進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0408201614364800
論文名稱(中文) 電漿增強式原子層沉積系統製備氧化鋅基薄膜應用於紫外光檢測器特性改善之研究
論文名稱(英文) Investigation of performance improvement for ZnO-based ultraviolet photodetectors using plasma-enhanced atomic layer deposition system
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 104
學期 2
出版年 105
研究生(中文) 林渝璋
研究生(英文) Yu-Chang Lin
學號 L78001216
學位類別 博士
語文別 英文
論文頁數 98頁
口試委員 口試委員-李清庭
指導教授-李欣縈
口試委員-林祐仲
口試委員-洪瑞華
口試委員-劉代山
中文關鍵字 雙氧水前處理  金半金紫外光光檢測器  氧化鎂鋅  電漿增強式原子層沉積系統  氧化鋅 
英文關鍵字 hydrogen peroxide pretreatment  metal-semiconductor-metal ultraviolet photodetectors  MgxZn1-xO  plasma-enhanced atomic layer deposition system  ZnO 
學科別分類
中文摘要 在本論文中,利用電漿增強式原子層沉積系統沉積氧化鋅薄膜於藍寶石基板上;於氧化鋅薄膜製程前,以雙氧水前處理技術增加於初始藍寶石基板表面上之成核機會,進而提升氧化鋅薄膜品質。以X-射線繞射分析量測經不同時間雙氧水前處理之氧化鋅薄膜結晶特性,其結果顯示於使用雙氧水前處理60分鐘之氧化鋅薄膜有最強的(002)晶相訊號特性。另一方面,利用X射線電子能譜儀分析,其結果顯示經適當時間的雙氧水前處理可使氧化鋅薄膜中的氧化鋅鍵結數量有大幅的提升。將此薄膜應用於金半金紫外光光檢測器中,其元件暗電流與紫外光-可見光拒斥比改善至0.27 μA與1.06 × 10^3。
本論文亦使用電漿增強式原子層沉積系統沉積不同鎂含量之氧化鎂鋅薄膜,其氧化鎂鋅薄膜之鎂含量藉由能量散射光譜儀分析得知各別為0.10、0.13與0.16。其氧化鎂鋅光學能隙隨者鎂含量0.10至0.16可從3.56 eV調變至3.66 eV。其氧化鎂鋅金半金紫外光光檢測器光響應峰值可從350 nm調變至340 nm。其氧化鎂鋅金半金紫外光光檢測器紫外光-可見光拒斥比皆可達10^3以上,並且其元件於5 V時有良好的檢測度與雜訊等效功率。
最後,本論文利用超薄氧化鋁插入層應用於氧化鎂鋅金半金紫外光光檢測器中,其超薄氧化鋁插入層有效地阻擋暗電流,使得氧化鎂鋅金半金紫外光光檢測器暗電流隨著超薄氧化鋁插入層厚度調變0 nm至5 nm從1 nA下降至0.34 nA。此外,具5 nm超薄氧化鋁層之氧化鎂鋅金半金紫外光光檢測器之雜訊等效功率與檢測度可進一步各別改善至0.93×10^-14 W與3.40 × 10^13 cmHz^1/2W^-1。
英文摘要 In this dissertation, zinc oxide (ZnO) films were deposited on sapphire substrates by using a plasma-enhanced atomic layer deposition (PE-ALD) system. Before the ZnO films deposition, a hydrogen peroxide (H2O2) pretreatment technique was used to increase the nucleation opportunity on the initial sapphire surface, which enhanced the quality of the deposited ZnO films. Furthermore, X-ray diffraction spectroscopy was conducted, and the results revealed that the crystallinity of the ZnO films was considerably enhanced and that the (002) diffraction peak demonstrated the strongest intensity for the film subjected to H2O2 pretreatment for 60 min. In addition, X-ray photoelectron spectroscopy was executed, and the results indicated that a high number of Zn-O bonds was generated in ZnO films pretreated appropriately with H2O2. The ZnO film deposited on a sapphire substrate with H2O2 pretreatment for 60 min was applied to metal-semiconductor-metal ultraviolet photodetectors (MSM-UPDs) as an active layer. The dark current and ultraviolet–visible rejection ratio of the fabricated ZnO MSM-UPDs were improved to 0.27 μA and 1.06 × 10^3, respectively.
A plasma-enhanced atomic layer deposition system was also used to deposit magnesium zinc oxide (MgxZn1−xO) films with various Mg contents (x). Correspondingly, the Mg content in the MgxZn1-xO films characterized using an energy dispersive spectrometer was 0.10, 0.13, and 0.16, respectively. The optical bandgap of the MgxZn1-xO films increased from 3.56 eV to 3.66 eV with an increase in Mg content from 0.10 to 0.16. The peak position of photoresponsivity for the MgxZn1-xO MSM-UPDs was also shifted from 350 nm to 340 nm. The UV-visible rejection ratios of the MgxZn1-xO MSM-UPDs were higher than three orders of magnitude. In addition, excellent detectivity and noise equivalent power for the MgxZn1-xO MSM-UPDs were observed at a bias voltage of 5 V.
Finally, the ultrathin alumina (Al2O3) inserted layer was applied to MgZnO MSM-UPDs. The ultrathin Al2O3 inserted layer as an insulating layer effectively blocked leakage current, and the dark current of the MgZnO MSM-UPDs was decrease from 1 nA to 0.34 nA with the thickness of the ultrathin Al2O3 layer increased from 0 nm to 5 nm. Furthermore, the noise equivalent power and detectivity of the MgZnO MSM-UPDs with 5-nm-thick Al2O3 inserted layer improved to 0.93×10^-14 W and 3.40 × 10^13 cmHz^1/2W^-1, respectively.
論文目次 Abstract (in Chinese) I
Abstract (in English) III
Contacts VIII
Chapter 1 Introduction 1
1.1 Background and motivation 1
1.2 Overview of this dissertation 4
References 6
Chapter 2 Theory 14
2.1 Atomic layer deposition 14
2.1.1 ZnO films deposition 15
2.1.2 MgxZn1-xO films deposition 15
2.1.3 Al2O3 films deposition 16
2.2 Plasma-enhanced atomic layer deposition system 17
2.2.1 ZnO films deposition 17
2.2.2 MgxZn1-xO films deposition 18
2.3 Photodetectors 18
2.3.1 Metal-semiconductor-metal photodetectors 19
2.3.2 Responsivity of photodetectors 20
2.4 Low frequency noise 21
2.4.1 Thermal noise 22
2.4.2 Flicker noise 22
2.4.3 Generation-recombination noise 23
2.4.4 Noise equivalent power and detectivity 23
2.5 Quantum mechanical tunneling 24
2.5.1 Direct tunneling 25
2.5.2 Fowler–Nordheim tunneling 25
References 26
Chapter 3 Device fabrication 42
3.1 The fabrication process of the ZnO MSM-UPDs 42
3.2 The fabrication process of the MgxZn1-xO MSM-UPDs 43
3.3 The fabrication process of the Mg0.16Zn0.84O MSM-UPDs with ultrathin Al2O3 layer 44
Chapter 4 Hydrogen peroxide pretreatment utilized in ZnO MSM- UPDs 49
4.1 The characteristics of the ZnO films using PE-ALD 49
4.1.1 Self-limitation characteristic 49
4.2 The characteristics of the ZnO films with Hydrogen peroxide pretreatment 50
4.2.1 Surface morphology 50
4.2.2 Crystallinity 51
4.2.3 Optical properties 52
4.2.4 Chemical bonding characteristic 52
4.3 The characteristics of the ZnO MSM-UPDs with Hydrogen peroxide pretreatment 53
4.3.1 Current-voltage characteristic 53
4.3.2 Responsivity performance 54
4.4 Summary 55
References 57
Chapter 5 The MgxZn1-xO films utilized in MSM- UPDs 70
5.1 The characteristics of the MgxZn1-xO films using PE-ALD 70
5.1.1 Self-limitation characteristic 70
5.1.2 Optical properties 71
5.2 The characteristics of the MgxZn1-xO MSM-UPDs 72
5.2.1 Current-voltage characteristic 72
5.2.2 Responsivity performance 72
5.2.3 Low frequency noise performance 73
5.3 Summary 75
References 76
Chapter 6 The ultrathin Al2O3 layer utilized in Mg0.16Zn0.84O MSM- UPDs 87
6.1 The characteristics of the MgxZn1-xO MSM-UPDs with ultrathin Al2O3 layer 87
6.1.1 Current-voltage characteristic 87
6.1.2 Responsivity performance 88
6.1.3 Low frequency noise performance 89
6.2 Summary 90
References 91
Chapter 7 Conclusion and future work 97
參考文獻 Chapter 1
[1] C. T. Lee, T. S. Lin, and H. Y. Lee, “Mechanisms of low noise and high detectivity of p-GaN/i-ZnO/n-ZnO: Al-heterostructured ultraviolet photodetectors,” IEEE Photonics Technol. Lett., vol. 22, pp. 1117-1119, 2010.
[2] C. H. Chen and C. T. Lee, “Enhancing the performance of ZnO nanorod/p-GaN heterostructured photodetectors using the photoelectrochemical oxidation passivation method,” IEEE Trans. Nanotechnol., vol. 12, pp. 578-582, 2013.
[3] C. T. Lee and T. S. Lin, “ZnO-based solar blind ultraviolet-C photodetectors using SiZnO absorption layer,” IEEE Photonics Technol. Lett., vol. 27, pp. 864-866, 2015.
[4] Y. Kawamura, N. Hattori, N. Miyatake, and Y. Uraoka, “Comparison between ZnO films grown by plasma-assisted atomic layer deposition using H2O plasma and O2 plasma as oxidant,” J. Vac. Sci. Technol. A, vol. 31, pp. 01A142-1-01A142-5, 2013.
[5] S. C. Gong, Y. J. Choi, H. Kim, C. S. Park, H. H. Park, J. G. Jang, H. J. Chang, and G. Y. Yeom, “Aluminum-doped zinc oxide formed by atomic layer deposition for use as anodes in organic light emitting diodes,” J. Vac. Sci. Technol. A, vol. 31, pp. 01A101-1-01A101-6, 2013.
[6] C. T. Lee, Y. S. Chiu, L. R. Lou, S. C. Ho, and C. T. Chuang, “Integrated pH sensors and performance improvement mechanism of ZnO-based ion-sensitive field-effect transistors,” IEEE Sens. J., vol. 14, pp. 490-496, 2014.
[7] H. Y. Lee, H. Y. Chang, L. R. Lou, and C. T. Lee, “p-i-n MgBeZnO-based heterostructured ultraviolet LEDs,” IEEE Photon. Technol. Lett., vol. 25, pp. 1770-1773, 2013.
[8] H. Tanaka, K. Ihara, T. Miyata, H. Sato, and T. Minami, “Low resistivity polycrystalline ZnO:Al thin films prepared by pulsed laser deposition,” J. Vac. Sci. Technol. A, vol. 22, pp. 1757-1762, 2004.
[9] T. S. Lin and C. T. Lee, “Performance investigation of p-i-n ZnO-based thin film homojunction,” Appl. Phys. Lett., vol. 101, pp. 221118-1- 221118-3, 2012.
[10] E. Guziewicz, M. Godlewski, L. Wachnicki1, T. A. Krajewski, G. Luka, S. Gieraltowska, R. Jakiela, A. Stonert, W. Lisowski, M. Krawczyk, J. W. Sobczak, and A Jablonski, Semicond. “ALD grown zinc oxide with controllable electrical properties,” Sci. Technol., vol. 27, pp. 074011-1- 074011-11, 2012.
[11] E. Janocha and C. Pettenkofer, “ALD of ZnO using diethylzinc as metal-precursor and oxygen as oxidizing agent,” Appl. Surf. Sci., vol. 257, pp. 10031-10035, 2011.
[12] R. Mundle and A. K. Pradhan, “Electrical response in atomic layer deposited AlZnO with varying stack thickness,” J. Appl. Phys., vol. 115, pp. 183503-1-183503-9, 2014.
[13] F. Oba, M. Choi, A. Togo, and I. Tanaka, “Point defects in ZnO an approach from first principles,” Sci. Technol. Adv. Mater., vol. 12, pp. 034302-1-034302-15, 2011.
[14] C. G. Van de Walle, “Hydrogen as a cause of doping in zinc oxide,” Phys. Rev. Lett., vol. 85, pp. 1012-1015, 2000.
[15] T. H. Jung, J. S. Park, D. H. Kim, Y. Jeong, S. G. Park, and J. D. Kwon, “Effect of in situ hydrogen plasma treatment on zinc oxide grown using low temperature atomic layer deposition,” J. Vac. Sci. Technol. A, vol. 31, pp. 01A124-1-01A124-4, 2013.
[16] S. F. J. Cox, E. A. Davis, S. P. Cottrell, P. J. C. King, J. S. Lord, J. M. Gil, H.V. Alberto, R. C. Vilão, J. P. Duarte, N. A. de Campos, A. Weidinger, R. L. Lichti, and S. J. C. Irvine, “Experimental confirmation of the predicted shallow donor hydrogen state in zinc oxide,” Phys. Rev. Lett., vol. 86, pp. 2601-2604, 2001.
[17] D. M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker, and B. K. Meyer, “Hydrogen: a relevant shallow donor in zinc oxide,” Phys. Rev. Lett., vol. 88, pp. 045504-1-045504-4, 2002.
[18] S. K. Kim, C. S. Hwang, S. H. K. Park, and S. J. Yun, “Comparison between ZnO films grown by atomic layer deposition using H2O or O3 as oxidant,” Thin Solid Films, vol. 478, pp. 103-108, 2005.
[19] R. Mundle, H. Terry, M. Bahoura, and A. K. Pradhan, “Ozone-assisted atomic layer deposited ZnO thin films for multifunctional device applications,” J. Phys. D: Appl. Phys., vol. 46, pp. 475101-1-475101-6, 2013.
[20] D. Kim, H. Kang, J. M. Kim, and H. Kim, “The properties of plasma-enhanced atomic layer deposition (ALD) ZnO thin films and comparison with thermal ALD,” Appl. Surf. Sci., vol. 257, pp. 3776-3779, 2011.
[21] M. A. Thomas and J. B. Cui, “Highly tunable electrical properties in undoped ZnO grown by plasma enhanced thermal-atomic layer deposition,” ACS Appl. Mater. Interfaces, vol. 4, pp. 3122-3128, 2012.
[22] J. Zhang, H. Yang, Q. L. Zhang, S. Dong, and J. K. Luo, “Structural optical electrical and resistive switching properties of ZnO thin films deposited by thermal and plasma-enhanced atomic layer deposition,” Appl. Surf. Sci., vol. 282, pp. 390-395, 2013.
[23] A. Delabie, S. Sioncke, J. Rip, S. V. Elshocht, G. Pourtois, M. Mueller, B. Beckhoff, and K. Pierloot, “Reaction mechanisms for atomic layer deposition of aluminum oxide on semiconductor substrates,” J. Vac. Sci. Technol. A, vol. 30, pp. 01A127-1-01A127-10, 2012.
[24] J. Lim and C. Lee, “Effects of substrate temperature on the microstructure and photoluminescence properties of ZnO thin films prepared by atomic layer deposition,” Thin Solid Films, vol. 515, pp. 3335-3338, 2007.
[25] Y. N. Hou, Z. X. Mei, Z. L. Liu, T. C. Zhang, and X. L. Du, “Mg0.55Zn0.45O solar-blind ultraviolet detector with high photoresponse performance and large internal gain,” Appl. Phys. Lett., vol. 98, pp. 103506-1103506-3, 2011.
[26] M. M. Fan, K. W. Liu, Z. Z. Zhang, B. H. Li, X. Chen, D. X. Zhao, C. X. Shan, and D. Z. Shen, “High-performance solar-blind ultraviolet photodetector based on mixed-phase ZnMgO thin film,” Appl. Phys. Lett., vol. 105, pp. 011117-1-011117-5, 2014.
[27] S. Han, Z. Zhang, J. Zhang, L. Wang, J. Zheng, H. Zhao, Y. Zhang, M. Jiang, S. Wang, D. Zhao, C. Shan, B. Li, and D. Shen, “Photoconductive gain in solar-blind ultraviolet photodetector based on Mg0.52Zn0.48O thin film,” Appl. Phys. Lett., vol. 99, pp. 242105-1- 242105-4, 2011.
[28] C. Y. Zhao, X. H. Wang, J. Y. Zhang, Z. G. Ju, C. X. Shan, B. Yao, D. X. Zhao, D. Z. Shen, and X. W. Fan, “Ultraviolet photodetector fabricated from metal-organic chemical vapor deposited MgZnO,” Thin Solid Films, vol. 519, pp. 1976-1979, 2011.
[29] H. Zhu, C. X. Shan, L. K. Wang, J. Zheng, J. Y. Zhang, B. Yao, and D. Z. Shen, “Metal−oxide−semiconductor-structured MgZnO ultraviolet photodetector with high internal gain,” J. Phys. Chem. C, vol. 114, pp. 7169-7172, 2010.
[30] H. Y. Lee, M. Y. Wang, K. J. Chang, and W. J. Lin, “Ultraviolet photodetector based on MgxZn1-xO thin films deposited by radio frequency magnetron sputtering,” IEEE Photonics Technol. Lett., vol. 20, pp. 2108-2110, 2008.
[31] Y. Zhao, J. Zhang, D. Jiang, C. Shan, Z. Zhang, B. Yao, D. Zhao, and D. Shen, “Ultraviolet photodetector based on a MgZnO film grown by radio-frequency magnetron sputtering,” ACS Appl. Mater. Interfaces, vol. 1, pp. 2428-2430, 2009.
[32] C. Z. Wu, L. W. Ji, C. H. Liu, S. M. Peng, S. J. Young, K. T. Lam, and C. J. Huang, “Ultraviolet photodetectors based on MgZnO thin films,” J. Vac. Sci. Technol. A, vol. 29, pp.03A118-1-03A118-5, 2011.
[33] I. Takeuchi, W. Yang, K.-S. Chang, M. A. Aronova, T. Venkatesan, R. D. Vispute, and L. A. Bendersky, “Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in MgxZn1-xO composition spreads,” J. Appl. Phys., vol. 94, pp. 7336-7340, 2003.
[34] W. Yang, R. D. Vispute, S. Choopun, R. P. Sharma, T. Venkatesan, and H. Shen, “Ultraviolet photoconductive detector based on epitaxial Mg0.34Zn0.66O thin films,” Appl. Phys. Lett., vol. 78, pp. 2787-2789, 2001.
[35] Z. Zhang, H. von Wenckstern, and M. Grundmann, “Energy-selective multichannel ultraviolet photodiodes based on (Mg,Zn)O,” Appl. Phys. Lett., vol. 103, pp. 171111-1-171111-4, 2013.
[36] H. Y. Lee, Y. C. Lin, M. J. Lee, W. Y. Uen, and K. Sreenivas, “Enhanced performance of Mg0.1Zn0.9O UV photodetectors using photoelectrochemical treatment and silica nanospheres,” J. Nanomater., vol. 2014, pp. 972869-1-972869-6, 2014.
[37] H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels, “Plasma-assisted atomic layer deposition basics opportunities and challenges,” J. Vac. Sci. Technol. A, vol. 29, pp. 050801-1- 050801-26, 2011.
[38] J. S. Park, H. S. Park, and S. W. Kang, “Plasma-enhanced atomic layer deposition of Ta-N thin films,” J. Electrochem. Soc., vol. 149, pp. C28-C32, 2002.
[39] Y. Kim, J. Koo, J. W. Han, S. Choi, H. Jeon, and C. G. Park, “Characteristics of ZrO2 gate dielectric deposited using Zr t –butoxide and Zr(NEt2)4 precursors by plasma enhanced atomic layer deposition method,” J. Appl. Phys., vol. 92, pp. 5443-5447, 2002.
[40] J. Y. Kim, S. Seo, D. Y. Kim, H. Jeon, and Y. Kim, “Remote plasma enhanced atomic layer deposition of TiN thin films using metalorganic precursor,” J. Vac. Sci. Technol. A, vol. 22, pp. 8-12, 2004.
[41] K. E. Elers, J. Winkler, K. Weeks, and S. Marcus, “TiCl4 as a precursor in the TiN deposition by ALD and PEALD,” J. Electrochem. Soc., vol. 152, pp. G589-G593, 2005.
[42] S. B. S. Heil, E. Langereis, A. Kemmeren, F. Roozeboom, M. C. M. van de Sanden, and W. M. M. Kessels, “Plasma-assisted atomic layer deposition of TiN monitored by in situ spectroscopic ellipsometry,” J. Vac. Sci. Technol. A, vol. 23, pp. L5-L8, 2005.
[43] S. B. S. Heil, E. Langereis, F. Roozeboom, M. C. M. Van de Sanden, and W. M. M. Kessels, “Low-temperature deposition of TiN by plasma-assisted atomic layer deposition,” J. Electrochem. Soc., vol. 153, pp. G956-G965, 2006.
[44] N. Leick, R. O. F. Verkuijlen, E. Langereis, S. Rushworth, F. Roozeboom, M. C. M. van de Sanden, and W. M. M. Kessels, “Atomic layer deposition of Ru from CpRu(CO)2Et using O2 gas and O2 plasma,” J. Vac. Sci. Technol. A, vol. 29, pp. 021016-1-021016-7, 2011.
[45] C. L. Tsai, Y. J. Lin, P. H. Wu, S. Y. Chen, D. S. Liu, J. H. Hong, C. J. Liu, Y. T. Shih, J. M. Cheng, and H. C. Chang, “Induced increase in surface work function and surface energy of indium tin oxide-doped ZnO films by (NH4)2Sx(NH4)2Sx treatment,” J. Appl. Phys., vol. 101, pp. 113713-1-113713-4, 2007.
[46] G. R. He and Y. J. Lin, “Current transport mechanism of heterojunction diodes based on the solegel p-type ZnO and n-type Si with H2O2 treatment,” Mater. Chem. Phys., vol. 136, pp. 179-183, 2012.
[47] C. T. Lee, Y. S. Chiu, S. C. Ho, and Y. J. Lee, “ Investigation of a photoelectrochemical passivated ZnO-based glucose biosensor,” Sensors, vol. 11, pp. 4648 -4655, 2011.
[48] C. H. Chen, Y. H. Tsai, S. Y. Tsai, and C. F. Cheng, “GaN-based metal- semiconductor-metal ultraviolet photodetectors with the ZrO2 insulating layer,” Jpn. J. Appl. Phys., vol. 50, pp. 04DG19-1-04DG19-4, 2011.
[49] H. Y. Liu, Y. H. Wang, and W. C. Hsu, “Suppression of dark current on AlGaN/GaN metal-semiconductor-metal photodetectors,” IEEE Sens. J., vol. 15, pp.5202-5207, 2015.
[50] C. J. Lee, Y. J. Kwon, C. H. Won, J. H. Lee, and S. H. Hahma, “Dual-wavelength sensitive AlGaN/GaN metal-insulator- semiconductor-insulator-metal ultraviolet sensor with balanced ultraviolet/visible rejection ratios,” Appl. Phys. Lett., vol. 103, pp. 111110-1-111110- 5, 2013.

Chapter 2
[1] R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys., vol. 97, pp. 121301-1-121301-52, 2005.
[2] T. Suntola, “Atomic layer epitaxy,” Thin Solid Films, vol. 216, pp. 84-89, 1992.
[3] C. H. L. Goodman and M. V. Pessa “Atomic layer epitaxy,” J. Appl. Phys., vol. 60, R65-R81, 1986..
[4] L. Niinisto, “Atomic layer epitaxy,” Curr. Opin. Solid State Mater. Sci., vol. 3, pp. 147-152, 1998.
[5] L. Niinisto and M. Leskela, “Atomic layer epitaxy: chemical opportunities and challenges,” Thin Solid Films, vol. 225, pp. 130-135, 1993.
[6] S. M. George, “Atomic layer deposition: an overview,” Chem. Rev., vol. 110, pp. 111-131, 2010.
[7] Y. T. Lin, P. H. Chung, H. W. Lai, H. L. Su, D. Y. Lyu, K. Y. Yen, T. Y. Lin, C. Y. Kung, and J. R. Gong, “Self-limiting growth of ZnO films on (0001) sapphire substrates by atomic layer deposition at low temperatures using diethyl-zinc and nitrous oxide,” Appl. Surf. Sci., vol. 256, pp. 819-822, 2009.
[8] B. B. Burton, D. N. Goldstein, and S. M. George, “Atomic layer deposition of MgO using Bis(ethylcyclopentadienyl) magnesium and H2O,” J. Phys. Chem. C, vol. 113, pp. 1939-1946, 2009.
[9] R. A. Wind and S. M. George, “Quartz crystal microbalance studies of Al2O3 atomic layer deposition using trimethylaluminum and water at 125 °C,” J. Phys. Chem. A, vol. 114, pp. 1281-1289, 2010.
[10] M. de Keijser and C. van Opdorp, “Atomic layer epitaxy of gallium arsenide with the use of atomic hydrogen,” Appl. Phys. Lett., vol. 58, pp. 1187-1189, 1991.
[11] H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels, “Plasma-assisted atomic layer deposition: basics, opportunities, and challenges,” J. Vac. Sci. Technol. A, vol. 29, pp. 050801-1- 050801-26, 2011.
[12] J. S. Park, H. S. Park, and S. W. Kang, “Plasma-enhanced atomic layer deposition of Ta-N thin films,” J. Electrochem. Soc., vol. 149, pp. C28- C32, 2002.
[13] Y. Kim, J. Koo, J. W. Han, S. Choi, H. Jeon, and C. G. Park, “Characteristics of ZrO2 gate dielectric deposited using Zr t–butoxide and Zr(NEt2)4 precursors by plasma enhanced atomic layer deposition method,” J. Appl. Phys., vol. 92, pp. 5443-5447, 2002.
[14] J. Y. Kim, S. Seo, D. Y. Kim, H. Jeon, and Y. Kim, “Remote plasma enhanced atomic layer deposition of TiN thin films using metalorganic precursor,” J. Vac. Sci. Technol. A, vol. 22, pp. 8-12, 2004.
[15] K. E. Elers, J. Winkler, K. Weeks, and S. Marcus, “TiCl4 as a precursor in the TiN deposition by ALD and PEALD,” J. Electrochem. Soc., vol. 152, pp. G589-G593, 2005.
[16] S. B. S. Heil, E. Langereis, A. Kemmeren, F. Roozeboom, M. C. M. van de Sanden, and W. M. M. Kessels, “Plasma-assisted atomic layer deposition of TiN monitored by in situ spectroscopic ellipsometry,” J. Vac. Sci. Technol. A, vol. 23, pp. L5-L8, 2005.
[17] S. B. S. Heil, E. Langereis, F. Roozeboom, M. C. M. Van de Sanden, and W. M. M. Kessels, “Low-temperature deposition of TiN by plasma-assisted atomic layer deposition,” J. Electrochem. Soc., vol. 153, pp. G956-G965, 2006.
[18] N. Leick, R. O. F. Verkuijlen, E. Langereis, S. Rushworth, F. Roozeboom, M. C. M. van de Sanden, and W. M. M. Kessels, “Atomic layer deposition of Ru from CpRu(CO)2Et using O2 gas and O2 plasma,” J. Vac. Sci. Technol. A, vol. 29, pp. 021016-1-021016-7, 2011.
[19] M. A. Thomas and J. B. Cui, “Highly tunable electrical properties in undoped ZnO grown by plasma enhanced thermal-atomic layer deposition,” ACS Appl. Mater. Interfaces, vol. 4, pp. 3122-3128, 2012.
[20] J. G. Song, J. Park, J. Yoon, H. Woo, K. Ko, T. Lee, S. H. Hwang, J. M. Myoung, K. Kim, Y. Jang, K. Kim, and H. Kim, “Plasma enhanced atomic layer deposition of magnesium oxide as a passivation layer for enhanced photoluminescence of ZnO nanowires,” J. Lumin., vol. 145, pp. 307-311, 2014.
[21] Z. Alaie, S. Mohammad Nejad, and M. H. Yousefi, “Recent advances in ultraviolet photodetectors,” Mater. Sci. Semicond. Process, vol. 29, pp. 16-55, 2015.
[22] G.W. Neudeck, “The pn junction diode,” Addison-Wesley, Reading MA, p. 135, 1989.
[23] S. M. Sze, D. J. Coleman, Jr., and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electron., vol. 14, pp. 1209-1218, 1971.
[24] H. Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, C. L. Shao, T. Egawa, T. Jimbo, and M. Umeno, “Back-illuminated GaN metal-semiconductor- metal UV photodetector with high internal gain,” Jpn. J. Appl. Phys., vol. 40, pp. L505-L507, 2001.
[25] J. B. D. Soole and H. Schumacher, “InGaAs metal-semiconductor- metal photodetectors for long wavelength optical communications,” IEEE J. Quant. Electron., vol. 27, pp. 737-752, 1991.
[26] P. Wang, Z. Song, J. He, X. Guo, Y. Wang, L. Qiu, L. Guo, and Y. Yang, “Effects of internal gain and illumination-induced stored charges in MgZnO metal-semiconductor-metal photodetectors,” IEEE Trans. Electron Devices, vol. 63, pp. 1600-1607, 2016.
[27] F. N. Hooge, “1/f noise sources,” IEEE Trans. Electron Devices, vol. 41, pp. 1926-1935, 1994.
[28] X. S. Nguyen, K. Lin, Z. Zhang, B. McSkimming, A. R. Arehart, J. S. Speck, S. A. Ringel, E. A. Fitzgerald, and S. J. Chua, “Correlation of a generation-recombination center with a deep level trap in GaN,” Appl. Phys. Lett., vol. 101, pp. 102101-1-102101-5, 2015.
[29] Razavy, Mohsen “Quantum theory of tunneling,” World Scientific, p. 4, 2003.
[30] G. Nimtz, A. Haibel, U. Walter, “Zero time space how quantum tunneling broke the light speed barrier,”. Wiley-VCH. p. 1, 2008.
[31] R. H. Fowler and L. Nordheim, “Electron emission in intense electric fields,” Proc. R. Soc. London, Ser. A, vol. 119, pp. 173-181, 1928.

Chapter 4
[1] S. M. George, “Atomic layer deposition: An Overview,” Chem. Rev., vol. 110, pp. 111-131, 2010.
[2] J. H. Heo, H. Ryu, and W. J. Lee, “Effect of O2 plasma pretreatment on structural and optical properties of ZnO films on PES substrate by atomic layer deposition,” J. Ind. Eng. Chem., vol. 19, pp. 1638-1641, 2013.
[3] R. L. Puurunen, “Growth per cycle in atomic layer deposition: A theoretical model,” Chem. Vapor Depos., vol. 9, pp. 249-257, 2003.
[4] H. Y. Lee, M. Y. Wang, K. J. Chang, and W. J. Lin, “Ultraviolet photodetector based on MgxZn1-xO thin films deposited by radio frequency magnetron sputtering,” IEEE Photonics Technol. Lett., vol. 20, pp. 2108-2110, 2008.
[5] O. Lupan, T. Pauporté, L. Chow, B. Viana, F. Pellé, L. K. Ono, B. R. Cuenya, and H. Heinrich, “Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium,” Appl. Surf. Sci., vol. 256, pp. 1895-1907, 2010.
[6] E. Janocha, and C. Pettenkofer, “ALD of ZnO using diethylzinc as metal-precursor and oxygen as oxidizing agent,” Appl. Surf. Sci., vol. 257, pp. 10031-10035, 2011.
[7] Y. Tak, D. Park, and K. Yong, “Characterization of ZnO nanorod arrays fabricated on Si wafers using a low-temperature synthesis method,” J. Vac. Sci. Technol. B, vol. 24, pp. 2047-2052, 2006.
[8] S. Bang, S. Lee, J. Park, S. Park, Y. Ko, C. Choi, H. Chang, H. Park, and H. Jeon, “The effects of post-annealing on the performance of ZnO thin film transistors,” Thin Solid Films, vol. 519, pp.8109-8113, 2011.
[9] T. S. Lin and C. T. Lee, “Performance investigation of p-i-n ZnO-based thin film homojunction ultraviolet photodetectors,” Appl. Phys. Lett., vol. 101, pp. 221118-1-221118-3, 2012.
[10] H. Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, C. L. Shao, T. Egawa, T. Jimbo, and M. Umeno, “Back-illuminated GaN metal-semiconductor- metal UV photodetector with high internal gain,” Jpn. J. Appl. Phys., vol. 40, pp. L505-L507, 2001.
[11] S. J. Young, L. W. Ji, R. W. Chuang, S. J. Chang, and X. L. Du, “Characterization of ZnO metal-semiconductor-metal ultraviolet photodiodes with palladium contact electrodes,” Semicond. Sci. Technol., vol. 21, pp. 1507-1511, 2006.
[12] C. H. Chen and C. T. Lee, “High detectivity mechanism of ZnO-based nanorod ultraviolet photodetectors,” IEEE Photon. Technol. Lett., vol. 25, pp. 348-351, 2013.
[13] Q. Zheng, F. Huang, J. Huang, Q. Hu, D. Chen, and K. Ding, “High-responsivity solar-blind photodetector based on Mg0.46Zn0.54O thin film,” IEEE Electron Device Lett., vol. 33, pp. 1033-1035, 2012.
[14] D. Somvanshi and S. Jit, “Pd/ZnO nanoparticles based Schottky ultraviolet photodiodes grown on Sn-coated n-Si substrates by thermal evaporation method,” IEEE J. Sel. Top. Quantum Electron., vol. 20, pp. 3083106-1-3083106-6, 2014.
[15] A. B. Yadav, A. Pandey, D. Somvanshi, and S. Jit, “Sol-gel-based highly sensitive Pd/n-ZnO thin film n-Si Schottky ultraviolet photodiodes,” IEEE Trans. Electron Devices, vol. 62, pp. 1879-1884, 2015.

Chapter 5
[1] H. Y. Lee, M. Y. Wang, K. J. Chang, and W. J. Lin, “Ultraviolet photodetector based on MgxZn1-xO thin films deposited by radio frequency magnetron sputtering,” IEEE Photonics Technol. Lett., vol. 20, pp. 2108-2110, 2008.
[2] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1−xO as a II–VI widegap semiconductor alloy,” Appl. Phys. Lett., vol. 72, pp. 2466-2468, 1998.
[3] C. Y. Zhao, X. H. Wang, J. Y. Zhang, Z. G. Ju, C. X. Shan, B. Yao, D. X. Zhao, D. Z. Shen, and X. W. Fan, “Ultraviolet photodetector fabricated from metal-organic chemical vapor deposited MgZnO,” Thin Solid Films, vol. 519, pp. 1976-1979, 2011.
[4] C. H. Chen and C. T. Lee, “High detectivity mechanism of ZnO-based nanorod ultraviolet photodetectors,” IEEE Photon. Technol. Lett., vol. 25, pp. 348-351, 2013.
[5] H. Y. Lee, Y. C. Lin, M. J. Lee, W. Y. Uen, and K. Sreenivas, “Enhanced performance of Mg0.1Zn0.9O UV photodetectors using photoelectrochemical treatment and silica nanospheres,” J. Nanomater., vol. 2014, pp. 972869-1-972869-6, 2014.
[6] W. Yang, R. D. Vispute, S. Choopun, R. P. Sharma, T. Venkatesan, and H. Shen, “Ultraviolet photoconductive detector based on epitaxial Mg0.34Zn0.66O thin films,” Appl. Phys. Lett., vol. 78, pp. 2787-2789, 2001.
[7] Z. Zhang, H. von Wenckstern, and M. Grundmann, “Energy-selective multichannel ultraviolet photodiodes based on (Mg,Zn)O,” Appl. Phys. Lett., vol. 103, pp. 171111-1-171111-4, 2013.
[8] Z. Zhang, H. von Wenckstern and M. Grundmann, “Monolithic multichannel ultraviolet photodiodes based on (Mg,Zn)O thin films with continuous composition spreads,” IEEE J. Sel. Top. Quantum Electr., vol. 20, pp. 3801606-1-3801606-6, 2014.

Chapter 6
[1] H. Y. Lee, Y. C. Lin, M. J. Lee, W. Y. Uen, and K. Sreenivas, “Enhanced performance of Mg0.1Zn0.9O UV photodetectors using photoelectrochemical treatment and silica nanospheres,” J. Nanomater., vol. 2014, pp. 972869-1-972869-6, 2014.
[2] R. H. Fowler and L. Nordheim, “Electron emission in intense electric fields,” Proc. R. Soc. London, Ser. A, vol. 119 , pp. 173-181, 1928.
[3] M. D. Gronera, J. W. Elama, F. H. Fabreguettea, and S. M. George, “Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates,” Thin Solid Films, vol. 413, pp. 186-197, 2002.
[4] C. H. Chen and C. T. Lee, “High detectivity mechanism of ZnO-Based nanorod ultraviolet photodetectors,” IEEE Photonics Technol. Lett., vol. 25, pp. 348-351, 2013.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-04起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw