, E. Liang, Y. Mao & X. Wang, “Air-flow-driven triboelectric nanogenerators for self-powered real-time respiratory monitoring,” ACS nano, vol. 12, pp. 6156-6162, 2018.
[111] Z. Zhao, C. Yan, Z. Liu, X. Fu, L. M. Peng, Y. Hu & Z. Zheng, “Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns,” Advanced Materials, vol. 28, pp. 10267-10274, 2016.
[112] J. Zhong, Y. Zhang, Q., Zhong, Q. Hu, B.Hu, Z. L.Wang & J. Zhou, “Fiber-based generator for wearable electronics and mobile medication,” ACS nano, vol. 8, pp. 6273-6280, 2014.
[113] J. Chen, G. Zhu, J. Yang, Q. Jing, P. Bai, W. Yang, X. Qi, Y. Su & Z. L. Wang, “Personalized keystroke dynamics for self-powered human–machine interfacing,” ACS nano, vol. 9, pp. 105-116, 2015.
[114] B. Zhang, Y. Tang, R. Dai, H. Wang, X. Sun, C. Qin, Z. Pan, E. Liang & Y. Mao, “Breath-based human–machine interaction system using triboelectric nanogenerator,” Nano Energy, vol. 64, pp. 103953, 2019.
[115] B. Zhang, Y. Tang, R. Dai, H. Wang, X. Sun, C. Qin, Z. Pan, E. Liang & Y. Mao, “Breath-based human–machine interaction system using triboelectric nanogenerator,” Nano Energy, vol. 64, pp. 103953, 2019.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2030-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2030-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw