進階搜尋


下載電子全文  
系統識別號 U0026-0408201616224200
論文名稱(中文) 苯並三唑類紫外線吸收劑在碳-5位羰基取代之實驗與理論計算探討
論文名稱(英文) Experimental and Theoretical studies of 2-(2'-hydroxy-5'-methylphenyl)benzotriazole Derivatives modified at C-5' position with carbonyl groups.
校院名稱 成功大學
系所名稱(中) 化學系
系所名稱(英) Department of Chemistry
學年度 104
學期 2
出版年 105
研究生(中文) 施健一
研究生(英文) Jian-Yi Shih
電子信箱 shineyi1101@gmail.com
學號 L36031275
學位類別 碩士
語文別 英文
論文頁數 194頁
口試委員 指導教授-黃福永
口試委員-王小萍
口試委員-施良垣
中文關鍵字 苯並三唑類紫外線吸收劑  分子內氫鍵  紫外線吸收  紅外光光譜  密度泛函理論  量子力學  ab 初始法  理論計算 
英文關鍵字 Tinuvin P  UV absorbers  IMHB  UV absorption  FT-IR  density functional theory  quantum mechanics  ab initial method  theoretical calculations. 
學科別分類
中文摘要 藉由理論計算導向的方式,包括分子結構最佳化、可能電子光譜的預測(紫外-可見光光譜)及振動光譜(遠紅外光光譜),合成出了一系列新型的紫外線吸收劑化合物。
為了與實驗所得的光譜更加符合,使理論計算所得的光譜更接近實驗結果,引入了在積分方程式連續極化模型(IEF-PCM)下模擬化合物在氯仿內的溶劑效應,使理論計算更貼近實際的實驗環境;此外,並比較了各種不同的理論計算方法、計算基底的組合,找出最能符合實際的最佳計算方法,發現B3LYP/6-311+G(d,p)是最佳的理論計算方法,可用來解釋實驗的結果。
在所有目標產物中,在碳-5'位上修飾羧酸基的化合物三有最佳的UV-A (315 - 400nm)和UV-C (200 - 280 nm)範圍的吸收能力,而一樣也在碳-5'位上修飾醛基的化合物一有最佳的UV-B (280 - 315 nm)範圍的吸收能力,我們認為在UV-A範圍吸收能力的提升是由於分子內氫鍵的增強,而UV-B與UV-C 範圍吸收能力的提升是由於分子共軛系統的延伸。
理論預測與實驗所得的遠紅外光光譜可以驗證目標化合物相較於Tinuvip P 分子內氫鍵的增強效果,OH鍵振動波數會因為氮上孤對電子超共軛電子轉移至OH *鍵結軌域而減少鍵結能量,導致波峰紅位移至較低的位置,得到的結果不僅與UV-A範圍吸收光譜圖吻合,也與H1-NMR測量結果相同,目標化合物相較於Tinuvip P,OH波峰會往較高場的位置移動,證明有較強的分子內氫鍵效應。
除了有分子內氫鍵穩定的enol構型,trans-keto 構型也在電子激發躍遷的過程中,對於紫外吸收光譜提供了很大的貢獻,分析可見的分子軌域,得到在吸收過程中電子密度轉移差示意圖,藉此可以更加瞭解電子激發的機制和原理。

我們期望能發現最佳的分子構型、溶劑效應、理論計算方法、計算基底組合與紫外線吸收光譜的電子激發躍遷原理來提供有幫助且具有用資訊的分子性質,幫助紫外線吸收劑化合物在未來能有更進一步的發展與應用。
關鍵字: 苯並三唑類紫外線吸收劑、分子內氫鍵、紫外線吸收、紅外光光譜、密度泛函理論、量子力學、ab 初始法、理論計算。
英文摘要 A variety of novel UV absorbers modified at the C5’ position have been synthesized based on the theoretical calculations including optimized molecular structures, predicted electronic and vibrational spectra (UV-Vis and IR spectra).
In order to explain the experimental UV spectra, chloroform solvent effect was introduced into calculation with Integral Equation Formalism Polarizable Continuum Model (IEFPCM) to create an environment more close to that of the real experimental. In addition, different combinations of theoretical calculation basis-sets were employed and tried to obtain the best results, which well fit to our experimental results. And it was found that B3LYP/6-311+G(d,p) was the best calculation level with more reliable results and relatively low computing cost.
Among our target molecules, compound 3 modified with carboxyl group at C-5' position showed the best UV-A (315 - 400 nm) and UV-C (200 - 280 nm) absorption ability; while compound 1 modified with formyl group at C-5' position showed the best UV-B (280 - 315 nm) absorption ability. The comparison of UV spectra of compounds 1 with that of compound 6 indicated that the enhancement of UV-A range absorption is due to the strengthening of intramolecular hydrogen bond (IMHB) effect. It also found that the comparison of UV spectra between compound 1 and 2 indicated that the enhancements of UV-B, UV-C range absorption are due to the extension of the conjugation systems at C5’ position.
Theoretical calculated and experimental FT-IR spectra were used to ascertain that the IMHB of our target molecules were more strengthening compared to that Tinuvip P. This was observed that the OH bonding stretching wavenumber of the experimental result was red-shifted, indicating the IMHB between N1 and C2-OH became stronger. This could be explain by the calculation results showing there was a hyperconjugative charge transfer from the lone pair of N atom to OH * bonding orbital as to result in decreasing the OH bond energy. This results not only corresponded with the UV-A range absorption spectra but also corresponded with the H1-NMR spectra, in which the OH peak was shifted to more down-field.
The calculation results showed that the enol form was favored for compound with IMBH and trans-keto form was favored for compounds with IMHB and modified at C5’ with carbonyl group. The comparisons between experiment and calculation results showed that the UV-C absorption was mainly due to the existence of trans-keto from and the UV-A was mainly due to the existence of enol form. Optical molecular orbitals calculation showed that UV-A absorption was due the electron transfer from the hydroxyphenyl moiety to benzotriazole moiety; while the UV-B and UV-C absorptions were due to the electron transfer from the hydroxylphenyl moiety to the C5’ carbonyl group.
論文目次 中文摘要 ii
Abstract iv
Acknowledgement vi
Contents viii
List of Figures xi
List of Tables xvi
1. Introduction 1
1.1 Preface 1
1.2 Categories of UV absorber Compounds 4
1.3 Introduction of Tinuvin P 5
2. Theoretical Calculation Background and Related Works. 7
2.1 Literature review 7
2.2 Theoretical calculation 12
2.2.1 ab initio method 13
2.2.2 Semi-empirical method 13
2.2.3 Molecular mechanics, MM 14
2.2.4 HF ( Hatree – Fock ) Theory 15
2.3 Quantum Chemistry 17
2.4 Density Functional Theory, DFT 17
2.4.1 Local Density Approximation, LDA 20
2.4.2 Generalized Gradient Approximation, GGA 21
2.4.3 B3LYP Theory 21
2.4.4 PBE1PBE, PBE0 Theory 22
2.5 Basis set 22
2.5.1 Diffuse function 23
2.5.2 Polarization function 24
2.6 Solvent effects 25
2.6.1 Supermolecule method 26
2.6.2 Molecular Mechanics method 26
2.6.3 Hybrid QM/MM method 27
2.6.4 Continuum solvation models 27
2.6.5 Solvation process 27
2.6.6 Polarized Continuum Model (PCM) 29
2.7 Nature Bond Orbital, NBO 29
2.8 Calculation software 31
2.8.1 Single point energy 32
2.8.2 Geometry optimization 33
2.8.3 Frequency 33
2.9 Research motivation 34
3. Experimental and Calculation Section 36
3.1 Materials and Instruments 36
3.1.1 Materials 36
3.1.2 Instruments 38
3.2 Synthesis 39
3.2.1 Compound 1: 2-(2'-hydroxy-5'-formylphenyl)benzotriazole 39
3.2.2 Compound 2: 2-(2'-hydroxy-5'-hydroxymethylphenyl)benzotriazole 40
3.2.3 Compound 3: 2-(2'-hydroxy-5'-carboxyphenyl)benzotriazole 41
3.2.4 Compound 4: 2-(2'-hydroxy-5'-acetylphenyl)-benzotriazole 42
3.2.5 Compound 5: 2-(2'-hydroxy-5'-(1-hydroxyethyl)phenyl)benzotriazole 43
3.2.6 Compound 6: 2-(2'-methoxy-5'-formylphenyl)-benzotriazole 44
3.2.7 Compound 7: 2-(2'-methoxy-5'-acetylphenyl)-benzotriazole 45
3.3 Calculation methods 46
4. Result and discussion 48
4.1 Geometrical parameters in gas- and solvent-state of selected Tinuvin P derivatives. 48
4.2 Intramolecular hydrogen bond strength verified using theoretical calculated and experimental IR spectroscopy. 54
4.3 The Deconvolution of UV spectra of Tinuvin P Derivatives based on enol/keto form using TD-DFT Calculation 64
4.4 Comparison of different basis-sets and calculation methods. 69
4.5 Analysis of the experimental UV-Vis spectra using TD-B3LYP calculations coupled with IEF-PCM solvation model. 74
4.5.1 Compound 1: 2-(2'-hydroxy-5'-formylphenyl)benzotriazole 76
4.5.2 Compound 2: 2-(2'-hydroxy-5'-hydroxymethylphenyl)benzotriazole 78
4.5.3 Compound 3: 2-(2'-hydroxy-5'-carboxyphenyl)benzotriazole 81
4.5.4 Compound 4: 2-(2'-hydroxy-5'-acetylphenyl)-benzotriazole 83
4.5.5 Compound 5: 2-(2'-hydroxy-5'-(1-hydroxyethyl)phenyl)benzotriazole 85
4.5.6 Compound 6: 2-(2'-methoxy-5'-formylphenyl)-benzotriazole 87
4.5.7 Compound 7: 2-(2'-methoxy-5'-acetylphenyl)-benzotriazole 88
4.6 Optical molecular orbitals 89
4.6.1 The analysis of optical molecular orbital for 2-(2'-hydroxy-5'-methylphenyl) benzotriazole, Tin P 91
4.6.2 The analysis of optical molecular orbital for 2-(2'-hydroxy-5'-formylphenyl) benzotriazole, Compound 1. 97
4.6.3 2-(2'-hydroxy-5'-hydroxymethylphenyl) benzotriazole, Compound 2. 108
4.6.4 2-(2'-hydroxy-5'-carboxyphenyl) benzotriazole, Compound 3. 115
4.6.5 2-(2'-hydroxy-5'-acetylphenyl) benzotriazole, Compound 4. 125
4.6.6 2-(2'-hydroxy-5'- (1-hydroxyethyl) phenyl)benzotriazole, Compound 5. 136
5. Conclusions 143
6. Reference 147
7. Appendix 150
7.1 Crystal and structure data for Compound 2 and Compound 4. 150
7.2 Cartesian coordinates of equilibrium geometries for studied Tinuvin P derivatives. 163
7.2.1 2-(2'-hydroxy-5'-hydroxymethylphenyl)benzotriazole 163
7.2.2 2-(2'-hydroxy-5'-acetylphenyl)-benzotriazole 168
7.3 Stimulated IR spectra. 173
7.4 Experimental vibrational FT-IR spectra ( KBr disk ) 177
7.5 Exprimental vibrational FT-IR spectra (solution) 182
7.6 UV absorption comparison 186
7.7 H1-NMR spectra of derivatives of Tin P. 189
參考文獻 [1] Molina, M. J; Rowlan, F. S. Nature 1974, 249, 810.
[2] Fahey, D. W., and M. I. Hegglin (Coordinating Lead Authors), Twenty Questions And Answers About the Ozone Layer 2010 Update
[3] Davies H, Bignell GR, Cox C, et al .Mutations of the BRAF gene in human Cancer, Nature 2002,417,949
[4] Veronique Trichet a, St phane Grelier a, Alain Castellan, Hasneen Choudhury b, R. Stephen Davidson, Journal of Photochemistry and Photobiology A: Chemistry. 95 (1996) 181 - 188
[5] Ciba Specialty Chemicals Inc., Basle, Switzerland, Progress in Organic Coatings. 35 (1999) 223-233
[6] Byoung-Hoo Lee, Hyun-Joong Kim. Polymer Degradation and Stability.91 (2006) 1025-1035
[7] A. Salinaro, A.V. Emeline, J. Zhao, H. Hidaka, V.K. Ryabchuk, N.Serpone, Pure Appl. Chem. 71 (1999) 321.
[8] N. Serpone, A. Salinaro, Pure Appl. Chem. 71 (1999) 303.
[9] Morabito, K.; Shapley, N. C; Steeley, K. G.; Tripathi, A. Int J Cosmet Sci. 2011, 33, 385.
[10] Sunscreen drug products for over-the-counter human use, Final Monograph, Federal Register 64 27666, US Food and Drug Administration,Rockville, MD, 2000. Available from:
[11] Nick Serpone, Daniele Dondi, Angelo Albini, Inorganica Chimica Acta 360 (2007) 794-802
[12] Fujita; Taira, Y.; Kondo, A; Nozomi, A.; Takashi; Sumitomo Chemical Company, Limited, Kyoto Chemical Company, Ltd 1978; Vol. US4077971.
[13] Adler; S., A.; Ciba-Geigy Corporation 1979; Vol. US4141903
[14] Ciba Specialty Chemicals, Inc.; TINUVIN P Benzotriazole UV Absorber.
[15] 山敏行,多機能安定劑JAST一500[J],Fine Chemicals (Japan) 1998,27(15):15-19.
[16] Weber, K. Z. Phys. Chem. 1931, B15, 18
[17] (a) A. Weller, Z. Elektrochem., 1952, 56, 662 (b) A. Weller, Z. Elektrochem., 1954, 58, 849 (c) A. Weller, Z. Phys. Chem., 1957, 13, 335 (d) A. Weller, Z. Phys. Chem., 1958, 17, 224 (e) A. Weller, Z. Phys. Chem., 1958, 15, 438 (f) A. Weller, Prog. React. Kinet., 1961, 1, 189 (g) A. Weller, Faraday Discuss. Chem. Soc., 1965, 39, 183
[18] (a) T. Förster, Z. Elektrochem., 1950, 54, 42 (b) T. Förster, Pure Appl. Chem., 1970, 24, 443
[19] Michael Kash. J. Phys. Chem. 1991, 95, 2668-2674
[20] Andrzej L. Sobolewski. Phys. Chem. Chem. Phys., 2006, 8, 3410-3417
[21] Soo Young Park. J. AM. CHEM. SOC. 2006, 128, 14542-14547
[22] Ajay Misra. Computational and Theoretical Chemistry 1031 (2014) 50-55
[23] Organero ,J. A.; Moreno, M; Santos, L. a.; Lluch, J. M; Douhal, A. J. phys. Chem. A 2000, 104, 8424.
[24] Catalan,J.; Paz, J. L .G. d. J. Phys. Chem. A 2001, 105, 7315.
[25] Yahagi, T; Fujii, A.; Ebata, T.; Mikami, N. J. Phys. Chem. A 2001, 105, 10673.
[26] Chowdhury, P.; Panja, S.; Chakravorti, S. J. Phys. Chem. A 2003, 107, 83.
[27] Sakota,K; Sekiya, H. J. Phys. Chem. A 2003, 107, 83.
[28] Nikhil Guchhait. Photochem. Photobiol. Sci., 2010, 9, 57-67
[29] John C. Crawford. Prog. Polym. Sci. 24 (1999) 7-43
[30] Rosevear, J.; Wilshire, J. Aust. J. Chem. 1985, 38, 1163
[31] Kocher, C.; Weder, C.; Smith, P.J. Mater. Chem. 2003, 13, 9.
[32] Liu, G.-B.; Zhao, H.-Y.; Yang, H.-J.; Gao, X.; Li, M.-K.; Thiemann,T. Adv. Synth. Catal. 2007, 349, 1637
[33] Forés, M.; Scheiner, S. Chem. Phys. 1999, 246, 65
[34] Nicholas J. Turro; Ravi Ravichandran. J. Phys. Chem. A 2002, 106, 7680-7689
[35] Christoph Kocher. J. Mater. Chem., 2003, 13, 9-15
[36] Michael A. Robb; Lluı´s Blancafort. J. AM. CHEM. SOC. 2004, 126, 2912-2922 (Stasyuk, Bultinck et al. 2016)
[37] Yao Lu. Yulong Gong. Chin. Sci. Bull. (2014) 59(34):4741-4751
[38] Fleming, G. R. Chemical Application of Ultrafast Spectroscopy; Oxford University Press: New York, 1986.
[39] Barbara, P. F.; Rentzepis, P. M.; Brus, L. E. J. Am. Chem. Soc.1980, 102, 2786.
[40] Tatsuo Arai. J. Phys. Chem. A 2010, 114, 1603-1609
[41] Jianzhang Zhao; Huimin Guo. Phys. Chem. Chem. Phys., 2012, 14, 8803-8817
[42] Daniel T. Gryko. "The effect of hydrogen bond strength on emission properties in 2-(2’-hydroxyphenyl)imidazo[1,2-a]pyridines." Journal of Photochemistry and Photobiology A: Chemistry 314 (2016) 198-213.
[43] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., 77 (1996) 3865-68.
[44] J. P. Perdew, K. Burke, and M. Ernzerhof, “Errata: Generalized gradient approximation made simple,” Phys. Rev. Lett., 78 (1997) 1396.
[45] C. Adamo and V. Barone, “Toward reliable density functional methods without adjustable parameters: The PBE0 model,” J. Chem. Phys., 110 (1999) 6158-69.
[46] E. Canses, B. Mennucci, J. Tomasi, J. Chem Phys. 107, 3032 (1997).
[47] J. Tomasi, M. Persico, Chem. Rev. 94, 2027 (1994).
[48] J. Tomasi, B. Mennucci, R. Camm, Chem. Rev. 105, 2999 (2005).
[49] A. E. Reed and F. Weinhold, “Natural bond orbital analysis of near-Hartree-Fock water dimer,” J. Chem. Phys., 78 (1983) 4066-73.
[50] A. E. Reed, R. B. Weinstock, and F. Weinhold, “Natural-population analysis,” J. Chem. Phys., 83 (1985) 735-46.
[51] A.E. Reed, F. Weinhold, “Natural Localized Molecular Orbitals,” J. Chem. Phys., 83 (1985) 1736-40.
[52] J. Chem. Phys., 78 (1983), pp. 4066–4073
[53] A.E. Reed, R.B. Weinstock, F. Weinhold (1985).
[54] J. Chem. Phys., 83 (1985), pp. 735–746
[55] Perdew, J. P.; Tao, J.; Staroverov, V. N.; Scuseria, G. E. J. Chem. Phys. 2004, 120, 6898.
[56] Y. Zhao, D.G. Truhlar, Benchmark databases for nonbonded interactions and their use to test density functional theory, J. Chem. Theory Comput. 1 (2005)415–432.
[57] Phys. Chem. Chem. Phys., 2001, 3, 3012È3017
[58] B.K. Paul, N. Guchhait. Computational and Theoretical Chemistry 966 (2011) 250–258
[59] J. Chem. Phys. 137, 091-101 (2012).
[60] J. Phys. Chem. A 2005, 109, 2937-2941
[61] Optik 127 (2016) 5055–5064
[62] Wiechmann, M.; Port, H.; Frey, W.; La¨rmer, F.; Elsa¨sser, T. J. Phys. Chem.
1991, 95, 1918-1923.
[63] Chudoba, C.; Riedle, E.; Pfeiffer, M.; Elsaesser, T. Chem. Phys. Lett. 1996, 263, 622-628.
[64] J. Chem. Soc., Faraday Trans., 1997, 93(9), 1691-1696.
[65] Multiwfn, Tian Lu, Beijing Kein Research Center for Natural Sciences, 2015.
[66] Carlo Adamo, Denis Jacquemin. Chem. Soc. Rev., 2013, 42, 845-856
[67] Shih-Hsin Wu, The UV Absorption Study of 2-(2’-hydroxyphenyl) benzotriazole Modified at 5’ position, National Cheng Kung University, 2015.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-12-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-12-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw