進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0408201921523300
論文名稱(中文) 氧化鎳與氧化鈷奈米粒子覆蓋於n型氮化鎵工作電極之光電化學水分解的特性分析
論文名稱(英文) The study of photoelectrochemical water splitting using n-GaN with NiOx & CoOx nanoparticles coating as the photoelectrodes
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 107
學期 2
出版年 108
研究生(中文) 王煌凱
研究生(英文) Huang-Kai Wang
學號 L76074077
學位類別 碩士
語文別 中文
論文頁數 136頁
口試委員 指導教授-許進恭
口試委員-林家裕
口試委員-吳季珍
口試委員-陳昭宇
口試委員-陳浩銘
中文關鍵字 光電化學  氮化鎵  光腐蝕  氧化鎳  氧化鈷 
英文關鍵字 Photoelectrochemical  GaN  photo-corrosion  NiO  Co3O4 
學科別分類
中文摘要 本實驗所使用到的半導體材料為n型氮化鎵,在運用到光電化學電解水的系統當中,具有適當的能帶位置與良好的抗酸鹼能力,且能夠在照光下順利地形成光電流並產生氫氣。但因氮化鎵存在著許多晶格缺陷在表面,使得光生載子形成後容易累積在半導體的表面缺陷處,造成光腐蝕現象並降低元件的穩定性。
因此本篇論文的研究方向是選用奈米氧化鎳或是奈米氧化鈷粒子,將其附著在n型氮化鎵上,並運用在電解液為1M NaCl的光電化學系統當中。從實驗結果印證出這兩種催化劑確實能夠修飾半導體表面、增加內建電場、提升反應的動力,並從SEM觀察到元件蝕刻的情況確實有所改善。特別的是氧化鎳能夠在減緩光腐蝕現象的情況下,還能有顯著的光電流增益,進而提升氫氣的產率。
英文摘要 Hydrogen generated by photoelectrochemical solar water splitting process has a great potential to provide the energy consumption. Gallium nitride (GaN) is the materials appropriate for solar water splitting system because its energy band position straddles the redox potential of water. However, n-type GaN (n-GaN) as photoanode has photo-corrosion event in the long-term experiment. In this research, we discuss the characteristics and photoelectrochemical (PEC) properties of Nickel Oxide (NiOx) and Cobalt Oxide (Co3O4) nanoparticles on n-GaN substrate by spin coating process. The various weight ratio of NiOx (1:5 and 3:2) and Co3O4 (1:1 and 1:5) were utilized in this study. These catalysts were covered on n-GaN to prevent photo-corrosion and decrease the solar water splitting reaction overpotential. Interestingly, NiOx nanoparticles can not only avoid the corrosion phenomenon on n-GaN surface, but also enhance photocurrent density while working electrode applied bias of 1V in two-electrode system. In stability test, the hydrogen evolution rate of NiO 3:2 was more rapid than the pristine n-GaN after 5 hours. This result indicates that NiOx nanoparticles covered on n-GaN can enhance lifetime and hydrogen production in PEC cells.
論文目次 摘要 I
致謝 VII
目錄 VIII
表目錄 IX
圖目錄 X
第一章 序論 1
1.1 前言 1
1.2 研究動機與文獻回顧 2
第二章 光電化學實驗系統 12
2.1 理論基礎 12
2.2 光電化學系統 23
2.3 實驗所需之儀器與藥品 32
第三章 探討氧化鎳 34
3.1 氧化鎳樣品製備與試片結構 34
3.2 氧化鎳薄膜特性分析 41
3.3 氧化鎳光電化學實驗數據分析與討論 57
第四章 探討氧化鈷 98
4.1 氧化鈷樣品製備與試片結構 98
4.2 氧化鈷薄膜特性分析 100
4.3 氧化鈷光電化學實驗數據分析與討論 111
第五章 結論與未來展望 127
5.1 結論 127
5.2 未來展望 128
參考文獻 129

參考文獻 [1] J. Barber, "Photosynthetic energy conversion: natural and artificial," Chemical Society Reviews, vol. 38, no. 1, pp. 185-196, 2009.
[2] C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, and J. Tang, "Photoelectrochemical devices for solar water splitting – materials and challenges," Chemical Society Reviews, vol. 46, no. 15, pp. 4645-4660, 2017.
[3] A. J. Bard and M. A. Fox, "Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen," Accounts of Chemical Research, vol. 28, no. 3, pp. 141-145, 1995.
[4] A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode," Nature, vol. 238, no. 5358, pp. 37-38, 1972.
[5] A. Fujishima, K. Kohayakawa, and K. Honda, "Hydrogen Production under Sunlight with an Electrochemical Photocell," Journal of The Electrochemical Society, vol. 122, no. 11, pp. 1487-1489, 1975.
[6] M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, "Solar Water Splitting Cells," Chemical Reviews, vol. 110, no. 11, pp. 6446-6473, 2010.
[7] K. Fujii, T. Karasawa, and K. Ohkawa, "Hydrogen Gas Generation by Splitting Aqueous Water Using n-Type GaN Photoelectrode with Anodic Oxidation," Japanese Journal of Applied Physics, vol. 44, no. 18, pp. L543-L545, 2005.
[8] H. S. Venugopalan and S. E. Mohney, "Thermally stable rhenium Schottky contacts to n-GaN," Applied Physics Letters, vol. 73, no. 9, pp. 1242-1244, 1998.
[9] K. Fujii and K. Ohkawa, "Hydrogen generation from aqueous water using n‐GaN by photoassisted electrolysis," Physica Status Solidi, vol. 3, no. 6, pp. 2270-2273, 2006.
[10] M. G. Kibria and Z. Mi, "Artificial photosynthesis using metal/nonmetal-nitride semiconductors: current status, prospects, and challenges," Journal of Materials Chemistry A, vol. 4, no. 8, pp. 2801-2820, 2016.
[11] H. Zhang, M. Ebaid, J. Tan, G. Liu, J. W. Min, T. K. Ng, and B. S. Ooi, "Improved solar hydrogen production by engineered doping of InGaN/GaN axial heterojunctions," Optical Express, vol. 27, no. 4, pp. A81-A91, 2019.
[12] B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, "Highly Stable Photoelectrochemical Water Splitting and Hydrogen Generation Using a Double-Band InGaN/GaN Core/Shell Nanowire Photoanode," Nano Letters, vol. 13, no. 9, pp. 4356-4361, 2013.
[13] S. Yotsuhashi, M. Deguchi, Y. Zenitani, R. Hinogami, H. Hashiba, Y. Yamada, and K. Ohkawa, "Photo-induced CO2 Reduction with GaN Electrode in Aqueous System," Applied Physics Express, vol. 4, no. 11, p. 117101, 2011.
[14] S. Yotsuhashi, M. Deguchi, Y. Zenitani, R. Hinogami, H. Hashiba, Y. Yamada, and K. Ohkawa, "CO2 Conversion with Light and Water by GaN Photoelectrode," Japanese Journal of Applied Physics, vol. 51, no. 2, p. 02BP07, 2012.
[15] H. Kim, H. Bae, S. W. Bang, S. Kim, S. H. Lee, S. W. Ryu, and J.-S. Ha, "Enhanced photoelectrochemical stability of GaN photoelectrodes by Al2O3 surface passivation layer," Optical Express, vol. 27, no. 4, pp. A206-A215, 2019.
[16] H. Bae, H. Kim, J. W. Ju, D. W. Jeon, S. W. Ryu, Y. Moon, and J. S. Ha, "Highly Stable Bulk GaN Photoanode Grown by Hydride Vapor-Phase Epitaxy for Photoelectrochemical Water Splitting," Journal of The Electrochemical Society, vol. 166, no. 4, pp. H103-H107, 2019.
[17] Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. D. Chidsey, and P. C. McIntyre, "Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation," Nature Materials, vol. 10, pp. 539-544, 2011.
[18] M. A. Hassan, J. H. Kang, M. A. Johar, J. S. Ha, and S. W. Ryu, "High-performance ZnS/GaN heterostructure photoanode for photoelectrochemical water splitting applications," Acta Materialia, vol. 146, pp. 171-175, 2018.
[19] S. K. Pilli, T. E. Furtak, L. D. Brown, T. G. Deutsch, J. A. Turner, and A. M. Herring, "Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation," Energy & Environmental Science, vol. 4, no. 12, pp. 5028-5034, 2011.
[20] S. Xie, T. Zhai, Y. Zhu, W. Li, R. Qiu, Y. Tong, and X. Lu, "NiO decorated Mo:BiVO4 photoanode with enhanced visible-light photoelectrochemical activity," International Journal of Hydrogen Energy, vol. 39, no. 10, pp. 4820-4827, 2014.
[21] G. Dong, H. Hu, X. Huang, Y. Zhang, and Y. Bi, "Rapid activation of Co3O4 cocatalysts with oxygen vacancies on TiO2 photoanodes for efficient water splitting," Journal of Materials Chemistry A, vol. 6, no. 42, pp. 21003-21009, 2018.
[22] C. C. L. McCrory, S. Jung, J. C. Peters, and T. F. Jaramillo, "Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction," Journal of the American Chemical Society, vol. 135, no. 45, pp. 16977-16987, 2013.
[23] R. Beranek, "(Photo)electrochemical Methods for the Determination of the Band Edge Positions of TiO2-Based Nanomaterials," Advances in Physical Chemistry, vol. 2011, p. 20, 2011.
[24] V. D. K. Roel and G. Michael, Photoelectrochemical Hydrogen Production. Springer US:Boston, pp. 30-79, 2012.
[25] Z. Chen, H. Dinh, and E. Miller, Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols. Springer US:Boston, pp. 68-80, 2013.
[26] M. Selva and P. Ugo, Synthesis and functionalization of metal oxide nanostructures for photoelectrochemical energy conversion. Università Ca' Foscari Venezia, Scienze chimiche, pp. 7-12, 2013.
[27] D. Choi, J. G. Rowley, and B. A. Parkinson, "Dye Sensitization of n and p Type Gallium Phosphide Photoelectrodes," Journal of The Electrochemical Society, vol. 159, no. 11, pp. H846-H852, 2012.
[28] H. Gerischer, "On the stability of semiconductor electrodes against photodecomposition," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 82, no. 1, pp. 133-143, 1977.
[29] D. R. Baker and C. A. Lundgren, "Electrochemical determination of the gallium-nitride photocorrosion potential in acidic media," Journal of Materials Chemistry A, vol. 5, no. 39, pp. 20978-20984, 2017.
[30] S. Chen and L. W. Wang, "Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution," Chemistry of Materials, vol. 24, no. 18, pp. 3659-3666, 2012.
[31] T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, "Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects," International Journal of Hydrogen Energy, vol. 27, no. 10, pp. 991-1022, 2002.
[32] A. J. Bard and L. R. Faulkner, Electrochemical Methods : Fundamentals and Applications. John Wiley & Sons:New York, pp. 53-54, 2001.
[33] K. Ren and Y. X. Gan, Advances in Photoelectrochemical Fuel Cell Research. Intech:London, pp. 3-6, 2012.
[34] M. Sharma, H. Liu, S. Chen, F. Cheng, G. Voordouw, and L. Gieg, "Effect of selected biocides on microbiologically influenced corrosion caused by Desulfovibrio ferrophilus IS5," Scientific Reports, vol. 8, no. 1, p. 16620, 2018.
[35] Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, "Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols," Journal of Materials Research, vol. 25, no. 1, pp. 3-16, 2010.
[36] Y. Hou, Z. A. Syed, R. Smith, M. Athanasiou, Y. Gong, X. Yu, J. Bai, and T. Wang, "Enhanced water splitting with silver decorated GaN photoelectrode," Journal of Physics D: Applied Physics, vol. 49, no. 26, p. 265601, 2016.
[37] Y. Hou, X. Yu, Z. A. Syed, S. Shen, J. Bai, and T. Wang, "GaN nano-pyramid arrays as an efficient photoelectrode for solar water splitting," Nanotechnology, vol. 27, no. 45, p. 455401, 2016.
[38] M. Ebaid, J. H. Kang, and S. W. Ryu, "Controllable Synthesis of Vapor-Liquid-Solid Grown GaN Nanowires for Photoelectrochemical Water Splitting Applications," Journal of The Electrochemical Society, vol. 162, no. 4, pp. H264-H270, 2015.
[39] S. U. M. Khan and T. Sultana, "Photoresponse of n-TiO2 thin film and nanowire electrodes," Solar Energy Materials and Solar Cells, vol. 76, no. 2, pp. 211-221, 2003.
[40] T. Sekimoto, S. Shinagawa, Y. Uetake, K. Noda, M. Deguchi, S. Yotsuhashi, and K. Ohkawa, "Tandem photo-electrode of InGaN with two Si p-n junctions for CO2 conversion to HCOOH with the efficiency greater than biological photosynthesis," Applied Physics Letters, vol. 106, no. 7, p. 073902, 2015.
[41] 謝昂軒, "微波輔助合成氧化鎳奈米顆粒應用至鈣鈦礦太陽能電池之研究," 成功大學光電科學與工程學系學位論文, 2016.
[42] S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Péchy, and M. Grätzel, "Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells," Progress in Photovoltaics: Research and Applications, vol. 15, no. 7, pp. 603-612, 2007.
[43] 李貫綸, "使用氮化鎵系列薄膜作為光電極於氯化鈉溶液和海水電解質中生成氫氣與還原二氧化碳為甲酸之研究," 成功大學光電科學與工程學系學位論文, 2018.
[44] 黃晨嘉, "具有不同表面層的p型GaN對光電解水的影響," 成功大學光電科學與工程學系學位論文, 2018.
[45] A. Bouhank, Y. Bellal, and H. Serrar, "Study of thin Films of Nickel Oxide (NiO) Deposited by the Spray Pyrolysis Method," Journal of Chemistry and Chemical Engineering vol. 12, no. 3, pp. 116-120, 2018.
[46] S. Fritze, A. Dadgar, H. Witte, M. Bügler, A. Rohrbeck, J. Bläsing, A. Hoffmann, and A. Krost, "High Si and Ge n-type doping of GaN doping - Limits and impact on stress," Applied Physics Letters, vol. 100, no. 12, p. 122104, 2012.
[47] T. Bhat, B. Pandey, and S. Krupanidhi, "Polarization Induced Interfacial Coupling Modulations in BaTiO3/GaN Heterojunction Devices," Journal of Physics D: Applied Physics, vol. 50, p. 275101, 2017.
[48] N. Kaur, E. Comini, D. Zappa, N. Poli, and G. Sberveglieri, "Nickel oxide nanowires: vapor liquid solid synthesis and integration into a gas sensing device," Nanotechnology, vol. 27, no. 20, p. 205701, 2016.
[49] F. T. Thema, E. Manikandan, A. G. Fakim, and M. Maaza, "Single phase Bunsenite NiO nanoparticles green synthesis by Agathosma betulina natural extract," Journal of Alloys and Compounds, vol. 657, pp. 655-661, 2016.
[50] A. C. Gandhi, H. Y. Cheng, Y. M. Chang, and J. G. Lin, "Size confined magnetic phase in NiO nanoparticles," Materials Research Express, vol. 3, no. 3, p. 035017, 2016.
[51] L. A. García-Cerda, K. M. Bernal-Ramos, S. M. Montemayor, M. A. Quevedo-López, R. Betancourt-Galindo, and D. Bueno-Báques, "Preparation of hcp and fcc Ni and Ni/NiO Nanoparticles Using a Citric Acid Assisted Pechini-Type Method," Journal of Nanomaterials, vol. 2011, p. 6, 2011.
[52] L. C. Bartel and B. Morosin, "Exchange Striction in NiO," Physical Review B, vol. 3, no. 3, pp. 1039-1043, 1971.
[53] 劉書巖, "氮化鎵系列光電解水產氫元件之製作與特性分析," 成功大學光電科學與工程學系學位論文, 2012.
[54] L. Pan, S. Wang, J. Xie, L. Wang, X. Zhang, and J. J. Zou, "Constructing TiO2 p-n homojunction for photoelectrochemical and photocatalytic hydrogen generation," Nano Energy, vol. 28, pp. 296-303, 2016.
[55] K. Fujii, M. Ono, Y. Iwaki, K. Sato, K. Ohkawa, and T. Yao, "Photoelectrochemical Properties of the p−n Junction in and near the Surface Depletion Region of n-Type GaN," The Journal of Physical Chemistry C, vol. 114, no. 51, pp. 22727-22735, 2010.
[56] S. Yan, Z. Xu, Z. Shi, L. Pei, Z. Gu, and Z. Zou, "Ni@Ni(OH)2 Core-Shell Particles Partially Covering Silicon Photoanode for Enhanced Efficiency and Stability of Photoelectrochemical Water Oxidation," ChemSusChem, vol. 10, pp. 1-8, 2017.
[57] I. A. Digdaya, L. Han, T. W. F. Buijs, M. Zeman, B. Dam, A. H. M. Smets, and W. A. Smith, "Extracting large photovoltages from a-SiC photocathodes with an amorphous TiO2 front surface field layer for solar hydrogen evolution," Energy & Environmental Science, vol. 8, no. 5, pp. 1585-1593, 2015.
[58] J. Y. Jung, J. Y. Yu, and J. H. Lee, "Dynamic Photoelectrochemical Device with Open-Circuit Potential Insensitive to Thermodynamic Voltage Loss," The Journal of Physical Chemistry Letters, vol. 9, no. 18, pp. 5412-5418, 2018.
[59] F. J. Mancilla, S. F. Rojas, A. F. G. Reyes, M. I. Carreño-Lizcano, L. J. Duarte, and M. E. Niño-Gómez, "Improving the photoelectrocatalytic performance of boron-modified TiO2/Ti sol–gel-based electrodes for glycerol oxidation under visible illumination," RSC Advances, vol. 6, no. 52, pp. 46668-46677, 2016.
[60] Y. Kumazaki, A. Watanabe, Z. Yatabe, and T. Sato, "Correlation between Structural and Photoelectrochemical Properties of GaN Porous Nanostructures Formed by Photo-Assisted Electrochemical Etching," Journal of The Electrochemical Society, vol. 161, no. 10, pp. H705-H709, 2014.
[61] H. Sezen, E. Ozbay, and S. Suzer, "XPS for probing the dynamics of surface voltage and photovoltage in GaN," Applied Surface Science, vol. 323, pp. 25-30, 2014.
[62] D. Ghosh, S. Hussain, B. Ghosh, R. Bhar, and A. K. Pal, "Stress and Grain Boundary Properties of GaN Films Prepared by Pulsed Laser Deposition Technique," ISRN Materials Science, vol. 2014, p. 10, 2014.
[63] P. Motamedi, N. Dalili, and K. Cadien, "A route to low temperature growth of single crystal GaN on sapphire," Journal of Materials Chemistry C, vol. 3, no. 28, pp. 7428-7436, 2015.
[64] M. Kumar, A. Kumar, S. B. Thapa, S. Christiansen, and R. Singh, "XPS study of triangular GaN nano/micro-needles grown by MOCVD technique," Materials Science and Engineering: B, vol. 186, pp. 89-93, 2014.
[65] D. H. Tu, H. C. Wang, P. S. Wang, W. C. Cheng, K. H. Chen, C. I. Wu, S. Chattopadhyay, and L. C. Chen, "Improved corrosion resistance of GaN electrodes in NaCl electrolyte for photoelectrochemical hydrogen generation," International Journal of Hydrogen Energy, vol. 38, no. 34, pp. 14433-14439, 2013.
[66] M. Zhong, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu, A. Iwase, Q. Jia, H. Nishiyama, T. Minegishi, M. Nakabayashi, N. Shibata, R. Niishiro, C. Katayama, H. Shibano, M. Katayama, A. Kudo, T. Yamada, and K. Domen, "Surface Modification of CoOx Loaded BiVO4 Photoanodes with Ultrathin p-Type NiO Layers for Improved Solar Water Oxidation," Journal of the American Chemical Society, vol. 137, no. 15, pp. 5053-5060, 2015.
[67] F. Liu, X. Wang, J. Hao, S. Han, J. Lian, and Q. Jiang, "High Density Arrayed Ni/NiO Core-shell Nanospheres Evenly Distributed on Graphene for Ultrahigh Performance Supercapacitor," Scientific Reports, vol. 7, no. 1, p. 17709, 2017.
[68] M. R. Hasan, T. Xie, S. C. Barron, G. Liu, N. V. Nguyen, A. Motayed, M. V. Rao, and R. Debnath, "Self-powered p-NiO/n-ZnO heterojunction ultraviolet photodetectors fabricated on plastic substrates," APL Materials, vol. 3, no. 10, 2015.
[69] C. D. Gu, M. L. Huang, X. Ge, H. Zheng, X. L. Wang, and J. P. Tu, "NiO electrode for methanol electro-oxidation: Mesoporous vs. nanoparticulate," International Journal of Hydrogen Energy, vol. 39, no. 21, pp. 10892-10901, 2014.
[70] K. Koike, T. Goto, S. Nakamura, S. Wada, and K. Fujii, "Investigation of carrier transfer mechanism of NiO-loaded n-type GaN photoanodic reaction for water oxidation by comparison between band model and optical measurements," MRS Communications, vol. 8, pp. 1-7, 2018.
[71] D. Wang, F. Watanabe, and W. Zhao, "Reduced Graphene Oxide-NiO/Ni Nanomembranes as Oxygen Evolution Reaction Electrocatalysts," ECS Journal of Solid State Science and Technology, vol. 6, no. 6, pp. M3049-M3054, 2017.
[72] H. Hu, J. Zhu, M. Chen, T. Guo, and F. Li, "Inkjet-printed p-type nickel oxide thin-film transistor," Applied Surface Science, vol. 441, pp. 295-302, 2018/05/31/ 2018.
[73] S. A. Makhlouf, Z. H. Bakr, K. I. Aly, and M. S. Moustafa, "Structural, electrical and optical properties of Co3O4 nanoparticles," Superlattices and Microstructures, vol. 64, pp. 107-117, 2013.
[74] B. R. Murias and V. Salgueiriño, "Thermodynamic CoO-Co3O4 crossover using Raman spectroscopy in magnetic octahedron-shaped nanocrystals," Journal of Raman Spectroscopy, vol. 48, no. 6, pp. 837-841, 2017.
[75] A. Diallo, A. Beye, T. Doyle, E. Park, and M. Maaza, "Green synthesis of Co3O4 nanoparticles via Aspalathus linearis : Physical properties," Green Chemistry Letters and Reviews, vol. 8, pp. 30-36, 2015.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw