進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0408201716213400
論文名稱(中文) 兩個時空模型之比較及應用於空污資料
論文名稱(英文) Comparison and Application of Two Spatio-Temporal Models to Air Pollution
校院名稱 成功大學
系所名稱(中) 統計學系
系所名稱(英) Department of Statistics
學年度 105
學期 2
出版年 106
研究生(中文) 黃祺哲
研究生(英文) Qi-Zhe Huang
學號 R26041100
學位類別 碩士
語文別 中文
論文頁數 32頁
口試委員 指導教授-李國榮
口試委員-張欣民
口試委員-陳裕政
中文關鍵字 時空統計  空間統計  空汙資料 
英文關鍵字 Spatio-Temporal statistic  air pollution data 
學科別分類
中文摘要 近年空氣品質的議題十分受到注目,其資料往往個具有時間與空間的性質,分析方法從傳統的時間序列、空間統計,到近期相互結合的時空模型。在Shuvo Bakar et al.(2011)提出Modified AR model(MAR)而Gelfand et al.(2005) 提出 Dynamic spatio-temporal model(DYN) 皆利用了時間序列,均是其空間變異具有時間自我相關,當作其時空效果,因此本文將比較其兩者,在比較中可發現,在DYN 其共變量效果與空間變異隨時間而改變,因此兩點觀測樣本之相關性與共變量效果變異有其相關,之後對各種不同情況的下模擬,並進行配適及預測能力進行對比,在模擬結果可得知在共變量不變時,即主要趨勢不變時,MAR 明顯優於 DYN,反之亦然。而在共變量效果不變下,空間變異改變時,DYN 其模型配適明顯估計較好,但由於其較複雜,導致其變異較大。最後進行了真實資料分析,在我們所使用的第一筆資料發現其共變量效果有明顯改變,與模擬結果一致,DYN 優於 MAR,而第二筆資料中發現其共變量效果有改變,但其個別時間的的平均共變量效果解釋相對整體共變量效果解釋,因此在此時使用 MAR 相對較好。
英文摘要 The issue of air quality has attracted much attention recently. The related data to study air quality intrinsically have complex spatial and temporal structures. Conventional analysis approaches are spatio-temporal statistics. In this article, we investigate the properties of two models, modified AR model (Shuvo Bakar et al., 2011) and dynamic spatio-temporal model (DYN, Gelfand et al., 2005). There are many important differences in trend effect and space-time correlation structures.
Simulation studies are conducted to compare the performance of two models in terms of predictive accuracy and model fitting criteria. We simulated data sets with different trend effect and space-time correlation structures and used Markov chain Monte Carlo (MCMC) techniques to obtain the estimations of the parameters. When either trend or spatial effects are fixed across time, MAR performs better than DYN based on model fitting criteria and predicting ability. However, DYN is better than MAR in terms of model fitting when the spatial effect is changed in time. Finally, the real life data are modeled to validate the findings.
論文目次 目錄
誌謝 I
中文摘要 II
EXTENDED ABSTRACT III
圖目錄 IX
表目錄 X
第一章 緒論 1
1.1研究動機 1
1.2研究背景與目的 1
1.2.1時間序列 3
1.2.2 空間統計 3
第二章 統計方法 5
2.1 地理統計類型資料 5
2.2 統計模型 7
2.2.1 Modified AR model 8
2.2.2 Dynamic spatio-temporal model 9
2.3 模型比較 10
2.4 先驗分配 11
2.5 模型配適 12
2.6 預測 13
第三章 模擬方法 15
第四章 資料分析 25
4.1 美國科羅拉多州月最高溫 25
4.2 美國紐約臭氧資料 27
第五章 結論 30
REFERENCE 31

參考文獻 許添容,台灣地區鄉鎮市區生育率的空間與群集研究,國立政治大學統計學研究所碩士論文。(2004)
楊奕農,時間序列分析:經濟與財務上之應用,雙葉書廊,台灣。(2009)
溫在弘,空間分析,雙葉書廊,台灣。(2015)
Banerjee S, Carlin CP, Gelfand AE (2004). “Hierarchical Modeling and Analysis for Spatial Data.” Chapman & Hall/CRC, Boca Raton, Florida.
Bakar, K.S. (2012). “Bayesian Analysis of Daily Maximum Ozone Levels.” PhD Thesis, University of Southampton, Southampton, United Kingdom.
Cressie NAC, Wikle CK (2011). “Statistics for Spatio-Temporal Data.” John Wiley & Sons,New York.
Finley AO, Banerjee S, Gelfand AE (2015). “spBayes for Large Univariate and Multivariate Point-Referenced Spatio-Temporal Data Models.” Journal of Statistical Software, 63(13),1–28.
Fiore, A.M., Jacob, D.J., Logan, J.A., Yin, J.H. (1998). “Long-term trends in ground level ozone over the contiguous United States, 1980-1995.” Journal of Geophysical Research, 103, 1471-1480.
Guttorp, P., Meiring, W., and Sampson, P. D. (1994). “A Space-time analysis of ground-level ozone data.” Environmetrics, 5, 241–254
Huerta, G., Sanso, B., and Stroud, J.R. (2004). “A Spatiotemporal Model for Maxico City Ozone Levels.” Journal of the Royal Statistical Society, Series: C, 53(2), 231-248.
Robert C, Casella G (2004). Monte Carlo statistical methods. Springer Texts in Statistics,second edition. Springer-Verlag.
Sahu SK, Gelfand AE, Holland DM (2007). “High-Resolution Space-Time Ozone Modeling for Assessing Trends.” Journal of the American Statistical Association, 102, 1221–1234.
Sahu SK, Bakar K (2011). “A comparison of Bayesian models for daily ozone concentration levels.” Statistical Methodology, 9, 144–157.
Sahu SK, Bakar K (2015). “spTimer: Spatio-Temporal Bayesian Modeling Using R.” Journal of Statistical Software, 63(15), 1-32
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-07-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-07-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw