進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0408201612391600
論文名稱(中文) 研製高脈衝重複率之被動式Q與增益雙切換全光纖雷射架構
論文名稱(英文) Study on passively Q- and gain-switched all-fiber laser at high repetition rates
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 104
學期 2
出版年 105
研究生(中文) 蔡岳呈
研究生(英文) Yueh-cheng Tsai
學號 Q16031136
學位類別 碩士
語文別 中文
論文頁數 77頁
口試委員 指導教授-蔡宗祐
口試委員-李志成
口試委員-林士廷
口試委員-方彥程
中文關鍵字 全光纖雷射  模態場不匹配  脈衝重覆率  自發性Q與增益雙切換 
英文關鍵字 all-fiber laser  mode-filed-area mismatch  repetition rate  self-balanced Q- and gain- switching 
學科別分類
中文摘要 本論文主要對Q與增益雙切換摻鉺雷射系統的輸出脈衝重複率作為探討目標,並追求高重複率的脈衝輸出特性。實驗上利用了模態場不匹配技術製作增益介質與可飽和吸收體皆為摻鉺光纖的全光纖雷射架構,並且設計雙共振腔結構達到Q與增益雙切換機制,能快速的恢復可飽和吸收體的吸收居量,因此Q切換雷射的輸出重複率不會受到可飽和吸收體的生命週期限制。我們以多模雷射源結合雙披覆光纖設置了雙披覆層雷射系統,藉由高功率泵浦能量加快了可飽和吸收體的切換速度以取得高重複率的脈衝雷射目的。實驗上第一和第二共振腔波長設計為1530-nm與1570-nm,成功取得輸出連續脈衝序列以及利用單光儀量測到1530-nm Q切換脈衝雷射與1570-nm增益脈衝雷射。實驗中我們分析了輸入功率對輸出脈衝的影響,也以更換第一共振腔反射率與提高可飽和吸收體吸收能力等方式來取得不同條件下的輸出脈衝特性變化。最後並利用共振腔光子雷射方程式模擬雷射輸出特性,藉此驗證Q與增益雙切換機制以及實驗中架構更動所影響的脈衝變化結果。
英文摘要 This thesis focused on repetition rate of the Q-switched laser. We have used a mode-filed-area (MFA) mismatch method, setting a passively all-fiber erbium Q-switched laser with Er3+ fiber as a SAQS. But the lifetime of Er3+ SAQS is too long to relax the absorption population, and that causes incompletely self-Q-switching mechanism. So we designed a dual-cavity laser structure, which could ignore the SAQS relaxation lifetime and been able to acquire a high repetition rates laser by high power pump. Using this dual-cavity laser structure with multi-mode light sources and double-cladding fibers, we demonstrated a self-balanced Q- and gain- switched cladding pumping laser. The pulses repetition rate achieved about 100k Hz with a pump power of 8.38W. And then we analyzed the variation of the output repetition, pulse duration, peak power and pulse energy with different initiation absorption of SAQS and FBG reflectivity. Finally, simulating the self-balancing mechanism and output laser characteristics by Q-switched rate equations helps us to prove the experimental results.
論文目次 摘要 i
致謝 vii
目錄 viii
圖目錄 xi
表目錄 xiii
第一章 緒論 1
1-1前言 1
1-2研究動機與方向 3
第二章 Q切換脈衝雷射原理 5
2-1被動式全光纖型Q切換脈衝雷射 5
2-2摻鉺脈衝雷射運作 7
2-3被動式Q切換脈衝條件 9
2-3-1模態場面積不匹配 (Mode-field area mismatch) 10
2-3-2 Q切換脈衝持續運作 12
2-4雙共振腔雷射系統 14
2-4-1雙共振腔的設置原因 14
2-4-2 雙共振腔之架構與自我平衡Q與增益切換運作模式分析 15
2-4-3 雙共振腔光子雷射方程式 20
2-4-4增益切換機制對吸收居量的恢復程度 21
第三章 高輸出重複率之雷射架構設置與模擬 23
3-1高功率雷射架構 23
3-1-1 雙披覆層系統(Cladding-pump) 23
3-1-2增益介質-鉺鐿共摻雙批覆層光纖 24
3-2高功率雷射操作模擬 26
3-2-1摻鉺光纖長度與雷射波長模擬 26
3-2-2 Q與增益雙切換脈衝雷射架構模擬 29
3-3被動式全光纖型Q與增益雙切換脈衝雷射架構製作 32
3-3-1 雙披覆層系統輸入架構設置 32
3-3-2 1530-nm第一共振腔設置 34
3-3-3架構雙共振腔的建立 37
第四章 架構量測與比對 39
4-1 Q與增益雙切換脈衝雷射架構輸出分析 39
4-1-1脈衝雷射架構輸出量測 39
4-1-2 Q切換脈衝與增益脈衝間距改善 41
4-1-3 Q切換脈衝與增益脈衝的區分 43
4-2 Q與增益雙切換脈衝品質改善 47
4-2-1架構改善設計 47
4-2-2提高增益切換機制效果 50
4-2-3輸出脈衝穩定性探討 53
第五章 輸出脈衝重複率分析 56
5-1實驗結果模擬對應 56
5-2主要參數設計 57
5-2-1輸入泵浦能量對脈衝特性的影響 57
5-2-2增益光纖初始吸收dB值對脈衝特性的影響 60
5-2-3可飽和吸收體初始吸收dB值對脈衝特性的影響 61
5-3次要參數 64
5-3-1共振腔總長度探討 64
5-3-2共振腔反射率的影響 67
第六章 結論與未來展望 70
6-1實驗結論 70
6-2未來展望 71
參考文獻 73
附錄 參數代號 76
參考文獻 [1] Zhou, D. P., Wei, L., Dong, B., & Liu, W. K. (2010). Tunable passively-switched erbium-doped fiber laser with carbon nanotubes as a saturable sorber.Photonics Technology Letters, IEEE, 22(1), 9-11.
[2] T.-Y. Tsai, Y.-C. Fang, Z.-C. Lee, and H.-X. Tsao, “All-fiber passively Q-switched erbium laser using mismatch of mode field areas and a saturable-amplifier pump switch,” Opt. Lett. 34(19), 2891–2893 (2009).
[3] T.-Y. Tsai, Y.-C. Fang, H.-M. Huang, H.-X. Tsao,S.-T.Lin “Saturable absorber Q-and gain-switched all-Yb^(3+) all-fiber laser at 976 and 1064 nm”Opt. Express. Vol. 18, No. 23 (2010)
[4] T.-Y. Tsai, H.-H. Ma, Y.-C. Fang, H.-X. Tsao, S.-T. Lin “Self-balanced Q- and gain-switched erbium all-fiber laser”, AIP Advances 1, 032155 (2011)
[5] D. Zalvidea, N. A. Russo, R. Duchowicz, M. Delgado-Pinar, A. Díez, J. L. Cruz, and M. V. Andrés, “High repetition rate acoustic-induced Q-switched all-fiber laser”, Opt. Commun. 244(1-6), 315–319 (2005).
[6] R. J. Williams, N. Jovanovic, G. D. Marshall, M. J. Withford, “All-optical, actively Q-switched fiber laser”, Opt. Express Vol. 18, No. 8
[7] Du, K., Li, D., Zhang, H., Shi, P., Wei, X., & Diart, R. (2003). Electro-optically Q-switched NdYVO 4 slab laser with a high repetition rate and a short pulse width. Optics letters, 28(2), 87-89
[8] S. Kivistö, R. Koskinen, J. Paajaste, S. D. Jackson, M. Guina, and O. G. Okhotnikov, “Passively Q-switched Tm3+, Ho3+-doped silica fiber laser using a highly nonlinear saturable absorber and dynamic gain pulse compression,” Opt. Express 16(26), 22058–22063 (2008)
[9] A. Aubourg, J. Didierjean, N. Aubry, F. Balembois, and P. Georges, “Passively Q-switched diode-pumped Er:YAG solidstate laser,” Opt.Lett. 38, 938–940 (2013).
[10] Y.-F. chen, Y.P. lan,“Comparison between c-cut and a-cut Nd:YVO4 lasers passively Q-switched with a〖 Cr〗^(4+):YAG saturable absorber”, Appl. Phys. B 74, 415–418 (2002)
[11] P. Adel, M. Auerbach, C. Fallnich ,“Passive Q-switching by Tm^(3+)co-doping of a Yb^(3+)-fiber laser”, Opt. Express. Vol. 11, No. 21, 21628 (2003)
[12] Pérez-Millán, P., Díez, A., Andrés, M., Zalvidea, D., & Duchowicz, R. (2005). Q-switched all-fiber laser based on magnetostriction modulation of a Bragg grating. Optics Express, 13(13), 5046-5051.
[13] P. Adel, M. Auerbach, C. Fallnich, S. Unger, H.-R. Müller, and J. Kirchhof, “Passive Q-switching by Tm3+cooping of a Yb3+-fiber laser,” Opt. Express 11(21), 2730–2735 (2003).
[14] A. A. Fotiadi, A. S. Kurkov, and I. M. Razdobreev, “All-fiber passively Q-switched Ytterbium laser,” 2005 Conference on Lasers and Electro-Optics Europe
[15] A. S. Kurkov, E. M. Sholokhov, and O. I. Medvedkov, “All fiber Yb-Ho pulsed laser,” Laser Phys. Lett. 6(2),135–138 (2009).
[16] V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Yb–Bi pulsed fiber lasers”, Opt. Lett. Vol. 32, No. 5 (2007)
[17] T-Y Tsai, Y-C Fang ,S-H Hung, “Passively Q-switched erbium all-fiber lasers by use of thulium-doped saturable-absorber fibers” Fiber optics, Vol. 18, No. 10 (2010)
[18] Kurkov, A. S., Sadovnikova, Y. E., Marakulin, A. V., & Sholokhov, E. M. (2010). All fiber Er-Tm Q-switched laser. Laser Physics Letters, 7(11), 795.
[19] S. Fu, Q. Sheng, X. Zhu, W. Shi, J. Yao, G. Shi, R. A. Norwood, N. Peyghambarian,“Passive Q-switching of an all-fiber laser induced by the Kerr effect of multimode interference”, Opt. Express Vol. 23,No.13 pp. 17255-17262(2015)
[20] Tao, M., Feng, G., Andrianov, A., Kim, A., Yu, T., Zhao, H., & Ye, X. (2015). Tm-Ho codoped fiber based multi-wavelength Q-switching of an Er-doped fiber laser. Optics Communications, 354, 209-212.
[21] Ahmad, H., Suthaskumar, M., Tiu, Z. C., Zarei, A., & Harun, S. W. (2016). Q-switched Erbium-doped fiber laser using MoSe 2 as saturable absorber. Optics & Laser Technology, 79, 20-23.
[22] Wu, M., Chen, S., Chen, Y., & Li, Y. (2016). Wavelength switchable graphene Q-switched fiber laser with cascaded fiber Bragg gratings. Optics Communications, 368, 81-85.
[23] A. Siegman, Lasers (University Science Books 1986),pp1024-1028.
[24] T.-Y. Tsai, and Y.-C. Fang, “A saturable absorber Q-switched all-fiber ring laser,” Opt. Express 17(3), 1429–1434 (2009).
[25] T.-Y. Tsai and Y.-C. Fang, “A self-Q-switched all-fiber erbium laser at 1530nm using an auxiliary 1570-nm erbium laser” Opt. Express.17, 21628 (2009).
[26] J.-S. Ma, F. Wang, P.-X. Li, W.-W. Hu, C.-H. Yin and J.-L.Xu “High-repetition-rate Q-modulation in solid-state laser using fast saturable absorber V:YAG” Laser Phys. 25 075001 (2015)
[27] Tzong-Yow Tsai, Hong-Xi Tsao, Chun-Lin Huang, and Wei-Ju Chen, "1590-nm-pumped passively Q-switched thulium all-fiber laser at 1900 nm," Optics Express Vol. 23, Iss. 9, pp. 11195–11204 (2015).
[28] Soh, Daniel, et al. "High-power all-fiber passively Q-switched laser using a doped fiber as a saturable absorber: numerical simulations." Optics letters36.13 (2011): 2536-2538.
[29] Nilsson, J., et al. "High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers." Optical Fiber Technology 10.1 (2004): 5-30.
[30] Kurkov, A. S., Sholokhov, E. M., Marakulin, A. V., & Minashina, L. A. (2010). Effect of the active-ion concentration on the lasing dynamics of holmium fibre lasers. Quantum Electronics, 40(10), 858.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw