進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0408202009251200
論文名稱(中文) 軟硬基板的多孔材料製程技術與應用研究
論文名稱(英文) A study on fabrication and application of the porous material on soft and rigid substrates
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 郭沁柔
研究生(英文) Chin-Jou Kuo
學號 N16074904
學位類別 碩士
語文別 中文
論文頁數 132頁
口試委員 指導教授-鍾震桂
口試委員-吳博雄
口試委員-何青原
口試委員-蔡有仁
中文關鍵字 軟硬鋁金屬  陽極氧化鋁  防偽圖案  穿戴式裝置 
英文關鍵字 Soft and hard substrate  Nanoporous material  Anodic aluminum oxide  Anticounterfeiting  Wearable device 
學科別分類
中文摘要 在日常生活中成色方式大都分為兩種為染料成色與結構色彩。結構色彩是因為光和結構之間的作用而導致能量部分被吸收而產生,和使用染料而造成的光反射不同。結構色彩相對於傳統的染料成色技術具有低汙染、高化學穩定性、不易褪色等優點,而且結構色彩的色彩是能透過結構尺度調整的,不像傳統的化學染料必須按照不同顏色調配不同的化學物質。而鋁在酸性溶液中進行陽極氧化後會形成奈米孔洞之氧化層(陽極氧化鋁(Anodic Aluminum Oxide, AAO) ),生活上常見的鋁合金成色方式大都是用將染料填充並進行封孔來達到染色的目的,但染料的使用有環保和色彩隨時間及光照射而退色的問題,然而AAO的特殊孔洞結構透過光線在介質表面及底部反射的光會產生干涉,可用布拉格繞射來解釋結構色彩的成像原理,但是傳統的陽極氧化製程通常使用昂貴的高純度鋁,在低溫下(0~10℃)長時間兩階段的陽極氧化(2-20 hr)來達成,不但成本非常貴,而且也不容易大量製作,在實用性上也受到限制。
故本研究探討於軟硬鋁金屬基板於室溫在0.3M草酸中進行一階段短時間的陽極氧化處理,利用不同的陽極氧化電位、不同陽極時間製備奈米多孔型陽極氧化鋁模板製備,觀察其AAO結構形貌以及產生的結構色彩趨勢並探討未來應用與發展,達到低成本、高效率、高飽和度的AAO結構色彩。
透過改變氧化電位、氧化時間及擴孔處理時間探討在軟硬金屬基板下其陽極氧化成長速率及孔洞結構,並研究藉由不同控制參數對陽極氧化鋁結構色彩的影響,透過複合式脈衝陽極氧化(Hybrid Pulse Anodization, HPA)製程技術,將工業上製備AAO的基板,從傳統上使用高純度鋁改變至鋁合金AA1050,抑或是為了進一步增加陽極氧化鋁結構色彩的實用性,我們利用純度更低的軟性基板,也能達到相同甚至更好的色彩效果。並利用布拉格繞射公式驗證AAO的成色原理,且應用到反推主色色彩,利於未來AAO圖案化的色彩選定。
並透過布拉格繞射公式反推的參數進行色彩的搭配,成功的製備具有與傳統上來說更佳解析度的AAO圖案,並且透過調整孔隙率的方式,使液體能進入AAO孔洞,並製作出加入液體才會顯像的AAO的防偽隱形圖案,取代傳統複雜的防偽技術,且其擁有即刻辨識的效果。最後利用3D列印模具將軟硬基板製備的AAO結構色彩結合至穿戴式裝置,並置備具有液態感測或物聯網科技的穿戴式手環應用。
英文摘要 The special porous structure of Anodic Aluminum Oxide (AAO) will interfere with the light reflected on the surface and bottom of the medium. Bragg diffraction can be used to explain the imaging principle of structural color, but the traditional anodizing process usually uses expensive high-purity aluminum, and two-stage anodization (2-20 hr) at low temperature (0~10℃) for a long time. , Not only the cost is very expensive, but also not easy to produce in large quantities, the practicality is also limited. Therefore, this study explored the short-term anodization of soft and hard aluminum metal substrates in 0.3M oxalic acid at room temperature, and the preparation of nanoporous anodic aluminum oxide templates using different anodization potentials and different anode times. Observation The AAO structure morphology and the resulting structural color trends are discussed and future applications and developments are discussed to achieve low-cost, high-efficiency, and high-saturation AAO structural colors.
Through the Hybrid Pulse Anodization (HPA) process technology, the industrially prepared AAO substrate is changed from the traditional use of high-purity aluminum to aluminum alloy AA1050, or to further increase the practicality of the color of the anodized aluminum structure, we can achieve the same or even better color effect by using a lower purity soft substrate. And use the Bragg diffraction formula to verify the color forming principle of AAO, and apply it to reverse the main color, which is conducive to the color selection of AAO patterning in the future.
The color matching is carried out through the parameters reversed by the Bragg diffraction formula, and the AAO pattern with a better resolution than the traditional one and the anti-counterfeiting invisible pattern are successfully prepared, replacing the traditional complex anti-counterfeiting technology, and it has the effect of instant identification. Finally, the AAO structure color prepared by the soft and hard substrate is combined with the wearable device, and a wearable bracelet application with liquid sensing or Internet of Things technology is provided.
論文目次 摘要 III
致謝 X
圖目錄 XV
表目錄 XXV
第一章 緒論 1
1-1 前言 1
1-2 研究動機 4
1-3 本文架構 5
第二章 文獻回顧 7
2-1 鋁金屬的陽極氧化機制及製程 7
2-1-1 多孔型陽極氧化鋁的成長背景 7
2-1-2 鋁金屬的陽極氧化反應及孔洞自組裝機制 9
2-1-3 鋁金屬的陽極氧化製程及結構 13
2-1-4 鋁金屬的陽極氧化技術發展與現況 17
2-2 鋁金屬的陽極氧化製程參數與結構 20
2-2-1 電解液種類與濃度 20
2-2-2 陽極氧化電位影響 24
2-2-3 陽極氧化時間影響 27
2-2-4 擴孔對陽極氧化鋁影響 28
2-2-5 鋁金屬種類影響 31
2-3奈米材料光學性質與應用 33
2-3-1 自然界中的結構色彩 33
2-3-2 AAO色彩結構機制與應用 39
2-3-3陽極氧化鋁圖案化應用及防偽圖案 44
2-4柔性基板陽極氧化鋁 47
第三章 實驗方法 50
3-1實驗架構 50
3-2 實驗設備 51
3-3 實驗原料 57
3-4實驗步驟 59
3-4-1 電化學表面清潔處理 59
3-4-2 陽極氧化製程 60
3-4-3 圖案化處理 60
3-4-4 擴孔處理 61
3-4-5 手環模具製作 62
3-5 觀測與分析 63
3-5-1 場發射掃描式電子顯微鏡 (Scanning electron microscope) 63
3-5-2 紫外光 / 可見光 / 近紅外光分光光譜儀 64
3-5-3 灰階影像孔洞分析-圖像分析軟體 ImageJ 65
第四章 結果與討論 66
4-1硬式基板工業用鋁合金之AAO結構色彩影響參數 66
4-1-1 鋁合金在不同氧化時間的AAO結構色彩 66
4-1-2 鋁合金擴孔處理後的AAO結構色彩 71
4-1-3 鋁合金在不同氧化電位的AAO結構色彩 74
4-2鋁合金之AAO結構色彩理論及光學分析 79
4-2-1 鋁合金的結構色彩波鋒分析及計算厚度 79
4-2-2 鋁合金的SEM分析及成長速率與理論比較 82
4-2-3 CIE1931分析鋁合金之AAO結構色彩 86
4-3 鋁合金製備AAO圖案化及防偽圖案 89
4-3-1 透過鋁合金的成長速率調控主色 89
4-3-2 鋁合金的AAO色彩圖案化 90
4-3-3 鋁合金的AAO防偽圖案 91
4-4軟式基板鋁膠帶之AAO結構色彩 93
4-4-1 鋁膠帶在不同氧化時間的AAO結構色彩 93
4-4-2 鋁膠帶擴孔處理後的AAO結構色彩 96
4-4-3 鋁膠帶在不同氧化電位的AAO結構色彩 99
4-5鋁膠帶之AAO結構色彩理論及光學分析 104
4-5-1 鋁膠帶的結構色彩波鋒分析及計算厚度 104
4-5-2 鋁膠帶的SEM分析及成長速率與理論比較 107
4-5-3 CIE1931分析鋁膠帶之AAO結構色彩 111
4-6 不同鋁金屬商業化文創應用可撓式鋁膠帶製備感測手環 114
4-6-1 鋁膠帶可撓性色彩變化 114
4-6-2 鋁膠帶液態感測手環 115
4-6-3 可撓式手環物聯網應用 116
第五章 結論與未來工作 118
5-1 結論與本論文貢獻 118
5-2 未來工作 121
參考文獻 122
參考文獻 [1] S. Kinoshita, S. Yoshioka, “Structural colors in nature: The role of regularity and irregularity in the structure,” Chemphyschem vol. 6, pp. 1442-1459, 2005.
[2] S. Ono, M. Saito, H. Asoh, “Self-ordering of anodic porous alumina formed in organic acid electrolytes,” Electrochimica Acta, vol. 51, pp. 827-833, 2005.
[3] P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina,” Journal of Applied Physics, vol. 84, pp. 6023-6026, 1998.
[4] K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, U. Gosele, “Self-ordering regimes of porous alumina: the 10% porosity rule,” Nano Letters, vol. 2, pp. 677-680, 2002.
[5] R. C. Furneaux, W. R. Rigby, A. P. Davidson, “The formation of controlled-porosity membranes from anodically oxidized aluminium,” Nature, vol. 337, pp. 147-149, 1989.
[6] L. Woo, K. J. Cheon, “Highly ordered porous alumina with tailor-made pore structures fabricated by pulse anodization,” Nanotechnology, vol. 21, No. 485304, 2010.
[7] Y. Li, Z. Y. Ling, S. S. Chen, X. Hu, X. H. He, “Novel AAO films and hollow nanostructures fabricated by ultra-high voltage hard anodization,” Chemical Communications, vol. 46, pp. 309-311, 2010.
[8] Y. Liu, Y. Chang, Z. Ling, X. Hu, Y. Li, “Structural coloring of aluminum,” Electrochemistry Communications, vol. 13, pp. 1336-1339, 2011.
[9] G.D. Sulka, S. Stroobants, V. Moshchalkov, G. Borghs, and J.P. Celisd, “Synthesis of well-ordered nanopores by anodising aluminium foils in sulphuric acid,” Journal of The Electrochemical Society, vol. 149, pp. D97–D103, 2002.
[10] G.D. Sulka, M. Jaskuła, “Defect analysis in self-ordered nanopore structures grown by anodization of aluminium at various temperatures,” Journal of nanoscience and nanotechnology, vol. 6, pp. 3803–3811, 2006.
[11] G.D. Sulka, W.J. Stępniowski, “Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures,” Electrochimica Acta, vol. 54, pp. 3683–3691, 2009.
[12] L. Zaraska, W.J. Stępniowski, E. Ciepiela, G.D. Sulka, “The effect of anodizing temperature on structural features and hexagonal arrangement of nanopores in alumina synthesized by two-step anodizing in oxalic acid,” Thin Solid Films, vol. 534, pp.155–161, 2013.
[13] L. Zaraska, W.J. Stępniowski, G.D. Sulka, E. Ciepiela, M. Jaskuła, “Analysis of nanopore arrangement and structural features of anodic alumina layers formed by two-step anodizing in oxalic acid using the dedicated executable software,” Applied Physics A, vol. 114, pp. 571–577, 2014.
[14] L. Zaraska, G.D. Sulka, M. Jaskuła, “Properties of nanostructures obtained by anodization of aluminum in phosphoric acid at moderate potentials,” Journal of Physics: Conference Series, vol. 146, pp. 012020, 2009.
[15] C. K. Chung, R. X. Zhou, T. Y. Liu, & W. T. Chang, "Hybrid pulse anodization for the fabrication of porous anodic alumina films from commercial purity (99%) aluminum at room temperature, " Nanotechnology, vol. 20, pp. 055301, 2009.
[16] C. K. Chung, W. T. Chang, M. W. Liao, H. C. Chang, & C. T. Lee, "Fabrication of enhanced anodic aluminum oxide performance at room temperatures using hybrid pulse anodization with effective cooling, " Electrochimica Acta, vol. 56, pp. 6489-6497, 2011.
[17] C. K. Chung, W. T. Chang, M. W. Liao, & H. C. Chang, "Effect of pulse voltage and aluminum purity on the characteristics of anodic aluminum oxide using hybrid pulse anodization at room temperature, " Thin Solid Films, vol. 519, pp. 4754-4758, 2011.
[18] H. Buff, “Ueber das electrische Verhalten des Aluminiums,” Annalen Der Chemie Und Pharmacie, vol. 3, pp. 265-284, 1857.
[19] G. D. Bengough, and J. M. Stuart, “Improved process of protecting surfaces of aluminium of aluminium alloys,” U.K. Patent No. 223994, 1923.
[20] A. R. Despić, “A note on the effect of the electrolyte on the type of growth of anodic oxide on aluminium,” Journal of electroanalytical chemistry and interfacial electrochemistry, vol. 191, pp. 417-423, 1985.
[21] J. W. Diggle,T. C. Downie, & C. W. Goulding, “Anodic oxide films on aluminum,” Chemical Reviews, vol. 69, pp. 365-405, 1969.
[22] F. Keller, M. S. Hunter, and D. L. Robinson, “Structural features of oxide coatings on aluminum,” Journal of The Electrochemical Society, vol. 100, pp. 411-419, 1953.
[23] W. Lee, and S.J. Park, “Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures,”Chemical Reviews, vol. 114, pp. 7487−7556, 2014.
[24] E. O. Gordeeva, I. V. Roslyakov, A. I. Sadykov, T. A. Suchkova, D. I. Petukhov, T. B. Shatalova, & K. S. Napolskii, “Formation Efficiency of Porous Oxide Films in Aluminum Anodizing,” Russian Journal of Electrochemistry, vol. 54, pp. 990-998, 2018.
[25] G.E. Thompson, "Porous anodic alumina: fabrication, characterization and applications," Thin solid films, vol. 297, pp. 192-201, 1997.
[26] F. Li, L. Zhang, and R. M. Metzger, “On the growth of highly ordered pores in anodized aluminum oxide,” Chemistry of Materials, vol. 10, pp. 2470-2480, 1998.
[27] S. K. Thamida and H. C. Chang, "Nanoscale pore formation dynamics during aluminum anodization," Chaos, vol. 12, pp. 240-251, Mar 2002.
[28] O. Jessensky, F. Müller, and U. Gösele, "Self-organized formation of hexagonal pore arrays in anodic alumina," Applied physics letters, vol. 72, pp. 1173-1175, 1998.
[29] A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, "Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina," Journal of Applied Physics, vol. 84, pp. 6023-6026, Dec 1 1998.
[30] I. Vrublevsky, V. Parkoun, V. Sokol, J. Schreckenbach, G. Marx, “The study of the volume expansion of aluminum during porous oxide formation at galvanostatic regime,” Applied Surface Science, vol. 222, pp. 215-225, 2004.
[31] V. Parkhutik, V. Shershulsky, “Theoretical modelling of porous oxide growth on aluminium,” Journal of Physics D: Applied Physics, vol. 25, pp. 1258-1266, 1992.
[32] H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” science, vol. 268, p. 1466, 1995.
[33] H. Masuda and K. Fukuda, “Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask,” Japanese Journal of Applied Physics Part 2-Letters, vol. 35, pp. L126-L129, 1996.
[34] H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao and T. Tamamura “Highly ordered nanochannel-array architecture in anodic alumina,” Applied Physics Letters, vol. 71, pp. 2770-2772, 1997.
[35] H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, “Square and Triangular Nanohole Array Architectures in Anodic Alumina,” Advanced Materials, vol. 13, pp. 189-192, 2001.
[36] H. Masuda, K. Kanezawa, and K. Nishio, “Fabrication of ideally ordered nanohole arrays in anodic porous alumina based on nanoindentation using scanning probe microscope,” Chemistry Letters, pp. 1218-1219, 2002.
[37] M. Jaafar, D. Navas, M. Hernández-Vélez, J. L. Baldonedo, M. Vázquez, and A. Asenjo, “Nanoporous alumina membrane prepared by nanoindentation and anodic oxidation,” Surface Science, vol. 603, pp. 3155-3159, 2009.
[38] C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces,” Applied Physics Letters, vol. 78, p. 120, 2001.
[39] B. Chen and K. Lu, “Moiré Pattern Nanopore and Nanorod Arrays by Focused Ion Beam Guided Anodization and Nanoimprint Molding,” Langmuir, vol. 27, pp. 4117-4125, 2011.
[40] S.H. Chen, D.S. Chan, C.K. Chen, T.H. Chang, Y.H. Lai, and C.C. Lee, “Nanoimprinting Pre-Patterned Effects on Anodic Aluminum Oxide,” Japanese Journal of Applied Physics, vol. 49, p. 015201, 2010.
[41] H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, “Square and triangular nanohole array architectures in anodic alumina,” Advanced Materials, vol. 13, pp. 189-192, 2001.
[42] J. Choi, Y. Luo, R. B. Wehrspohn, R. Hillebrand, J. r. Schilling, and U. Gösele, “Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers,” Journal of Applied Physics, vol. 94, p. 4757, 2003.
[43] S. Fournier-Bidoz, V. Kitaev, D. Routkevitch, I. Manners, and G. Ozin, “Highly ordered nanosphere imprinted nanochannel alumina (NINA),” Advanced Materials, vol. 16, pp. 2193-2196, 2004.
[44] M. Mirzaei and M. Bahrololoom, “Influence of pulse currents on the nanostructure and color absorption ability of colored anodized aluminum,” Vacuum, vol. 99, pp. 277-283, 2014.
[45] C. C. Chang, F. C. Chiang, S. M. Chen, K. Thangavelu, and H. J. Yang, “Studies on electrochemical oxidation of aluminum and dyeing in various additives towards industrial applications,” Int. J. Electrochem. Sci, vol. 11, pp. 2142-2152, 2016.
[46] Y. Zuo, P.-H. Zhao, and J.-M. Zhao, “The influences of sealing methods on corrosion behavior of anodized aluminum alloys in NaCl solutions,” Surface and Coatings Technology, vol. 166, pp. 237-242, 2003.
[47] V. Lopez, M. Bartolomé, E. Escudero, E. Otero, and J. González, “Comparison by SEM, TEM, and EIS of hydrothermally sealed and cold sealed aluminum anodic oxides,” Journal of the Electrochemical Society, vol. 153, pp. B75-B82, 2006.
[48] C. J. Donahue and J. A. Exline, “Anodizing and Coloring Aluminum Alloys,” Journal of Chemical Education, vol. 91, pp. 711-715, 2014.
[49] G. E. Thompson, & G. C. Wood, “Porous anodic film formation on aluminium,” Nature, vol. 290, pp. 230-232, 1981.
[50] K. Maeda, K. Ichinose, T. Yamazaki, T. Suzuki, “Preparation of mesostructured silica/anodic alumina composite membranes in mild conditions using acetic acid,” Microporous and Mesoporous Materials, vol. 112, pp. 603-611, 2008.
[51] M. Norek, M. Wlodarski, “Morphological and chemical characterization of highly ordered conical-pore anodic alumina prepared by multistep citric acid anodizing and chemical etching process,” Journal of Porous Materials, vol. 25, pp. 45-53, 2018.
[52] W. Lee, K. Nielsch, U. Gosele, “Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization,” Nanotechnology, vol. 18, No. 475713, 2007.
[53] S. Liu, S. G. Tang, H. H. Zhou, C. P. Fu, Z. Y. Huang, H. Y. Liu, Y. F. Kuang, “Fabrication of AAO films with controllable nanopore size by changing electrolytes and electrolytic parameters,” Journal of Solid State Electrochemistry, vol. 17, pp. 1931-1938, 2013.
[54] S. Z. Chu, K. Wada, S. Inoue, M. Isogai, Y. Katsuta, and A. Yasumori, “Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization,” Journal of The Electrochemical Society, vol. 153, pp. B384-B391, 2006.
[55] X. Chen, D. Yu, L. Cao, X. Zhu, Ye Song, H. Huang, L. Lu, X. Chen, “Fabrication of ordered porous anodic alumina with ultra-large interpore distances using ultrahigh voltages,” Materials Research Bulletin, vol.57, pp. 116–120, 2014.
[56] T. Kikuchi, T. Yamamoto, R.O. Suzuki, “Growth behavior of anodic porous alumina formed in malic acid solution,” Applied surface science, vol. 284, pp. 907–913, 2013.
[57] T. Kikuchi, O. Nishinaga, S. Natsui, “Fabrication of anodic nanoporous alumina via acetylenedicarboxylic acid anodizing,” ECS Electrochemistry Letters, vol.7, pp. C25–C28,2014
[58] Y. Li, C. W. Wang, L. R. Zhao, and W. M. Liu, “Photoluminescence properties of porous anodic aluminium oxide membranes formed in mixture of sulfuric and oxalic acid,” Journal of Physics D-Applied Physics, vol. 42, pp. 5, 2009.
[59] G. G. Khan, A. K.Singh, K. Mandal, “Structure dependent photoluminescence of nanoporous amorphous anodic aluminium oxide membranes: Role of F+ center defects”, Journal of Luminescence, vol. 134, pp. 772-777, 2007.
[60] G. S. Huang, X. L. Wu, Y. F. Mei, X. F. Shao, and G. G. Siu, “Strong blue emission from anodic alumina membranes with ordered nanopore array,” Journal of Applied Physics, vol. 93, pp. 582-585, 2003.
[61] A. Belwalkar, E. Grasing, W. Van Geertruyden, Z. Huang, W. Z. Misiolek, “Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes,” Journal of Membrane Science, vol. 319, pp. 192-198, 2008.
[62] S.Shingubara, K. Morimoto, H. Sakaue, and T. Takahagi, “Self-Organization of a Porous Alumina Nanohole Array Using a Sulfuric/Oxalic Acid Mixture as Electrolyte,” Electrochemical and Solid-State Letters, vol. 7 , pp. E15-E17, 2004
[63] H. Masuda, F. Hasegawa, and S. Ono, “Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution,” Journal of The Electrochemical Society, vol. 144, pp. L127-L130, 1997.
[64] H. Masuda, K. Yada, and A. Osaka, “Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution,” Japanese Journal of Applied Physics, vol. 37, pp. L1340-L1342, 1998.
[65] L. B. Edith, A. Donony, P. Csokfáah, “Untersuchung der Struktur und anderer Eigenschaften von durch anodische Oxydation auf Aluminium erzeugten Hartoxydschichten,” Materials and Corrosion, vol. 11, pp. 701-707, 1960.
[66] S. V. Gils, P. Mast, E. Stijns, H. Terryn, “Colour properties of barrier anodic oxide films on aluminium and titanium studied with total reflectance and spectroscopic ellipsometry,” Surface & Coatings Technology, vol. 185, pp. 303-310, 2004.
[67] W. Lee, R. Ji, U. Goesele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nature Materials, vol. 5, pp. 741-747, 2006.
[68] S. Z. Chu, K. Wada, S. Inoue, M. Isogai, & A. Yasumori “Fabrication of ideally ordered nanoporous alumina films and integrated alumina nanotubule arrays by high‐field anodization,” Advanced materials, vol. 17, pp. 2115-2119, 2005.
[69] Y. B. Li, M.J. Zheng, L. Ma, & W.Z. Shen, “Fabrication of highly ordered nanoporous alumina films by stable high-field anodization,” Nanotechnology, vol.17, pp. 5101-5105,2006
[70] T. Kikuchi, O. Nishinaga, S. Natsui, R.O. Suzuki, "Fabrication of Self-Ordered Porous Alumina via Etidronic Acid Anodizing and Structural Color Generation from Submicrometer-Scale Dimple Array," Electrochimica Acta, 156 235–243, 2015.
[71] K. Ebihara, H. Takahashi, and M. Nagayama, "Structure and density of anodic oxide films formed on aluminium in oxalic acid solutions," J. Met. Finish. Soc. Jpn, vol. 34, pp. 548-553, 1983.
[72] Y. Xu, G. E. Thompson, G. C. Wood, “Mechanism of anodic film growth on aluminium.” Transactions of the Institute of Metal Finishing, vol. 63, pp. 98-103, 1986.
[73] J. O'sullivan and G. Wood, "The morphology and mechanism of formation of porous anodic films on aluminium," in Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, pp. 511-543, 1970.
[74] J. Zhang, J. E. Kielbasa, D. L. Carroll, “Controllable fabrication of porous alumina templates for nanostructures synthesis,” Materials Chemistry and Physics, vol. 122, pp. 295-300, 2010.
[75] C. K. Chung, D. Dhandapani, C. J. Syu, M. W. Liao, B. Y. Chu, E. H. Kuo, “Role of Oxalate Anions on the Evolution of Widened Pore Diameter and Characteristics of Room-Temperature Anodic Aluminum Oxide,” Journal of The Electrochemical Society, vol. 166, pp. 121-127, 2019.
[76] Z. He, L. Yao, M. Zheng, L. Ma, S. He, W. Shen, “Enhanced humidity sensitivity of nanoporous alumina films by controlling the concentration and type of impurity in pore wall,” Physica E: Low-dimensional Systems and Nanostructures, vol. 43, pp. 366-371, 2010.
[77] T. Nagaura, F. Takeuchi, S. Inoue, "Fabrication and structural control of anodic alumina films with inverted cone porous structure using multi-step anodizing, "Electrochimica Acta 53 2109–2114, 2008.
[78] Y. Zhang, S.J. Son, H. Ju, "Anodized aluminum oxide membranes of tunable porosity with platinum nanoscale-coating for photonic application, "Current Applied Physics 12 1561e1565, 2012.
[79] L. Zaraska, G.D. Sulka, J. Szeremeta, and M. Jaskuła, “Porous anodic alumina formed by anodization of aluminum alloy (AA1050) and high purity aluminum,” Electrochimica Acta, vol. 55, pp. 4377-4386, 2010.
[80] A. R. Parker, "515 million years of structural colour," Journal of Optics A: Pure and Applied Optics, vol. 2, p. R15, 2000.
[81] M. Sarrazin, J. P. Vigneron, V. Welch, and M. Rassart, "Nanomorphology of the blue iridescent wings of a giant tropical wasp Megascolia procer javanensis (Hymenoptera)," Physical Review E, vol. 78, p. 051902, 2008.
[82] J. Sun, B. Bhushan and J. Tong, "Structural coloration in nature," RSC Adv., 3, 14862–14889, 2013.
[83] L. Bai, Z. Xie, W. Wang, C. Yuan, Y. Zhao, Z. Mu, Q. Zhong, Z. Gu, “Bio-inspired vapor-responsive colloidal photonic crystal patterns by inkjet printing,” ACS nano, vol. 8, pp. 11094-11100, 2014.
[84] X. D. Shi, J. L. He, X. H. Xie, R. M. Dou, X. H. Lu, “Photonic crystals with vivid structure color and robust mechanical strength,” Dyes and Pigments 165, 137-143, 2019.
[85] S. L. Wu, T. F. Liu, B. T. Tang, L. Li, S. F. Zhang, “Structural Color Circulation in a Bilayer Photonic Crystal by Increasing the Incident Angle,” ACS Applied Materials & Interfaces 11, 10171-10177, 2019.
[86] J. Cui, X. C. Cui, H. Xu, Y. Liu, J. Zheng, Z. C. Ye, “Polarized structure color from thin dielectric gratings on a metal film,” Applied Optics, vol. 54, 3868-3872, 2015.
[87] X. Zheng, Q. Wang, J. J. Luan, Y. Li, N. Wang, R. Zhang, “Angle-dependent structural colors in a nanoscale-grating photonic crystal fabricated by reverse nanoimprint technology,” Beilstein Journal of Nanotechnology 10, 1211-1216, 2019.
[88] M. Seo, J. Kim, H. Oh, M. Kim, I. U. Baek, K. D. Choi, J. Y. Byun, M. Lee, “Printing of Highly Vivid Structural Colors on Metal Substrates with a Metal-Dielectric Double Layer,” Advanced Optical Materials 7, No. 1900196, 2019.
[89] S. Banisadr, A. Oyefusi, J. Chen, “A Versatile Strategy for Transparent Stimuli-Responsive Interference Coloration,” ACS Applied Materials & Interfaces 11, 7415-7422, 2019.
[90] W. Yue, Y. Li, C. Wang, Z. Yao, S. S. Lee, N. Y. Kim, “Color filters based on a nanoporous Al-AAO resonator featuring structure tolerant color saturation,” Optics Express, vol. 23, pp. 27474-27483, 2015.
[91] S. Y. Zhang, Q. Xu, Z. J. Wang, S. Z. Hao, C. X. Sun, W. J. Ma, “Preparation and characterization of anodic alumina films with high-saturation structural colors in a mixed organic electrolyte,” Surface and coating technology, vol. 346,pp. 48-52, 2018.
[92] F. E. T. Heakal, O. S. Shehata, & A. M. Awad, “Relevant aspects in the stability performance of different anodic alumina (AAO) films in aqueous sulfate solutions,” Journal of Electroanalytical Chemistry, vol. 792, pp. 95-103, 2017.
[93] A. M. Awad, O. S. Shehata, & F. E. T. Heakal,“Effect of various de-anodizing techniques on the surface stability of non-colored and colored nanoporous AAO films in acidic solution,” Applied Surface Science, vol. 359, pp. 939-947, 2015.
[94] N. Cathcart, & V. Kitaev,“ Symmetry breaking by surface blocking: synthesis of bimorphic silver nanoparticles, nanoscale fishes and apples,” Scientific reports, vol. 6, pp. 1-10, 2016.
[95] J. Cui, X. C. Cui, H. Xu, Y. Liu, J. Zheng, & Z. C. Ye, “Polarized structure color from thin dielectric gratings on a metal film,” Applied Optics, vol. 54, pp. 3868-3872, 2015.
[96] Y. Liu, Y. Chang, Z. Ling, X. Hu, & Y. Li, “Structural coloring of aluminum. Electrochemistry communications,” vol. 13, pp. 1336-1339, 2011.
[97] W. Yue, Y. Li, C. Wang, Z. Yao, S. S. Lee, & N. Y. Kim, “Color filters based on a nanoporous Al-AAO resonator featuring structure tolerant color saturation,” Optics express, vol. 23, pp. 27474-27483, 2015.
[98] X. Wang, D. Zhang, H. Zhang, Y. Ma, and J. Jiang, "Tuning color by pore depth of metal-coated porous alumina," Nanotechnology, vol. 22, pp. 305306, 2011.
[99] C. V. Manzano, D. Ramos, L. Pethö, G. Bürki, J. Michler,and L. Philippe “Controlling the Color and Effective Refractive Index of Metal-Anodic Aluminum Oxide (AAO)−Al Nanostructures: Morphology of AAO” THE Journal of Physical Chemistry C , vol. 122, pp. 957–963, 2018.
[100] S. Y. Zhang, Q. Xu, Z. J. Wang, Y. X. Ren, R. J. Yan, W. J. Ma, & J. L. Zhu, “The effect of propylene glycol on the optical properties of iridescent porous anodic alumina films,” Journal of Porous Materials, vol. 25, pp.1213-1217, 2018.
[101] Y. Chen, A. Santos, D. Ho, Y. Wang, T. Kumeria, J. Lib, C. Wang, D. Losic, "On The Generation of Interferometric Colors in High Purity and Technical Grade Aluminum: An Alternative Green Process for Metal Finishing Industry," Electrochimica Acta, vol. 174, pp. 672–681, 2015.
[102] Q. Xu, H. M. Ma, Y. J. Zhang, R. S. Li, & H. Y. Sun, “Synthesis of iridescent Ni-containing anodic aluminum oxide films by anodization in oxalic acid,” Optical Materials, vol. 52, pp. 107-110, 2016.
[103] Q. Xu, H. Y. Sun, Y. H. Yang, L. H. Liu, & Z. Y. Li, “Optical properties and color generation mechanism of porous anodic alumina films,” Applied Surface Science, vol. 258, pp. 1826-1830, 2011.
[104] X. Zhao, G. Meng, Q. Xu, F. Han, & Q. Huang, “Color Fine‐Tuning of CNTs@ AAO Composite Thin Films via Isotropically Etching Porous AAO Before CNT Growth and Color Modification by Water Infusion. Advanced Materials,” vol. 22, pp. 2637-2641, 2010.
[105] S. H. Ryu, & D. K. Yoon, “Switchable plasmonic film using nanoconfined liquid crystals,” ACS applied materials & interfaces, vol. 9, pp. 25057-25061, 2017.
[106] S. Van Gils, P. Mast, E. Stijns, and H. Terryn, "Colour properties of barrier anodic oxide films on aluminium and titanium studied with total reflectance and spectroscopic ellipsometry," Surface and Coatings Technology, vol. 185, pp. 303-310, 2004.
[107] M. Moirangthem, & A. P. Schenning, “Full Color Camouflage in a Printable Photonic Blue-Colored Polymer,” ACS Applied Materials & Interfaces, vol. 10, pp. 4168−4172, 2018.
[108] Y. M. Wang, X.T. Tian, H. Zhang, Z. R.Yang, & X. B. Yin, “Anticounterfeiting Quick Response Code with Emission Color of Invisible Metal−Organic Frameworks as Encoding Information,” ACS Applied Materials & Interfaces, vol. 10, pp. 22445−22452, 2018.
[109] P. M. Resende, R. Sanz, O. Caballero‐Calero, & M. Martín‐González, “Cost‐Effective, Flexible, Hydrophobic, and Tunable Structural Color Polymeric Bragg Reflector Metastructures,” Advanced Optical Materials, vol. 6, pp. 1800408, 2018.
[110] X. She, F. Yuan, T. Zhan, J. Sun, & Y. Zou, “Synthesis and photoluminescence study of flexible PMMA/Eu and Tb complex nanotube arrays,” Optics and Lasers in Engineering, vol. 124, pp. 105829, 2020.
[111] Y. Bae, J. Yu, Y. Jung, D. Lee and D. Choi, “Cost-Effective and High-Throughput Plasmonic Interference Coupled Nanostructures by Using Quasi-Uniform Anodic Aluminum Oxide,” Coatings, vol. 9, pp. 420, 2019.
[112] C. Song, X. Ding, & L. Que, “High-resolution, flexible, and transparent nanopore thin film sensor enabled by cascaded Fabry–Perot effect,” Optics letters, vol. 43, pp. 3057-3060, 2018.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2030-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2030-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw