進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0408201616411500
論文名稱(中文) 二氧化錫嵌入於氧化石墨烯之奈米複合材料製作並應用於鋰離子電池負極材料之研究
論文名稱(英文) SnO2 inserted graphene oxide nanocomposites prepared by a facile chemical treatment as negative electrode materials for lithium-ion batteries
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 侯朝鐘
研究生(英文) Chau-Chung Hou
學號 N56034203
學位類別 碩士
語文別 中文
論文頁數 117頁
口試委員 指導教授-黃肇瑞
共同指導教授-張家欽
口試委員-王聖璋
口試委員-劉奕宏
口試委員-方冠榮
中文關鍵字 化學氧化還原反應  二氧化錫  氧化石墨烯  鋰離子電池複合負極材料 
英文關鍵字 Graphene oxide  SnO2  chemical treatment  nanocomposite anode material  lithium-ion batteries 
學科別分類
中文摘要 眾所皆知,鋰離子電池本身具有的高安全性、高能量密度、高穩定性、使用壽命長等特性使其成為近年來最具潛力的綠色能源儲能系統之一。目前已經廣泛地將鋰離子電池應用於電動車及儲能設備方面,因此如何繼續提升電池本身所能提供的電容量以及使用壽命,使得鋰離子電池更能夠滿足下一個世代的電子設備之需求,儼然已成為現今學者的核心研究課題。
本研究中,為了克服提升負極材料之電容量而產生壽命衰退之問題,選用了同時具備高電容量與循環使用壽命衰退較少之二氧化錫作為欲與石墨結合之優選複合材料,並結合了對於石墨材料的表面修飾,加以改善石墨表面性質並提升與二氧化錫結合之特性,期望獲得一同時具備高電容量與高使用壽命之鋰離子電池奈米複合負極材料,故本研究主軸要可分為以下兩大部分:
Part1:
第一部分將以化學氧化還原法(modified Hummer’s method)針對鱗片石墨粉(天然石墨)進行強酸氧化反應以合成出氧化石墨烯結構,藉由含氧官能基之插層行為將原先堆疊之石墨層間距撐開,以達到更多鋰離子能夠在石墨層間中進行嵌入嵌出之效果。透過傅立葉轉換紅外線儀之分析結果可清楚發現,氧化石墨烯之含氧官能基明顯多於鱗片石墨粉。因為含氧官能基結合於石墨將破壞原先單純二維結構之碳鍵結(sp2),並於石墨層邊緣處形成許多不同角度之碳鍵結(sp3)。雖然此種碳結構的改變將會造成石墨材料的導電性降低,但同時可以達到吾人期望的電容量提升與有利於進一步與金屬氧化物結合之反應機構。
Part2:
在本研究中的第二階段,吾人採用無電鍍錫的製程來提升作為碳負極材料的電容量。因此吾人先行使用商用的多層石墨烯碳材料,測試無電鍍錫製程應用於碳材料的可行性。在本階段的研究,吾人證實藉由無電鍍錫的方式,確實能夠成功將二氧化錫結合至多層石墨烯的結構當中,並對於多層石墨烯負極材料的電容量有顯著的提升。這意味著透過調整無電鍍錫的製程參數,將能夠有效提升碳負極材料的電容量,也間接證實了將無電鍍錫製程應用在碳材料方面的可行性。
Part3:
在第一部分的研究當中已經成功對鱗片石墨進行表面改質,也透過第二部分的研究證實無電鍍錫製程應用於碳材料的可行性,因此在第三部分將進一步對氧化石墨烯進行二氧化錫的修飾以形成奈米複合材料。首先,同樣以化學還原法從錫前驅物中還原出錫離子並將其與氧化石墨烯之含氧官能基進行結合以形成錫氧化物,同時達到近似還原氧化石墨烯之效果,去除原先相接於氧化石墨烯層間之含氧官能基以改善其導電性不佳之疑慮。此外,二氧化錫也將扮演提高電容量的角色,幫助改善碳材料為人所詬病的低電容量問題,達到本研究當中製備高電容量與高循環使用壽命之複合負極材料之訴求。
吾人已成功使用簡易且低成本的製程合成出同時具高電容量與高使用壽命之二氧化錫/氧化石墨烯之鋰離子電池奈米複合負極材料,並獲得能夠超越傳統石墨負極材料所能提供之電容量。此種製程方式能夠有效提升石墨烯材料作為鋰離子電池負極材料之性能。
英文摘要 We successfully synthesize the SnO2/graphene oxide nanocomposites through a relatively low temperature and rapid process of chemical treatment (electroless plating). We not only overcome the problem of lower capacities but also satisfy the concept of environmental protection and low cost. We control the reductant amounts in the chemical treatment to observe the affect the combination performance between the SnO2 nanoparticles and graphene oxide, and the electrochemical performance of capacities and cyclic performance during the coin-cell test. We confirm SnO2 actually can incorporate with oxygen-containing functional groups of graphene oxide, achieve the effect that similar to reduction. We also prove SnO2 nanoparticles insert into the layer structure of graphene oxide and get trapped inside, hence, the volume expansion problem of SnO2 nanoparticles during charge/discharge will be greatly relieve. In optimization chemical treatment parameters, SnO2 nanoparticles have a great distribution in the structure of graphene oxide and doesn’t appear the apparent the agglomeration problem of SnO2 nanoparticles. We also use different charge/discharge rate to confirm SnO2/graphene oxide nanocomposite own a great structure stability as anode material. Above results support SnO2/graphene oxide nanocomposite will have a great performance on the capacities and cyclic performance as anode material for lithium ion batteries.
論文目次 中文摘要 I
English extend abstract III
致謝 XI
總目錄 XIII
圖目錄 XVII
表目錄 XXIII
第一章 緒論 1
1.1 前言 1
1.2 零維與二維奈米材料簡介 1
1.3 研究動機 2
第二章 文獻回顧 4
2.1 鋰離子電池的應用與發展 4
2.2 鋰離子電池工作原理與組成 6
2.3 鋰離子電池負極材料 7
2.3.1 傳統鱗片石墨負極材料 7
2.3.2 錫/錫氧化物負極材料 8
2.3.3 矽基負極材料 10
2.4 傳統石墨碳材表面修飾之研究近況 11
2.4.1 石墨烯 11
2.4.2 氧化石墨烯 12
2.4.3 還原氧化石墨烯 14
2.5 石墨烯的製備方式 17
2.5.1 機械剝離法 17
2.5.2 化學氣相沉積法 17
2.5.3 超音波剝離法 18
2.5.4 化學氧化還原法 18
2.6 錫(錫氧化物)/石墨烯複合材料應用於鋰離子電池負極材料之研究近況 21
2.6.1 二氧化錫/石墨烯奈米複合材料的製備 21
2.6.2 使用官能基修飾錫氧化物於過渡金屬氧化物/氧化石墨烯並應用於鋰離子電池 25
2.7 一維二氧化錫奈米顆粒與二維石墨烯層狀結構之協同作用 29
第三章 實驗方法與步驟 31
3.1. 實驗材料 31
3.2. 實驗設備 31
3.3. 實驗設計 32
3.4. 活性材料的製備 32
3.4.1. 氧化石墨烯的製備 32
3.4.2. 無電鍍錫於多層石墨烯之製備 33
3.4.3. 無電鍍錫於氧化石墨烯之製備 38
3.5. 材料鑑定分析 40
3.5.1. X-ray繞射分析儀 (X-ray diffraction spectrometer: XRD) 40
3.5.2. 傅立葉轉換紅外線光譜儀 (Fourier transform Infrared spectrometer: FTIR) 40
3.5.3. 電子能譜化學分析儀 (Electron Spectroscopy for Chemical Analysis: ESCA) 43
3.5.4. 拉曼光譜分析儀 (Raman spectroscopy: Raman) 43
3.5.5. 高解析場發射掃描式電子顯微鏡 (High resolution field emission scanning electron microscopy: FE-SEM) 46
3.5.6. 場發射穿透式電子顯微鏡 (Field emission transmission electron microscopy: TEM) 46
3.5.7. 鈕扣型半電池組裝測試 48
3.5.7.1. 極片製作 48
3.5.7.2. 電池組裝 48
3.5.7.3. 半電池充放電測試 50
3.5.7.4. 交流阻抗測試 51
第四章 結果與討論 54
4.1 二氧化錫/多層石墨烯奈米複合材料 54
4.1.1 活性材料的製備分析 54
4.1.1.1 XRD分析定性 54
4.1.1.2 表面官能基的FTIR分析定性 55
4.1.1.3 碳原子結構變化的Raman分析 58
4.1.1.4 鍵結能貢獻與變化的ESCA分析 61
4.1.1.5 表面形貌與顯微結構的SEM與EDS分析 65
4.1.1.6 分析表面形貌與顯微結構的TEM分析 66
4.1.2 半電池的組裝與測試 70
4.1.2.1 第一次充放電測試 70
4.1.2.2 循環壽命充放電測試 74
4.1.3 小結論 77
4.2 二氧化錫/氧化石墨烯奈米複合材料 78
4.2.1 活性材料的製備分析 78
4.2.1.1 XRD分析定性 78
4.2.1.2 表面官能基的FTIR分析定性 79
4.2.1.3 碳原子結構變化的Raman分析 82
4.2.1.4 鍵結能貢獻與變化的ESCA分析 84
4.2.1.5 表面形貌與顯微結構的SEM分析圖 90
4.2.1.6 表面形貌與顯微結構的TEM分析 90
4.2.2 半電池的組裝與測試 96
4.2.2.1 第一次充放電測試 96
4.2.2.2 循環壽命充放電測試 99
4.2.2.3 二氧化錫/氧化石墨烯於充放電後之顯微結構與表面形貌的SEM觀察 102
4.2.2.4 交流阻抗分析測試 105
4.2.2.5 不同充放電速率測試 107
4.2.3 小結論 109
第五章 結論與未來展望 110
參考文獻 112

參考文獻 [1] N. S. Choi, Z. Chen, S. A. Freunberger, X. Ji, Y. K. Sun, K. Amine, et al., "Challenges facing lithium batteries and electrical double-layer capacitors," Angew Chem Int Ed Engl, vol. 51, pp. 9994-10024, Oct 1 2012.
[2] J. M. Tarascon* and M. Armand, "Issues and challenges facing rechargeable lithium batteries," Macmillan Magazines Ltd, vol. 414 pp. 359-367, 2001.
[3] A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, and W. v. Schalkwijk, "Nanostructured materials for advanced energy conversion and storage devices," nature materials, vol. 4, 2005.
[4] 周裕福 and 楊模樺, "儲能系統的技術發展," 機械月刊, vol. 30, pp. 38-46, 2004.
[5] 曾柏尹, 彭國光, 周裕福, and 黃玫芳, "二次電池之電學特性與應用," 工業材料, vol. 197, pp. 110-123, 2003.
[6] 李文雄, "鋰電池 新世代的能源," vol. 197, p. 110, 2003.
[7] C. L. Schmidt, E. R. Scott, W. G. Howard, and G. Jain, "Lithium ion battery," Patent of application publication Feb, vol. 21, pp. 1-13, 2008.
[8] M.-K. Song, S. Park, F. M. Alamgir, J. Cho, and M. Liu, "Nanostructured electrodes for lithium-ion and lithium-air batteries the latest developments, challenges, and perspectives," Materials Science and Engineering R, vol. 72, pp. 203-252, 2011.
[9] G. Wang, X. Shen, J. Yao, and J. Park, "Graphene nanosheets for enhanced lithium storage in lithium ion batteries," Carbon, vol. 47, p. 2049, 2009.
[10] M. V. Reddy, G. V. Subba Rao, and B. V. Chowdari, "Metal oxides and oxysalts as anode materials for Li ion batteries," Chem Rev, vol. 113, pp. 5364-457, Jul 10 2013.
[11] K. Kravchyk, L. Protesescu, M. I. Bodnarchuk, F. Krumeich, M. Yarema, M. Walter, et al., "Monodisperse and Inorganically Capped Sn and Sn/SnO2 Nanocrystals for High-Performance Li-Ion Battery Anodes," J. Am. Chem. Soc, vol. 135, pp. 4199-4202, 2013.
[12] D. Deng, M. G. Kim, J. Y. Lee, and J. Cho, "Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries," Energy Environ. Sci, vol. 2, pp. 818-837, 2009.
[13] L. Sun, Y. Shi, Z. He, B. Li, and J. Liu, "Synthesis and characterization of SnO2/polyaniline nanocomposites by sol–gel technique and microemulsion polymerization," Synthetic Metals, vol. 162, pp. 2183-2187, 2012.
[14] K. Zhao, G. Du, G. Qin, Y. Liu, and H. Zhao, "Facile synthesis of boscage-like SnO2 nanorods by hydrothermal method," Materials Letters, vol. 141, pp. 351-354, 2015.
[15] Z. Wen, F. Zheng, and K. Liu, "Synthesis of porous SnO2 nanospheres and their application for lithium-ion battery," Materials Letters, vol. 68, pp. 469-471, 2012.
[16] 黃可龍, 王兆翔, 劉素琴, and 馬振基, "鋰離子電池原理與技術," 2010.
[17] Y. C. Chen, T. F. Hung, C. W. Hu, C. Y. Chiang, C. W. Huang, H. C. Su, et al., "Rutile-type (Ti,Sn)O(2) nanorods as efficient anode materials toward its lithium storage capabilities," Nanoscale, vol. 5, pp. 2254-8, Mar 21 2013.
[18] J. S. Chen, L. A. Archer, and X. W. D. Lou, "SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries," J. Mater. Chem, vol. 21, pp. 9912-9924, 2011.
[19] D. D. Vaughn, 2nd, O. D. Hentz, S. Chen, D. Wang, and R. E. Schaak, "Formation of SnS nanoflowers for lithium ion batteries," Chem Commun (Camb), vol. 48, pp. 5608-10, Jun 7 2012.
[20] T.-J. Kim, C. Kim, D. Son, M. Choi, and B. Park, "Novel SnS2-nanosheet anodes for lithium-ion batteries," Journal of Power Sources, vol. 167, pp. 529-535, 2007.
[21] Y. Wu, "Lithium-ion batteries fundamental and applications," 2015.
[22] Y. Xia, T. Sakai, T. Fujieda, M. Wada, and H. Yoshinaga, "Flake Cu-Sn Alloys as Negative Electrode Materials for Rechargeable Lithium Batteries," Journal of The Electrochemical Society, vol. 148, p. A471, 2001.
[23] D. B. Polat, J. Lu, A. Abouimrane, O. Keles, and K. Amine, "Nanocolumnar structured porous Cu-Sn thin film as anode material for lithium-ion batteries," ACS Appl Mater Interfaces, vol. 6, pp. 10877-85, Jul 23 2014.
[24] C. M. Park and K. J. Jeon, "Porous structured SnSb/C nanocomposites for Li-ion battery anodes," Chem Commun (Camb), vol. 47, pp. 2122-4, Feb 21 2011.
[25] L. Simonin, U. Lafont, and E. M. Kelder, "SnSb micron-sized particles for Li-ion batteries," Journal of Power Sources, vol. 180, pp. 859-863, 2008.
[26] P. Nithyadharseni, M. V. Reddy, B. Nalini, and B. V. R. Chowdari, "Electrochemical investigation of SnSb nano particles for lithium-ion batteries," Materials Letters, vol. 150, pp. 24-27, 2015.
[27] R. Hu, H. Liu, M. Zeng, J. Liu, and M. Zhu, "Progress on Sn-based thin-film anode materials for lithium-ion batteries," Chinese Science Bulletin, vol. 57, pp. 4119-4130, 2012.
[28] A. G. Pandolfo and A. F. Hollenkamp, "Carbon properties and their role in supercapacitors," vol. 157, pp. 11-27, 2006.
[29] C.-T. Hsieh, C.-Y. Lin, and J.-Y. Lin, "High reversibility of Li intercalation and de-intercalation in MnO-attached graphene anodes for Li-ion batteries," Electrochimica Acta, vol. 56, pp. 8861-8867, 2011.
[30] X. Li, W. Cai, S. K. J. An, J. Nah, D. Yang, R. Piner, et al., "Large-area synthesis of high-quality and uniform graphene films on copper foils," Science, vol. 324, pp. 1312-1314, 2009.
[31] L. Y. Jiao, L. Zhang, X. R. Wang, G. Diankov, and H. J. Dai, "Narrow graphene nanoribbons from carbon nanotubes," Nature materials, vol. 458, pp. 877-880, 2009.
[32] S. Park and R. S. Ruoff, "Chemical methods for the production of graphenes," Nat. Nanotechnology, vol. 4, pp. 217-224, 2009.
[33] H. Bai, C. Li, and G. Shi, "Functional composite materials based on chemically converted graphene," Adv. Mater, vol. 23, pp. 1089-1115, 2011.
[34] J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li, et al., "Fast and Facile Preparation of Graphene Oxide and Reduced Graphene Oxide Nanoplatelets," Chem. Mater, vol. 157, pp. 3514-3520, 2009.
[35] X. Gao, J. Jang, and S. Nagase, "Hydrazine and Thermal Reduction of Graphene Oxide: Reaction Mechanisms, Product Structures, and Reaction Design," The Journal of Physical Chemistry C, vol. 114, pp. 832-842, 2010.
[36] WILLIAMS . HUMMERSJR and R. OFFEMAN, "Preparation of graphtic oxide," p. 1359, 1958.
[37] 邱泰傑, "銀奈米線與還原性氧化石墨烯的合成及其透明導電薄膜的特性分析," 國立台南大學,材料科學系,碩士論文, 2011.
[38] D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, "Processable aqueous dispersions of graphene nanosheets," Nat. Nanotechnol, vol. 3, pp. 181-105, 2008.
[39] H.-J. Shin, K. K. Kim, and A. Benayad, "Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance," Adv. Funct. Mater, vol. 19, pp. 1987–1992, 2009.
[40] V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, "High-throughput solution processing of large-scale graphene," Nat. Nanotechnol, vol. 4, pp. 25-29, 2008.
[41] X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang, et al., "Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions A Green Route to Graphene Preparation," Adv. Mater, vol. 20, pp. 4490-4493, 2008.
[42] Xiaobin Fan, Wenchao Peng, Yang Li, Xianyu Li, Shulan Wang, Guoliang Zhang, et al., "Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation," Advanced Materials, vol. 20, pp. 4490-4493, 2008.
[43] I. Nam, N. D. Kim, G.-P. Kim, J. Park, and J. Yi, "One step preparation of Mn3O4/graphene composites for use as an anode in Li ion batteries," Journal of Power Sources, vol. 244, pp. 56-62, 2013.
[44] Z. Bai, N. Fan, Z. Ju, C. Guo, Y. Qian, B. Tang, et al., "Facile synthesis of mesoporous Mn3O4 nanotubes and their excellent performance for lithium-ion batteries," Journal of Materials Chemistry A, vol. 1, p. 10985, 2013.
[45] 蘇清源, "graphene process compare," 光連雙月刊, vol. 108, pp. 61-71, 2013.
[46] G. Wu, M. Wu, D. Wang, L. Yin, J. Ye, S. Deng, et al., "A facile method for in-situ synthesis of SnO2/graphene as a high performance anode material for lithium-ion batteries," Applied Surface Science, vol. 315, pp. 400-406, 2014.
[47] A. Birrozzi, R. Raccichini, F. Nobili, M. Marinaro, R. Tossici, and R. Marassi, "High-stability graphene nano sheets/SnO2composite anode for lithium ion batteries," Electrochimica Acta vol. 137, pp. 228-234, 2014.
[48] R. Müller and S. Mathur, "Graphene-SnO2 Nanocomposites for Lithium-Ion Battery Anodes," Nanostructured Materials and Nanotechnology, 2014.
[49] C.-C. Chang, Y.-C. Chen, C.-W. Huang, Y. H. Su, and C.-C. Hu, "(Sn-Ti)O2 nanocomposites for high-capacity and high-rate lithium-ion storage," Electrochimica Acta, vol. 99, pp. 69-75, 2013.
[50] Q. Guo, S. Chen, and X. Qin, "Preparation of graphene/SnO2 composite as high capacity anode material for lithium ion batteries," Materials Letters, vol. 119, pp. 4-7, 2014.
[51] Daniela C. Marcano, Dmitry V. Kosynkin, Jacob M. Berlin, Alexander Sinitskii, Zhengzong Sun, Alexander Slesarev, et al., "Improved Synthesis of Graphene Oxide," American Chemical Society, vol. 4, 2010.
[52] D. Xiong, X. Li, H. Shan, Y. Zhao, L. Dong, H. Xu, et al., "Oxygen-containing Functional Groups Enhancing Electrochemical Performance of Porous Reduced Graphene Oxide Cathode in Lithium Ion Batteries," Electrochimica Acta, vol. 174, pp. 762-769, 2015.
[53] "."
[54] Grzegorz Sobon, Jaroslaw Sotor, Joanna Jagiello, Rafal Kozinski, Mariusz Zdrojek, Marcin Holdynski, et al., "Graphene Oxide vs. Reduced Graphene Oxide as saturable absorbers for Er-doped passively mode-locked fiber laser," 2011.
[55] J. S. Chen, Y. L. Cheah, Y. T. Chen, N.Jayaprakash, S. Madhavi, Y. H. Yang, et al., "SnO2 Nanoparticles with Controlled Carbon Nanocoating as High-Capacity Anode," J. Phys. Chem., vol. 113, pp. 20504-20508, 2009.
[56] Y. Zhang, L. Jiang, and C. Wang, "Facile synthesis of SnO2 nanocrystals anchored onto graphene nanosheets as anode materials for lithium-ion batteries," Phys Chem Chem Phys, vol. 17, pp. 20061-5, Aug 21 2015.
[57] Y. G. Zhu, Y. Wang, J. Xie, G.-S. Cao, T.-J. Zhu, X. Zhao, et al., "Effects of Graphene Oxide Function Groups on SnO2/Graphene Nanocomposites for Lithium Storage Application," Electrochimica Acta, vol. 154, pp. 338-344, 2015.
[58] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, et al., "Raman spectrum of graphene and graphene layers," Phys Rev Lett, vol. 97, p. 187401, Nov 3 2006.
[59] A. C. Ferrari, "Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects," Solid State Communications, vol. 143, pp. 47-57, 2007.
[60] C. Tan, J. Cao, A. M. Khattak, F. Cai, B. Jiang, G. Yang, et al., "High-performance tin oxide-nitrogen doped graphene aerogel hybrids as anode materials for lithium-ion batteries," Journal of Power Sources, vol. 270, pp. 28-33, 2014.
[61] D. W. Boukhvalov and M. I. Katsnelson, "Chemical Functionalization of Graphene with Defects," American Chemical Society, vol. 8, pp. 4373-4379, 2008.
[62] G. G. Wallace, R. B. Kaner, M. Muller, S. Gilje, and D. Li, "Processable aqueous dispersions of graphene," Nature Nanotechnology, vol. 3, pp. 101-105, 2008.
[63] J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li, et al., "Fast and Facile Preparation of Graphene Oxide and Reduced Graphene Oxide Nanoplatelets," Chemistry of Materials, vol. 21, pp. 3514-3520, 2009.
[64] 金成勛, 李丹丹, 余願, 徐濤, 錢俊, and 只金芳, "柔性透明石墨烯膜制备及导电性能研究," Imaging Science and Photochemistry, vol. 30, pp. 289-298, 2012.
[65] R. Müller and S. Mathur, "Graphene-SnO2 Nanocomposites for Lithium-Ion Battery Anodes," Nanostructured Materials and Nanotechnology, vol. 7, pp. 67-73, 2014.
[66] L. Sun, Y. Shi, Z. He, B. Li, and J. Liu, "Synthesis and characterization of SnO2/polyaniline nanocomposites by sol–gel technique and microemulsion polymerization," Synthetic Metals, vol. 162, pp. 2183-2187, 2012.
[67] A. V. Marikutsa, M. N. Rumyantseva, L. V. Yashina, and A. M. Gaskov, "Role of surface hydroxyl groups in promoting room temperature CO sensing by Pd-modified nanocrystalline SnO2," Journal of Solid State Chemistry, vol. 183, pp. 2389-2399, 2010.
[68] S. Sagadevan and J. Podder, "Investigation on Structural, Surface Morphological and Dielectric Properties of Zn-doped SnO2 Nanoparticles," Materials Research, vol. 19, pp. 420-425, 2016.
[69] L. C. Sim, K. H. Leong, S. Ibrahim, and P. Saravanan, "Graphene oxide and Ag engulfed TiO2nanotube arrays for enhanced electron mobility and visible-light-driven photocatalytic performance," J. Mater. Chem. A, vol. 2, pp. 5315-5322, 2014.
[70] R. J. Nemanich and S. A. Solin, "First- and second-order Raman scattering from finite-size crystals of graphite," Physical Review B, vol. 20, pp. 392-401, 1979.
[71] R. P. Vidano, D. B. Fishbach, L. J. Willis, and T. M. Loehr, "Observation of Raman band shifting with excitation wavelength for carbons and graphites," Solid State
Commun, vol. 39, p. 341, 1981.
[72] B. Wang, D. Su, J. Park, H. Ahn, and G. Wang, "Graphene-supported SnO2 nanoparticles prepared by a solvothermal approach for an enhanced electrochemical performance in lithium-ion batteries," Nanoscale Research Letters, vol. 7, 2012

[73] A. Birrozzi, R. Raccichini, F. Nobili, M. Marinaro, R. Tossici, and R. Marassi, "High-stability graphene nano sheets/SnO2 composite anode for lithium ion batteries," Electrochimica Acta, vol. 137, pp. 228-234, 2014.
[74] H. Huang, Y. Xia, X. Tao, J. Du, J. Fang, Y. Gan, et al., "Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation–expansion–microexplosion mechanism," Journal of Materials Chemistry, vol. 22, p. 10452, 2012.
[75] Q. Tian, Y. Tian, Z. Zhang, L. Yang, and S.-i. Hirano, "Facile synthesis of ultrasmall tin oxide nanoparticles embedded in carbon as high-performance anode for lithium-ion batteries," Journal of Power Sources, vol. 269, pp. 479-485, 2014.
[76] M.-S. Park, Y.-M. Kang, G.-X. Wang, S.-X. Dou, and H.-K. Liu, "The Effect of Morphological Modification on the Electrochemical Properties of SnO2 Nanomaterials," Advanced Functional Materials, vol. 18, pp. 455-461, 2008.
[77] J. Yao, X. Shen, B. Wang, H. Liu, and G. Wang, "In situ chemical synthesis of SnO2–graphene nanocomposite as anode materials for lithium-ion batteries," Electrochemistry Communications, vol. 11, pp. 1849-1852, 2009.
[78] D. Wang, X. Li, J. Wang, J. Yang, D. Geng, R. Li, et al., "Defect-Rich Crystalline SnO2 Immobilized on Graphene Nanosheets with Enhanced Cycle Performance for Li Ion Batteries," The Journal of Physical Chemistry C, vol. 116, pp. 22149-22156, 2012.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw